
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19121  | https://doi.org/10.1038/s41598-020-76155-6

www.nature.com/scientificreports

Reflection‑mode virtual histology 
using photoacoustic remote 
sensing microscopy
Kevan Bell1,2,6, Saad Abbasi1,6, Deepak Dinakaran2,3, Muba Taher4, Gilbert Bigras5, 
Frank K. H. van Landeghem5, John R. Mackey3 & Parsin Haji Reza1*

Histological visualizations are critical to clinical disease management and are fundamental to 
biological understanding. However, current approaches that rely on bright-field microscopy require 
extensive tissue preparation prior to imaging. These processes are both labor intensive and contribute 
to creating significant delays in clinical feedback for treatment decisions that can extend to 2–3 weeks 
for standard paraffin-embedded tissue preparation and interpretation, especially if ancillary testing 
is needed. Here, we present the first comprehensive study on the broad application of a novel label-
free reflection-mode imaging modality known as photoacoustic remote sensing (PARS) for visualizing 
salient subcellular structures from various common histopathological tissue preparations and for 
use in unprocessed freshly resected tissues. The PARS modality permits non-contact visualizations 
of intrinsic endogenous optical absorption contrast to be extracted from thick and opaque biological 
targets with optical resolution. The technique was examined both as a rapid assessment tool that is 
capable of managing large samples (> 1 cm2) in under 10 min, and as a high contrast imaging modality 
capable of extracting specific biological contrast to simulate conventional histological stains such as 
hematoxylin and eosin (H&E). The capabilities of the proposed method are demonstrated in a variety 
of human tissue preparations including formalin-fixed paraffin-embedded tissue blocks and unstained 
slides sectioned from these blocks, including normal and neoplastic human brain, and breast 
epithelium involved with breast cancer. Similarly, PARS images of human skin prepared by frozen 
section clearly demonstrated basal cell carcinoma and normal human skin tissue. Finally, we imaged 
unprocessed murine kidney and achieved histologically relevant subcellular morphology in fresh 
tissue. This represents a vital step towards an effective real-time clinical microscope that overcomes 
the limitations of standard histopathologic tissue preparations and enables real-time pathology 
assessment.

Visualizing tissue pathology plays a central role in surgical oncology, cancer screening, drug development, and 
biological research. The standard histopathology workflow produces thin sections of tissue that are typically 
stained with dyes such as hematoxylin and eosin (H&E). These dyes then highlight specific sub-cellular contrast. 
For example, hematoxylin highlights acidic regions such as nuclei in purple and eosin shows basic regions such as 
cytoplasmic filaments in muscle cells, intracellular membranes, and extracellular fibres in pink1. The preparation 
of histology slides, however, requires a potentially laborious multi-step process2. Tissue resected from biopsies or 
surgeries is typically fixed in formalin for up to 24 h, then dissected. Representative samples are oriented, dehy-
drated (in which tissue water is replaced by alcohol, then xylene) and infiltrated with and embedded in paraffin 
wax to create a tissue block. The tissue blocks are sectioned with a microtome into approximately 4–5 micron 
sections then placed on glass slides. The paraffin is removed from the tissue by a graded series of solvents, the 
tissue is then rehydrated, and finally stained with H&E. The slide is then commonly interpreted by a patholo-
gist using a transmission light microscope. Figure 1 illustrates the multiple steps of this process. This complex 
workflow can commonly require two days to one week within a clinical setting before a diagnostic report can be 
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issued. The clinical turnaround time for complex specimens, such as radical cancer resections, may be greater 
than ten days for some cases3. Intraoperative tools such as frozen section analysis are commonly employed to 
guide surgical management and achieve negative resection margins, but this technique rapidly freezes the speci-
mens and can introduce artifacts into the tissue morphology that could hinder clinical interpretation4. An ideal 
imaging method would produce H&E-like diagnostic quality images directly on unprocessed freshly resected 
tissue. This would save valuable time during biopsy assessment, permit more rapid intraoperative assessment of 
surgical margins, guide total resection of the tumor and reduce re-operation rates. 

