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Southern Ocean ecosystems are rapidly changing due to climate variability.
An apparent beneficiary of such change in the western Antarctic Peninsula
(WAP) is the gentoo penguin Pygoscelis papua, which has increased its popu-
lation size and expanded its range southward in the last 20 years. To better
understand how this species has responded to large-scale changes, we
tracked individuals during the non-breeding winter period from five colo-
nies across the latitudinal range of breeding sites in the WAP, including
from a recently established colony. Results highlight latitudinal gradients
in movement; strong associations with shallow, coastal habitats along the
entire Antarctic Peninsula; and movements that are independent of, yet con-
strained by, sea ice. It is clear that coastal habitats essential to gentoo
penguins during the breeding season are similarly critical during winter.
Larger movements of birds from northern colonies in the WAP further
suggest that leap-frog migration may influence colonization events by facil-
itating nest-area prospecting and use of new haul-out sites. Our results
support efforts to develop a marine protected area around the WAP.
Winter habitats used by gentoo penguins outline high priority areas for
improving the management of the spatio-temporally concentrated krill
(Euphausia superba) fishery that operates in this region during winter.
1. Introduction
Climate change fundamentally alters the structure and function of marine eco-
systems by modifying ocean productivity, altering food-web dynamics and
shifting species distributions [1]. Polar ecosystems are especially sensitive to
climate perturbations because they are largely structured by the seasonal
dynamics of sea ice [2], which have exhibited trends in extent and duration
in both hemispheres [3]. An area of particular concern is the western Antarctic
Peninsula (WAP), where increases in air and sea-surface temperatures over the
last 40 years have reduced regional sea ice extent and duration [4]. Such phys-
ical perturbations are associated with changes in the distribution, abundance
and survival of several species in the WAP ecosystem [5]. Further compounding
risk to this ecosystem is the expanding fishery for Antarctic krill (Euphausia
superba) [6,7], the largest, by mass, in the Southern Ocean [8].
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Table 1. Tagging locations and mean deployment durations (range in parentheses). Tagging locations were at Lions Rump (LRP), Stranger Point (SPS), Cape
Shirreff (CAS), Cierva Cove (CVA) and the Argentine Islands (AIS). All tags were released between 4 February and 29 March 2017.

age class colony longitude latitude N duration (d) maximum distance (km)

adult LRP −58.13 −62.14 15 105 (28–148) 109 (32–229)

SPS −58.62 −62.27 13 79 (45–157) 128 (29–186)

CAS −60.80 −62.46 9 100 (45–194) 151 (27–251)

CVA −60.98 −64.14 10 92 (16–221) 63 (28–141)

AIS −64.25 −65.24 14 126 (57–306) 62 (21–190)

juvenile CAS −60.80 −62.46 5 30 (12–76) 43 (23–113)

CVA −60.98 −64.14 5 28 (9–85) 63 (30–112)

royalsocietypublishing.org/journal/rsbl
Biol.Lett.17:20200708

2

Seabirds are important indicators of ecosystem status and
are among the species impacted by climate change and fish-
eries [7,9–11]. Changes in population sizes and phenologies
due to environmental variation in the Southern Hemisphere
are evident [9,12–14]. For example, in the WAP, populations
of ice-dependent Adélie penguins (Pygoscelis adeliae) and
ice-tolerant chinstrap penguins (P. antarcticus) have declined
[12,15], while the abundance and range of ice-avoiding
gentoo penguins (P. papua) have increased [12]. Notably,
range expansion and rapid population growth of gentoo pen-
guins is occurring at the southern margin of their breeding
range, where at least seven newly established colonies have
been identified in last 20 years (electronic supplementary
material, figure S1) [16]. Despite divergent population
trends among the pygoscelid penguins, all three species
have been affected by recent krill fishing during the non-
breeding period [7], hereafter winter. Thus, although
generally considered to be climate ‘winners’ [17], the risks
to gentoo penguin populations should be further assessed
to better inform conservation and management actions.