A microscope which can disrupt the standard histopathology workflow and provide H&E-like contrast 
directly within the resection site could radically change the clinical pathology paradigm. However, such a device 
would need to meet several key requirements: (I) The device must be capable of emulating common existing 

Figure 1.   Overview of PARS histologic imaging workflow as compared to conventional light microscopy. (a) 
Conventional imaging of H&E-stained slides is performed on a bright-field microscope where the Hematoxylin 
(purple hues) and Eosin (red hues) stains block light from a white source. PARS may image (b) unstained FFPE 
slide preparations, (c) unstained FFPE blocks and (d) unprocessed tissues by taking advantage of the intrinsic 
optical absorption provided by the cell nuclei (DNA) and the surrounding cytoplasm (cytochrome). We image 
each intermediate step along the FFPE process in this paper using a single system configuration to show the 
versatility of PARS. No other reported technique has reported all of these capabilities in a single modality.
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methods. Pathologists are accustomed to assessing stained tissues and such a device must be capable of producing 
comparable visualizations of cellular structures with appropriate resolution and chromophore-specific contrast. 
Such visualizations may also be leveraged by existing AI recognition systems which have been previously trained 
on conventional histology preparations for use in cancer detection and surgical guidance. (II) The device must 
be capable of reflection-mode imaging. It is typically challenging for transmission-mode microscopes to visu-
alize morphology on thick specimens such as freshly resected tissue or directly within the resection site. (III) 
The device must be capable of label-free visualization of intrinsic endogenous contrast. Exogenous dyes can 
be toxic and may require additional safety measures in clinical or surgical environments. (IV) The microscope 
must not require contact with the target in order to reduce the risk of infection and permit a rapid disinfection 
process between cases. (V) The device must be capable of real-time feedback. Real-time imaging would provide 
immediate feedback during surgeries and confirm suitability of tissue acquired in biopsy procedures. (VI) The 
device must be capable of 3-dimentional imaging or optical sectioning. Optical sectioning provides a means to 
visualize multiple layers of diseased tissue without the need for physical sectioning. (VII) Finally, it would be 
desirable if the microscope were able to image specimens at each intermediate step (as shown in Fig. 1) during 
the standard histopathological process. This would enable parallel integration into existing workflows at hospitals 
and encourage adoption. These capabilities, when combined, would result in a microscope that is suitable for 
intraoperative environments and would facilitate diagnostic quality H&E-like contrasts in fresh tissue specimens 
or directly within resection sites.

A variety of techniques have been developed to provide an alternative to standard histopathology. These 
methods have yet to be widely adopted as they do not fully address the requirements described above. Techniques 
such as fluorescence microscopy5–8, structured light microscopy9,10, light-sheet microscopy (LSM)11 and micros-
copy with ultraviolet surface excitation (MUSE)12,13 have demonstrated promising results in providing H&E-like 
contrast on tissue mounted on microscope slides or freshly excised tissue. However, these methods cannot image 
unstained tissue and require the application of fluorescence dyes to the sample, adding time, expense, and the 
potential for occupational exposure to these chemicals. LSM has reported rapid volumetric imaging of unfixed 
tissue but requires additional processing steps such as optical clearing of the samples in addition to fluorescence 
dyes11. Optical coherence tomography (OCT) has been used for virtual H&E imaging with the method report-
ing cellular scale resolutions14,15. However, as OCT uses optical scattering to provide contrast it is not capable 
of easily differentiating chromophores due to lack of specificity. Since H&E staining is chromophore specific, 
OCT images do not typically resemble H&E slides requiring pathologists to be retrained to interpret OCT 
visualizations16,17. Stimulated Raman scattering (SRS) modalities have provided label-free optical imaging18. 
However, these devices have primarily been shown in a transmission-mode architecture, limiting samples to 
thin sections. Transmission-mode SRS microscopes have demonstrated H&E-like contrast in thin and unfixed 
tissue specimens without the use of exogenous dyes19,20. However, thick tissue was imaged by tightly squeezing 
the sample between coverslips which is unsuitable for imaging large specimens or directly imaging a resection 
bed21. In addition, the squeezing procedure may place considerable pressure on the sample, potentially damaging 
cellular morphology, interfering with accurate margin assessment due to distortion, and hindering the analysis 
of the sample with standard histopathological techniques.

Photoacoustic (PA) imaging techniques such as optical-resolution photoacoustic microscopy (OR-PAM) have 
demonstrated exceptional visualizations of nuclear and cytoplasm morphology22–24. PA imaging takes advantage 
of the endogenous optical absorption contrast present within tissue along with various contrast agents which 
may be tagged to desirable regions of interest. These techniques have found utility in accessing deeper targets 
( ≫ 1 mm) by taking advantage of lower acoustic scattering within biological tissues and have demonstrated 
their own potential benefits for cancer diagnosis25–27. To detect absorption contrast, traditional PA devices 
employ ultrasonic transducers (similar to ultrasound imaging systems) which are in contact with the target. The 
requirement for contact with the acoustic transducer poses significantly higher risks and logistical challenges 
in maintaining surgical field sterility. The transducers are typically bulky devices which make their application 
in space-constrained resection sites difficult. Moreover, most PA methods for histology-like imaging have been 
demonstrated in transmission-mode which makes them unsuitable for unfixed tissue or in-situ imaging22,23. PA 
imaging devices have previously used ring-shaped transducers for high resolution reflection-mode approaches. 
However, such devices require the tissue and parts of the apparatus to be submerged in water for effective acoustic 
coupling making them unfeasible for in-situ imaging28. These limitations, therefore, pose significant challenges 
for clinical or intraoperative applications.

Photoacoustic Remote Sensing (PARS) is an emerging non-contact photoacoustic imaging technique29,30. 
PARS circumvents the limitations of conventional PA techniques by replacing the acoustic transducer with 
a continuous-wave detection laser31,32. This laser provides an all-optical design which allows for reflection-
mode non-contact label-free imaging. This is in contrast to some all-optical photoacoustic techniques which 
may employ surface-coupled acousto-optic transducers such as Fabry–Perot etalons33. These capabilities, as 
highlighted earlier, lead to a device suitable for intraoperative and clinical environments. Previously, PARS has 
demonstrated efficacy in recovering histopathological structures from within various preparations of human 
tissues in formalin-fixed paraffin embedded (FFPE) thin sections and blocks and frozen sections34,35. However, 
much of these previous efforts were conducted across various iterations of PARS devices and therefore do not 
necessarily provide a strong foundation for comparing the capabilities of a given PARS microscope across such 
preparations. As well, previous efforts revolving around fresh unprocessed samples have not yet provided con-
vincing histopathological recovery. Here, we aim to provide a more comprehensive comparison of current PARS 
devices and their performance across various human tissue preparations including unstained frozen sections 
and unstained paraffin embedded samples (both slides and blocks), as well as freshly resected unstained murine 
tissues. Where possible these images are qualitatively compared to adjacent sections subject to the standard 
histopathological process.
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Results
In this study a primary goal was to replicate information provided by conventional H&E staining. Towards this 
end, we targeted the ultraviolet absorption peak of DNA (~ 260 nm) to extract nuclear contrast and the blue 
light (420 nm) absorption of cytochromes to extract cytoplasm contrast. Details regarding wavelength selec-
tion are included in Supplement Information 1 and 2. Imaging was conducted on two PARS imaging platforms 
(Fig. 2): (I) A single-color system which employs a single 266 nm excitation laser for targeting DNA contrast 
which operates at a repetition rate of 50 kHz. This system provided both rapid grossing capabilities (> 2 cm2) 
and near-diffraction-limited lateral resolution (~ 425 nm). To highlights system contrast, visualizations from 
this system are shown in grayscale with lighter regions representing large photoacoustic interactions (targeted 
optical absorption contrast) and darker regions representing low photoacoustic interaction (little to no targeted 
optical absorption contrast). (II) A two-color system36 which employs a tuneable excitation source configured 
to provide both 250 nm (for DNA) and 420 nm (for cytochromes) which operates at a repetition rate of 1 kHz. 
This lower repetition rate makes larger grossing scans less practical as compared to the faster single-color device, 
however, the tuneable nature of the excitation allows for more precise control and exploration of ideal absorp-
tion wavelengths. False-coloring is applied to these two-color acquisitions attempting to emulate the look of 
corresponding images of H&E preparations. Both devices are implemented using a 1310 nm detection laser 
providing optimal imaging penetration depth within the optically scattering samples37. Images are formed by 
mechanical scanning of the sample using a pair of scanning stages. Further details regarding system layout and 
design are provided in “Methods” and Supplementary Information 3. System sensitivity characteristics, includ-
ing pulse energies used, were explored for the various tissues featured in this study, these results are included in 
Supplementary Information 5.

The first tissue preparation method explored in this work is that of FFPE slides. Apart from the lack of any 
exogenous staining, this sample type is quite similar to the conventional H&E slides which would be viewed 
under bright field microscopes. They are flat and highly transparent without visible pigmentation. FFPE slide 
preparations of human brain tissues are presented in Fig. 3. Gross imaging of the entire specimen is provided by 
the single-color system (Fig. 3a) in a 21 mm × 13 mm acquisition. The adjacent slide underwent conventional 
H&E-staining for comparison, a large section of which is shown in Fig. 3b and its relative location on the PARS 
image is shown in red. Two-color acquisitions were then performed on smaller regions (Fig. 3c,e) and are 
presented with their adjacent H&E counterparts (Fig. 3d,f). Here, PARS demonstrates its ability to recover the 
sparse nuclear structure within this healthy human brain sample. At this scale, further diagnostic qualities are 
accessible such as internuclear spacing and nuclear volumes. These features may facilitate the differentiation of 
normal brain tissue, grey and white matter but also identification of specific cell types such as neurons, glial cells 
or endothelial cells. The 420 nm contrast (shown as pink) provided additional morphology information such 
as the location of blood vessels through high concentrations of erythrocytes and provided additional structural 
information within the internuclear regions.