Across the WAP, gentoo penguins typically forage within
20 km of breeding sites during the austral summer [18–22].
During winter, gentoos are not constrained by the need to
provision chicks and can undertake longer range movements.
Prior tracking studies from the South Shetland Islands [18,21]
suggested winter movements up to 10 times farther than
during summer. Such dispersal to distant foraging areas is
the primary mechanism by which range expansion could
occur [23], but a lack of tracking data from colonies through-
out the WAP limits understanding of how this seabird
distributes during the winter and whether there is variation
in movement among colonies. Given rapidly changing
environmental and anthropogenic drivers in the WAP, identi-
fying winter movements and patterns of habitat use by
gentoo penguins are also useful for assessing population
status and risks to the species. We therefore tracked the
winter movements of gentoo penguins from five colonies
across the latitudinal range of this species in the WAP, includ-
ing from a recently established colony [24] near the southern
limit of the species’ range.
2. Material and methods
We tracked 10 fledgling and 65 post-moult adult gentoo
penguins from five colonies across the latitudinal range of
breeding colonies in the WAP from February 2017 through
January 2018 (table 1; electronic supplementary material,
figure S1c). We used Sirtrack Kiwisat-202K2G-172A satellite
transmitters (60 × 27 × 17 mm, 34 g) to track fledglings and Wild-
life Computers Spot-275 satellite transmitters (86 × 17 × 18 mm,
38 g) to track adults. All birds were captured on beaches and
the transmitters were affixed to back feathers using glue and
cable ties [25]. Transmitters were scheduled to transmit daily
from 12:00 to 18:00 UTC, corresponding to daylight hours
when birds should be foraging.

We processed raw location estimates by removing four adult
deployments that were tracked less than 7 days, and all erro-
neous location estimates indicated by ‘Z’ quality codes or
unspecified ellipse errors. Next, we applied a speed filter [26]
assuming a conservative swim speed of 2.5 m/s. Remaining
tracks were smoothed with a state-space model [27] using the
R [28] package ‘crawl’ [29]. Model fits were used to generate
100 alternative tracks for each deployment, with locations esti-
mated every 2 h. Alternative tracks were pooled and mapped
to hexagonal polygons with centroids spaced 15 km apart
(area≈ 87 km2) to estimate habitat utilization distributions
(HUDs) using the R package ‘crawlr’ [30]. This spatial scale
approximates daily foraging ranges by gentoo penguins during
the breeding season [25].

We used several physical variables to compare the habitats
used by birds from different colonies. We extracted bottom
depths along each track from the ETOPO1 dataset [31]. We esti-
mated distance to the nearest point of land using the
‘wrld_simpl’ database in the R [28] package ‘maptools’ [32]. To
examine near real-time experience of sea-surface temperatures
(SST) and sea ice concentrations (SIC, expressed as per cent
cover), we matched raw position estimates with daily SSTs
from the multi-scale ultra-high-resolution SST data resolved on
a 1 km grid [33] and daily SICs from the EUMETSAT Ocean
and Sea Ice Satellite Application Facility, projected from a
native 10 km grid to a 1 km grid [33].

We used the Tukey honest significant difference (HSD) to
identify colony-level differences in movement and linear
mixed-effects models using the R [28] package ‘lme4’ [34] to
identify colony-level differences in physical habitat variables.
We fitted separate models for each physical variable and
included month as a fixed effect in all models to account for
potential seasonal trends. Individuals were treated as random
effects.
3. Results
Positions (N = 29 119) of fledgling and adult penguins were,
respectively, reported for an average of 29 days (range: 9–86
days; table 1) and 100 days (range: 16–306 days). Maximum
distances from tagging sites varied by colony (table 1).
Gentoo penguins originating from the northern edge of
their range in the WAP dispersed farther and with signifi-
cantly greater shifts to the south (Tukey HSD F4,66 = 12.8,
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Figure 1. (a) Mean and 95% confidence intervals for positional shifts for
birds from the Argentine Islands (dark blue), Cierva Cove ( purple), Cape Shir-
reff (light blue), Stranger Point (orange) and Lions Rump (yellow). (b) HUDs
for all tracked birds. Colony locations are indicated with circles coloured to
match panel (a).
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p < 0.01) than adults tagged at colonies further southwest
(figure 1a). Longitudinal movements were not different
across colonies (figure 1a, Tukey HSD F4,66 = 1.9, p = 0.11).
Given high overlap of fledglings and adults (electronic
supplementary material, figure S2), all tracks were pooled
for further analyses.