PARS imaging of FFPE tissue blocks of human breast tissue with ductal carcinoma in situ (DCIS) followed. 
Tissue blocks from breast tissue resections are typically several millimeters thick and highly opaque, making 
transmission-mode modalities impractical. Blocks imaged here had adjacent sections removed by a microtome, 
leaving a flat surface for the PARS microscopes to image. Single-color acquisitions are shown in Fig. 4a which 
highlights a wide grossing scan (17 mm × 17 mm) of the block surface and Fig. 4b which highlights a higher-
resolution scan (3 mm × 3 mm) of the region marked in red. At this resolution adipose tissue, stromal elements 
and regions of DCIS are clearly visible. Yet smaller scans (800 μm × 800 μm) were then performed at further 

Figure 2.   A simple system diagram showing the two excitation pathways. Component labels are defined as 
photodiode (PD), quarter wave-plate (QWP), Attentuator (Att), Isolator (Iso.).
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locations on the block surface using the two-color PARS (Fig. 4c–f). For comparison, inset into these figures 
are bright-field H&E images of similar regions. The difference in contrast between the fat cells and the sur-
rounding tissues becomes more apparent with the addition of the 420 nm hemeprotein contrast. The results 
also demonstrate that PARS can recover fine nuclear structure from within these FFPE blocks. This represents 
the first time that large sections of FFPE tissue blocks have been visualized by taking advantage of the intrinsic 
optical absorption contrast of DNA. Continuing with the same FFPE human breast tissue blocks, volumetric 
acquisitions were performed on the single-color system (Fig. 5). These were acquired by taking consecutive 2D 
scans (5 mm × 5 mm) at various respective depths within the sample. Unique bulk structures can be seen at each 
level demonstrating the optical sectioning capabilities of the PARS technique. As well, since each depth level is 
separated by around 4 µm, each represents morphology which would be recovered on a single FFPE slide. In this 
study, distinct regions were observed down to around 44 μm. As such, this technique may be useful in providing 
rapid virtual sectioning of the tissue block negating the need for multiple slides. When combined with the high 
imaging rate, these capabilities facilitate future development of a PARS-based rapid FFPE block grossing tool.

Frozen sections were then investigated. Normal human skin samples were grossed with the single-color 
system (10 mm × 10 mm), with such frames requiring approximately 3 min to acquire (Fig. 6a). Switching to 
the two-color PARS system, smaller scans were captured focusing on the epidermal layers (1.6 mm × 1.6 mm) 
(Fig. 6b,c) followed by yet smaller acquisitions (300 μm × 300 μm) (Fig. 6d–g) to further enhance the detail of the 
epidermal layers. From these higher resolution images, the sublayers of the epidermis begin to show including 
the outer stratum corneum followed by the granular layer, stratum spinosum and finally the basal layer below 
that (Fig. 6f). The dermo-epidermal junction is also clearly visible along with the dermal papillae (Fig. 6d).

Next, frozen sections were acquired from a Mohs micrographic surgery procedure removing BCC from a 
human subject (Fig. 7). Standard frozen pathology was done and sections were stained using toluidine blue 
rather than H&E as this represented a common processing for BCC. Additional adjacent image slides from the 
same resection block were taken to provide unstained examples for PARS imaging. Here, two large grossing 
scans taken by the single-color PARS are presented which showed the entire frozen section (Fig. 7a,b). Figure 7c 
shows a smaller region taken from the highlighted area in Fig. 7b. This resolution level clearly resolves finer 
bulk structure and shows individual cell nuclei. Two-color acquisitions were then performed on the highlighted 
regions in Fig. 7a (Fig. 7d,f). These can then be compared with the adjacent sections stained in toluidine blue 
(Fig. 7e). Here, the overall morphological similarities between the bright-field image of the stained slide and the 

Figure 3.   Several comparisons between PARS and conventional bright-field images of FFPE slides of human 
brain tissues. (a) A wide field of view (WFOV) scan using 266 nm excitation with (b) a matching wide field 
image of the adjacent slide which has been H&E stained. (c) A two-color (250 nm and 420 nm) PARS with a 
false-colour map applied to match (d) the adjacent H&E region. Finally (e) and (f) likewise show a two-color 
PARS and bright-field image respectively in higher detail.
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PARS image of the unstained slide is evident. Much of the finer detail in the zoomed-in regions can be seen, with 
morphological features of normal skin tissue versus cancerous tissue being appreciable (Fig. 7d). These results 
highlight the rapid diagnostic potential of the PARS technique working with frozen sections.

Fresh, unprocessed tissue was the final preparation studied in this work. Unprocessed murine kidneys were 
transported in room temperature PBS for transport and cut to produce sagittal sections which were then placed 
with the fresh cut against the UV viewing window of the system. A single-color grossing scan captured nearly 
the entire organ (Fig. 8a). Several bulk features can be identified including the Calyces, Medulla and Cortex. 
Several smaller regions were captured using the two-color system as shown in Fig. 8b,c. The smaller regions 
were taken around the medulla. Imaging required careful removal of excess fluids and blood by washing with 
fresh PBS, as the transport PBS produced measurable PARS signal without discernible morphology. This signal 
is assumed to be protein and other macromolecules which could provide non-zero signal under UV and blue 
light excitation. Despite these challenges, for the first time, PARS has demonstrated H&E-like visualizations of 
unprocessed tissue morphology. These experiments were performed with a large gap between the sample and 
the objective (> 7 mm) and without the use of any exogenous contrast agents. This represents a vital step towards 
PARS becoming an effective clinical tool as a method of rapid tissue assessment.

Discussion
This work presented the efficacy of PARS microscopy in visualizing a wide variety of tissue preparations including 
human FFPE slides, FFPE tissue blocks, frozen pathology sections and unprocessed murine kidney. PARS was 
able to recover micron-scale tissue morphology solely by taking advantage of the intrinsic optical absorption 
properties of the tissue. The ability to image unstained fresh tissue directly may represent a practice changing 
technology for surgical management of cancer, which currently relies on lengthy processing methods. PARS 
microscopy functions both as a potential replacement for conventional bright-field processing techniques and 
as a rapid grossing tool capable of characterizing large regions of tissue. By presenting clinicians with rapid 
feedback within minutes, verified negative surgical margins may be achieved intra operatively more quickly 

Figure 4.   PARS imaging performed on FFPE tissue blocks of human breast. (a) Highlights a WFOV single-
color 266 nm acquisition covering nearly the entire tissue block surface. Inset is an image of the tissue block 
which was imaged. (b) shows a higher resolution single-color 266 nm of the highlighted region in red. At these 
scales bulk tissue components can be identified such as adipose tissue and fibroglandular tissue. (c–f) shows 
several two-color acquisitions from FFPE tissue blocks of human breast with bright-field images of similar 
H&E-stained regions inset. These all highlight regions of invasive ductal carcinoma (IDC).
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and efficiently, reducing the need for additional surgeries. Furthermore, PARS maybe useful as a tool for virtual 
biopsy, to interrogate tissue prior to biopsy, as well as a rapid quality assurance step to determine if diagnostic 
quality tissue is obtained. Endoscopic configurations with PARS capability could reduce unnecessary biopsies 
and limit the load placed on pathology services, thereby improving patient outcomes and lowering healthcare 
costs. Finally, PARS interrogation of fresh tissue has the potential to identify biological features, such as lipid 
subtyping and cellular hydration, that are routinely lost in standard tissue preparation.

In this paper two separate excitation pathways were examined each with their own merits. The single-color 
PARS system performed rapid grossing of centimeter-scale tissue samples by using a 50 kHz 266 nm picosecond 
excitation source matched with a fast (300 mm/s) mechanical scanning stage. This hardware facilitates scan 
rates of around 1.6 s/mm2 at 4 µm steps allowing for large samples (> 1 cm2) to be visualized in under 8 min. 
Improved scanning methods, such as hybrid mechanical-optical scanning, adding galvanometer mirrors or 
polygon scanners, may allow a much faster interrogation rate with an order of magnitude improvement in imag-
ing speed. If such a rate increase were accomplished entire tissue-block sized samples (~ 4 cm2) could be image 
within minutes with sampling at ~ 4 µm. The two-color tunable excitation source operated at a far slower 1 kHz 
pulse repetition rate but allowed for exploration of optimal histological wavelengths. Future systems for clinical 
deployment will use faster repetition rate non-tuneable sources at these optimal wavelengths. Such sources may 
also facilitate large multi-color grossing scans producing H&E-like acquisitions at rates more suitable for clinical 
use. Meanwhile, the tunable system remains a valuable tool for investigating additional contrast (lipids, melanin, 
histones, etc.). The current tunable system was relegated to smaller field of views to maintain pragmatic imag-
ing times. Per wavelength area scan rates were substantially slower as compared to the single-color counterpart 
with performances of around 21 min/mm2 at 900 nm steps and around 178 min/mm2 at 300 nm steps. The two 
detection pathways proved complimentary, with the single-color version demonstrating the potential imaging 
speed of the method when used for gross assessment, and the two-color version demonstrating available contrast 
and H&E-like visualizations.