The physical habitats encountered during winter were
largely similar across colonies (electronic supplementary
material, figure S3). The model-predicted distance from
shore averaged 6.4 km with little variation among colonies
(table 2). Near shore areas corresponded to shallow habitats
that averaged 42 m deep across all colonies (table 2), noting
that birds from Cape Shirreff and the Argentine Islands had
the shallowest habitats. Birds from Cape Shirreff, with a
more northern distribution for much of the winter, typically
encountered warmer water than birds from other colonies
(table 2). Responses to the distribution of SIC were not
colony-specific when ice was encountered (table 2), and all
birds usually occupied ice-free waters (figure 2).

The aggregate HUD for all tracks during winter (figure 1b)
demonstrates an affinity for coastal areas. Winter HUDs were
concentrated near tagging sites, around islands in the Bransfield
Strait, and along the entire margin of the WAP from the
Argentine Islands to the tip of the Peninsula (figure 1b). Over-
lap of colony-level HUDs (figure 2) was common. This was
particularly evident for birds from Stranger Point and Lions
Rump, which overlapped extensively around King George/25
de Mayo Island and along the northern tip of the Peninsula
from 59°W to 57°W. Similarly, birds from Cape Shireff and
Cierva Cove overlapped extensively along the central WAP
from 63°W to 59°W. The HUDs for gentoo penguins from
the Argentine Islands, the most southern colony, were largely
isolated from other colonies.

Differences in colony-level movements from February to
April occurred prior to the presence of sea ice near any
colony (figure 2), demonstrating that sea ice was not the
main driver of colony-specific, over-winter dispersal patterns.
Nonetheless, the evolution of dense sea ice (SIC > 50%) did
affect the distribution of the birds during winter. For example,
the HUDs of birds from Lions Rump contracted between June
and July when high SICs blanketed the eastern Bransfield
Strait. Likewise, birds from the Argentine Islands shifted
northeast into the Gerlache Strait coincident with the expan-
sion of dense sea ice in waters south of Anvers Island from
August to October (figure 2). However, SIC < 50% did not
preclude gentoo occupation of those areas (figure 2).

4. Discussion
We report clear latitudinal gradients in winter movements of
gentoo penguins from five colonies of varying population
sizes and trends along the WAP. Dispersal distances were
larger for birds from northern colonies than from southern
colonies. The HUDs of birds from different colonies over-
lapped in the relatively shallow, ice-free coastal margin of
the WAP. Of particular importance were the coastal regions
of the Antarctic Peninsula from the Argentine Islands to the
tip of the Antarctic Peninsula. Our multi-colony tracking
study demonstrates that, in the WAP, the coastal habitat
essential to breeding gentoo penguins during summer is
similarly critical during winter. The observed gradient in
movement patterns suggests that birds from northern colo-
nies are immigrant sources for the current range expansion
of this species.

Marine top predators are often expected to change
foraging behaviours, movement patterns and at-sea distri-
butions [35] in response to climate-driven changes in prey
distribution [9], rather than to direct changes in their physical
environment. In the WAP, however, sea ice dynamics can fun-
damentally alter the availability of foraging habitats. As an
‘ice-intolerant’ species [36], we expected the movement pat-
terns of gentoo penguins to be driven by avoidance of
developing sea ice. However, all long-distance dispersal
observed here was initiated before the presence of sea ice at
study colonies. Indeed, winter movements of gentoo pen-
guins in the Falkland/Malvinas Islands, where sea ice does
not exist, were even farther than observed in the WAP [37].
Thus, sea ice is not the main driver of differences in colony-
specific dispersal patterns among gentoo penguins. As sea
ice extent and duration in the WAP are expected to decline
under most climate-change scenarios [38], the observed lati-
tudinal gradients in movement and the affiliation of gentoo
penguins with coastal regions along the WAP may be
expected in the future.