We emphasize that no sample-specific changes were made to the PARS microscopes between sample types, 
and no special preparation was applied to any of the samples prior to imaging. This is yet another pragmatic 
consideration that makes PARS unique among competing modalities such as MUSE12 or LSM11, in that samples 
can be directly imaged in their standard form. However, the system did perform differently on different tissue 
preparation types. The FFPE slides and tissue blocks provided lower signal intensities and higher background 
signal levels as compared to the frozen sections, possibly attributed to macromolecule degradation brought on 
by the process of formalin-fixation and embedding in paraffin, including denaturation and crosslinking of DNA. 
The more ubiquitous background signal seen in the samples is likely to be a result of the paraffin within and 
surrounding the tissues. Paraffin provides a non-zero signal at all three wavelengths used. However, paraffin’s 
lack of organized structure makes it easy to discern as background and separate from the tissue. In comparison, 
frozen section samples provided notably lower background and higher signal levels. These would be attributed to 
reduced DNA damage providing additional contrast, and lower signal provided by the background embedding 
material. However, the highest contrast was observed in unprocessed tissues which completely lacked background 
signal and provided similar contrast to that seen in the frozen sections. Moving forward, imaging of bulk tissue 
samples presents new challenges, including the uneven surface which may be left from the removal process. This 
requires either tracking of the sample surface (to be addressed in future works) or placing the sample against 

Figure 5.   Several 2D sections from a 3D PARS scan of a FFPE human breast tissue block. (a) Shows the various 
slides which constitute the volume in a stack. (b) Shows several of the sections in greater detail.
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Figure 6.   Several PARS images of a human skin sample mounted as a frozen section slide. (a) A WFOV 
PARS acquisition of the sample using the single color 266 nm system. The two-color PARS was then used over 
smaller field the views in (b,c) focusing on the outer tissue layers. Still smaller field of views are shown in (d,g) 
highlighting the details available within the epidermal layers. These layers are annotated in (f).
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a window to provide a flat viewing surface suitable for standard PARS microscopy. Another challenge arising 
from unprocessed samples is the limited time available to image prior to tissue degradation after devitalization. 
For the purpose of this initial investigation, samples were imaged within 3 h of resection to minimize tissue 
degradation. By visualizing freshly resected tissue, PARS could provide rapid clinical feedback eliminating the 
need for further tissue processing.

Our studies demonstrate the range of applications to which PARS, a novel tissue imaging technology, can be 
applied to various tissue preparations. By virtue of the multiple pragmatic advantages inherent to this technology, 
including non-contact, label free, cellular level resolution with multi-wavelength contrast, and rapid reflection 
mode image acquisition, PARS represents a vital step towards an effective real-time clinical microscope that 
overcomes the limitations of standard histopathologic tissue preparations and enables real-time pathology assess-
ment. With configurations optimized to individual clinical applications, the PARS platform technology has the 
potential to improve diagnostic and therapeutic workflows in a variety of clinical settings.

Methods
This study examines human tissue in three different sample types: (I) unstained skin and brain tissue sections on 
glass slides (II) breast tissue fixed in formalin and embedded in paraffin (III) frozen sections of skin from Mohs 
surgery. Clinical collaborators at the Cross-Cancer Institute (Edmonton, Alberta, Canada) obtained samples 
from anonymous patient donors and removed all patient identification from the samples. The ethics commit-
tees waived the requirement for patient consent on the condition that samples were archival tissue no longer 
required for diagnostic purposes, and that no patient identifiers were provided to the researchers. The samples 
were obtained under a protocol approved by Research Ethics Board of Alberta (Protocol ID: HREBA.CC-18-
0277) and University of Waterloo Health Research Ethics Committee (Humans: #40275 Photoacoustic Remote 
Sensing (PARS) Microscopy of Surgical Resection, Needle Biopsy, and Pathology Specimens). All human tissue 
experiments were performed in accordance with the relevant guidelines and regulations. In addition, freshly 
excised tissue from mice was obtained to demonstrate PARS’s performance in imaging unprocessed tissue (Pho-
toacoustic Remote Sensing (PARS) Microscopy of Resected Rodent Tissues; Protocol ID: 41543). All murine 
tissue experiments were performed in accordance with the relevant guidelines and regulations. The preparation 
methods for all sample types are described below.

Figure 7.   PARS imaging performed on frozen sections from a Mohs procedure. (a,b) Show WFOV single-color 
acquisitions of two separate entire frozen sections. Inset with (b) is an image of the unstained section mounted 
on a glass slide. (c) Shows a higher density scan of the highlighted region in (b). (d) shows a smaller FOV of the 
highlighted region in (a) captured with the two-color system along with (e) the corresponding section stained 
with toluidine blue captured on a standard bright-field microscope. (f) shows a region of subcutaneous healthy 
tissue captured on the two-color PARS which was likewise taken from the highlighted region in (a).
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FFPE sample preparation.  To prepare FFPE blocks the tissue was submersed in formaldehyde for 48 h. 
The tissues were then dehydrated by repeatedly immersing the tissue in ethanol of increasing levels of concen-
tration ending in a 100% concentration of ethanol. The tissues were thereafter cleared with xylene to remove 
ethanol and any residual fat tissue. This clearing permits molten paraffin wax (60° + C) to penetrate the tissue. 
This embeds the tissue in paraffin wax. As the paraffin cools to room temperature, the FFPE tissue blocks are 
mounted in a cassette and completed. Brain and breast tissue specimens are prepared using this process. To 
further prepare unstained thin tissue slices on glass slides, 5 µm ribbons are sectioned using a microtome and 
placed onto glass slides. The glass slides are then baked at 60 °C for 60 min to remove excess paraffin from the 
sections. A comparison stained section for brain tissue specimens was obtained by immediately cutting the next 
ribbon (within 10 μm), transferred to glass slides and then baked for 60 °C for 30 min. The specimens were then 
stained with H&E contrast dyes and covered with mounting media and a coverslip. Once the mounting media 
was dry, the slides were fully prepared. Note that the unstained sections were prepared without a cover slip as 
standard borosilicate glass cover slips are not transparent in 250 nm or 266 nm light.

Frozen section sample preparation.  The frozen sections for skin specimens with BCC were obtained 
via Mohs surgery. Tissue specimens of sizes up to 15 mm × 30 mm are embedded in an optimal cutting tem-
perature compound and placed in a cryostat pre-cooled to − 20 to − 25 °C. The specimens are then frozen to the 
pre-cooled temperature for 1–10 min depending on tissue components and thickness (ex: dermal tissue required 
closer to 10 min, fatty tissue requires about 1 min). The frozen samples are then sectioned at a thickness of 5–10 
microns and transferred to a warm (room temperature) microscopic slide. The slide is then air-dried and heat-
fixed at 55 °C for 1 min. The sections are then stained with 1% toluidine blue aqueous solution, a common stain-
ing protocol for BCC. Once the staining has been performed, the slides are cover-slipped with mounting media.

Unprocessed resected tissue sample preparation.  To demonstrate imaging on unprocessed tissue, 
unprocessed murine kidney specimens were obtained with the aid of collaborators at the Central Animal Facil-
ity, University of Waterloo performing work under animal care approval (Photoacoustic Remote Sensing (PARS) 
Microscopy of Resected Rodent Tissues; Protocol ID: 41543). Kidneys were excised and immediately placed in 
PBS and imaging was conducted within 3 h of devitalization.

System layout.  The two PARS architectures used in this work are shown in detail in Supplementary Fig-
ure SI3. The single-color PARS system employs a 266 nm excitation laser with a 50 kHz repetition rate (WEDGE 
XF 266, Bright Solutions). This laser also outputs a 532 nm beam as a result of frequency doubling the primary 
1064 nm wavelength. The 532 and 266 nm beams are separated using a CaF2 prism (PS862, Thorlabs Inc.). 