Dispersal of seabirds from breeding sites to winter fora-
ging areas must be driven by reliable availability of prey.
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Figure 2. Monthly extents of colony-specific HUDs overlaid on monthly SIC. Colony locations are identified by filled circles. Colony locations and their HUDs are
coloured as in figure 1.

Table 2. Mixed-effect model predictions for the fixed-effects (95% CI) of colony origin on distance from shore, depth, sea-surface temperatures (SST) and sea
ice concentrations (SIC) for all tracked penguins.

colony distance to shore (km) depth (m) SST (°C) SIC (%)

LRP 7.6 (3.9–11.5) 52 (32–86) 1.03 (0.74–1.32) 39 (25–51)

SPS 6.0 (2.1–9.8) 67 (41–111) 1.0 (0.7–1.29) 38 (29–47)

CAS 6.3 (2.4–10.1) 24 (14–40) 1.62 (1.33–1.91) 34 (22–46)

CVA 4.3 (0.5–8.1) 53 (32–88) 0.83 (0.54–1.12) 37 (24–49)

AIS 7.9 (4.2–11.8) 18 (11–30) 1.06 (0.77–1.35) 45 (33–57)
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Gentoo penguins typically exhibit benthic and pelagic fora-
ging dives (less than 150 m depths) in coastal regions [20]
with diets of crustaceans (mainly Antarctic krill), other
invertebrates and fishes that can vary by location [36].
Within the WAP, shorter dispersal ranges of gentoos from
southern colonies relative to northern colonies suggest
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greater food availability along the margins of the Antarctic
Peninsula relative to the south Shetland Islands during
winter. The continental shelves of the WAP, over which the
HUDs were concentrated, are known to harbour high krill
densities during winter (e.g. [39,40]), consistent with expec-
tations of a southward contraction of krill distributions over
larger scales [41]. These shallow, coastal areas also provide
gentoo penguins with access to benthic and demersal
resources, which are suspected to be important components
of their winter diets [42].

The tracking data reported here suggest source popu-
lations for the ongoing range expansion of gentoo penguins
in the WAP. Genetic analysis indicates that basin-scale disper-
sal and colonization events are rare for this species, and the
Polar Front is an effective boundary between sub-Antarctic
and Antarctic populations [23,43]. At smaller spatial scales,
gentoo penguins are well-known colonizers of new breeding
territory and quickly take advantage of ice-free breeding
space [36]. Recent colonization events have been attributed
to emigration from colonies at the southwestern edge of
this species’ range [12,44]. However, longer distance move-
ments of birds from northern colonies suggest that rare
dispersal events to the south could be instigated by birds
from northern colonies. Such a leap-frog migration strategy
has been reported for other seabirds [45]. Differential move-
ment patterns of birds from different breeding colonies may
be driven by variation in prey availability at breeding colo-
nies but shared foraging habitat preferences that favour
gradients in directed movement [45,46]. While we cannot
test this hypothesis directly, the observed latitudinal gradient
in the movement of gentoo penguins is consistent with a
leap-frog strategy. In particular, larger scale movements
during the winter provide an opportunity to prospect
new haul-out sites and nesting areas that would support
colonization events.

The effects of ongoing climate change in the WAP region
are difficult to predict [47]. However, continued reduction in
SIC during winter may be advantageous for coastal predators
and an increase in the availability of ice-free foraging habitats
may facilitate southward expansion in the breeding range of
gentoo penguins. Nonetheless, such expectations may be
tempered by increases in the biomass of salps [48] with con-
comitant declines in krill biomass due to recruitment failures
[41], local increases in the abundances of cetaceans (potential
competitors with gentoo penguins for food) [49] and contin-
ued growth of the krill fishing industry [6,8]. Our study
suggests that, in the WAP, a latitudinal gradient in the move-
ment of gentoo penguins during winter might be a key to the
dynamic of how gentoo populations cope with large-scale
changes in the ecosystem.
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