Figure 8.   PARS imaging performed on unprocessed murine kidney. (a) shows a WFOV single-color acquisition 
of the organ which has been sectioned in half along the sagittal direction. Several bulk components are labeled. 
(b,c) shows smaller FOVs of the medulla region captured on the two-color system illustrating numerous tubule 
constituents of nephrons.
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The 266 nm beam is then expanded using a variable beam expander (BE05-266, ThorLabs) and combined with 
the detection beam using a dichroic mirror (HBSY234, ThorLabs). The system utilizes a 1310 nm continuous-
wave superluminescent diode detection laser (S5FC1018P, ThorLabs Inc.). This beam is polarized vertically and 
passed onto a polarizing beam splitter (CCM1-PBS254, ThorLabs Inc.). The polarizing beam splitter transmits 
most of the forward light towards the quarter waveplate where it is converted into circularly polarized light. The 
two beams are co-focused on the sample using a 0.3 NA reflective objective (LMM-15X-UVV, Thorlabs Inc.). 
Since the system is in an inverted configuration, the sample is placed on a UV-transparent optical window. The 
optical window is resting in a circular holder which is connected to the mechanical stages (XMS100-S, Newport 
Inc.) as shown in Fig. 2. The back-reflected light from the sample is then converted back to linearly polarized 
light using the quarter waveplate and directed towards the polarizing beam splitter. The polarizing beam split-
ter then reflects the majority of the back-reflected light towards the photodiode (PDB425C, Thorlabs Inc.). A 
long-pass filter with a 1000 nm cut-off (FELH1000, Thorlabs Inc.) blocks any 266 nm back-reflection letting 
only the 1310 nm beam reach the photodiode. This light is then focused onto the photodiode using an aspheric 
condenser lens (ACL25416U, Thorlabs Inc.).

The two-color PARS system utilizes a tunable source with a range of 210–2600 nm (NT242, Ekspla Inc.). 
The beam from this excitation laser is split into different optical pathways depending on the wavelength. This 
particular study primarily uses 250 nm and 420 nm wavelengths. The laser light is first split using a dichroic 
mirror (HBSY134, Thorlabs Inc.). Wavelengths less than 405 nm are focused into a pinhole using an achromatic 
doublet lens (ACA254-100-UV, Thorlabs Inc.) for spatial filtering. The filtered light is then collimated using a 
second doublet lens (ACA254-100-UV, Thorlabs Inc.) and passed through a beam expander (BE02-UVB, Thor-
labs Inc.). The expanded light is combined with the detection beam using a dichroic mirror (HBSY234, Thorlabs 
Inc.). Wavelengths greater than 405 nm are split again using a dichroic mirror with a 505 nm cut-off (DMSP505, 
Thorlabs Inc.). Wavelengths between 405–505 nm are then spatially filtered, collimated and expanded in a similar 
process as the UV pathway. Wavelengths greater than 505 nm are spatially filtered by focusing the light into a 
single mode fiber. The light from the optical fiber is collimated and combined with the 405–505 nm path using 
a dichroic mirror (DMSP505, Thorlabs Inc.). The resulting optical path is combined with the detection beam 
using a subsequent dichroic mirror (DMLP1000, Thorlabs Inc.).

The tuneable PARS system uses a similar optical path for detection as the single-color PARS system. It also 
employs a 1310 nm superluminescent diode (SLD1018P, Thorlabs Inc.) which is directed onto the sample and 
back to the photodiode using the same combination of polarizing beam splitter and quarter waveplate. This light 
is combined with rest of the optical paths using dichroic mirrors. The combined light is then focused onto the 
sample using a 0.5 NA reflective objective (LMM-40X-UVV, Thorlabs Inc.). The back-reflected light from the 
sample is focused onto the photodiode (PDB425C, Thorlabs Inc.). A long pass filter (FELH1000, Thorlabs Inc.) 
ensures no excitation wavelengths influence the photodiode. The remaining 1310 nm light is then focused onto 
the photodiode using an aspheric condenser lens (ACL25416U, Thorlabs Inc.).

False‑color formation.  Tissue stained with histological dyes exhibits rich colours and contrast. Stains col-
our different tissue components in patterns that a pathologist is trained to recognize and examine. To provide 
similar information to a pathologist, it is therefore necessary to colourmap the PARS images in a similar man-
ner. H&E is the most commonly used staining media in histology with the hematoxylin staining DNA as purple 
and eosin staining cytoplasm as pink. To emulate these colours, an inhouse developed software maps the pixel 
intensities of the 250 nm image to a purple colour to simulate staining with hematoxylin. Similarly, the 420 nm 
image is mapped to a pink hue to resemble staining with eosin. Once the individual images are colorized, their 
saturation levels are adjusted and a gaussian smoothing filter is applied to reduce colour noise. The colourized 
images are then converted to CYMK color space as it was found to be more consistent across different images. 
This is likely a result of the CMYK-space subtractive nature being a close analogue to the transmission loss of 
light through dye mixtures. The CMYK images are then added together and converted back to RGB color space 
for display purposes.
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