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Abstract
With improvements in care of at-risk neonates, more and more children survive. This makes it increasingly important to assess, soon after 
birth, the prognosis of children with hypoxic-ischemic encephalopathy. Computed tomography, ultrasound, and conventional magnet-
ic resonance imaging are helpful to diagnose brain injury, but cannot quantify white matter damage. In this study, ten full-term infants 
without brain injury and twenty-two full-term neonates with hypoxic-ischemic encephalopathy (14 moderate cases and 8 severe cases) 
underwent diffusion tensor imaging to assess its feasibility in evaluating white matter damage in this condition. Results demonstrated that 
fractional anisotropy, voxel volume, and number of fiber bundles were different in some brain areas between infants with brain injury and 
those without brain injury. The correlation between fractional anisotropy values and neonatal behavioral neurological assessment scores 
was closest in the posterior limbs of the internal capsule. We conclude that diffusion tensor imaging can quantify white matter injury in 
neonates with hypoxic-ischemic encephalopathy. 

Key Words: nerve regeneration; fractional anisotropy; diffusion tensor imaging; apparent diffusion coefficient; voxel volume; neonatal behavioral 
neurological assessment; brain injury; white matter; neuroimaging; neural regeneration 

Graphical Abstract

A diffusion tensor imaging (DTI) study

DTI parameters and DTT can reflect the brain white matter injury of HIE neonates quantitatively. FA values and voxel number in 
some regions of interest are better than ADC values in estimating brain white matter injury. The correlation between FA values and 
neonatal behavioral neurological assessment scores in posterior limbs of internal capsule is closer than that between other areas.
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Introduction
For many years, much attention has been given to improving 
the assessment of the prognosis of brain injury in hypox-
ic-ischemic encephalopathy (HIE) children. The incidence 
of HIE is still high (AbdelAziz, et al., 2017). The success 
rate of rescue in moderate and severe HIE has significantly 
improved (Pfister and Soll, 2010). Objective and sensitive in-
dicators are needed to judge the prognosis. Head computed 
tomography (CT), ultrasound, and conventional magnetic 
resonance imaging (MRI) are helpful to diagnose brain inju-
ry, but cannot quantify the degree of white matter damage to 
arrive at a prognosis (Coleman et al., 2013; Jose et al., 2013; 
Duong and Watts, 2016). Conventional MRI reveals that the 
two kinds of brain injury in HIE children are basal ganglia 
and thalamic abnormalities and watershed damage, which 
are strongly associated with late motor and cognitive defi-
cits (Okumura et al., 2008). However, children with obvious 
motor and cognitive abnormalities often have unremarkable 
scans (Aridas et al., 2014; Krishnan and Shroff, 2016). It is 
vital to find methodology capable of detecting white matter 
abnormalities in HIE children, who have a high risk of neu-
rological sequelae. We explored the combined use of MRI 
and diffusion tensor imaging (DTI) to improve identification 
of CNS abnormalities. 

DTI measures water molecule diffusion. It has great ad-
vantages in studying the integrity and orientation of white 
matter in normal and pathological states (Baldoli et al., 
2015). Fractional anisotropy (FA) values and apparent diffu-
sion coefficient (ADC) values in different brain regions can 
quantify the number and integrity of white matter fibers, 
detect white matter damage, and have been shown to dy-
namically visualize white matter repair (Pfefferbaum et al., 
2014). DTI is a refinement of diffusion-weighted magnetic 
resonance imaging (DWI) (de Vries et al., 2011). A previous 
study showed that DWI in the acute stage of HIE (≤ 7 days) 
predicted the degree of brain damage; in the subacute stage 
(1–3 weeks), DWI showed pseudo-normalization, so DWI 
might underestimate the extent of damage to the basal gan-
glia and thalamus (Cavalleri et al., 2014). DTI is capable of 
applying a diffusion gradient magnetic field in at least six di-
rections, can accurately determine the distribution of nerve 
fiber bundles and anisotropic characteristics of tissue, and 
is the best imaging method to reflect the structural integrity 
and directionality of white matter (Hüppi and Dubois, 2006). 
DTI has been used to study neuroregeneration and neuro-
degeneration, which have been confirmed by pathology or 
experimental results (Kim et al., 2015). It is thought that DTI 
can reflect HIE-induced white matter damage, and is cer-
tainly correlated with the severity of disease and prognosis 
(Lee et al., 2012). We also sought to assess the prognosis of 
neonatal HIE. 

Subjects and Methods
Subjects 
This was a cross-sectional study which was performed in the 
Changzhou Children’s Hospital of China. Experiments were 

conducted in accordance with the Approval of the Regional 
Ethics Review Boards of the Changzhou Children’s Hospital 
(approval No. 20120019). The parents of patients signed in-
formed consent. From January 2013 to December 2015, we 
recruited 22 full-term neonates with HIE (14 moderate cases 
and 8 severe cases; mostly with a history of neonatal asphyx-
ia) and 10 full-term infants without brain injury (controls). 
The HIE patients were subdivided into moderate and severe 
groups. Patient baseline data are listed in Table 1. Diagnosis 
and inclusion criteria were in accordance with HIE diag-
nostic criteria and clinical classification of practical neo-
natal HIE, revised by Neonatology Group of the Chinese 
Pediatric Society of the Chinese Medical Association in 
Changsha, China in 2004 (The Subspecialty Group of Neo-
natology Pediatric Society Chinese Medical Association, 
2005). The patients’ conditions tended to be unstable in the 
first week, so MRI was conducted at the ages of 10–14 days. 
Patients with any of the following entities were excluded 
from the study: genetic metabolic diseases, central nervous 
system infection, congenital malformation of the brain, and 
chromosomal abnormality. Ten controls, including three 
cases of precipitate labor, four cases of scalp hematoma, two 
cases of cleft lip and palate, and one case of polydactyly, 
underwent MRI to exclude craniocerebral malformations. 
There was no significant difference in gestational age, mean 
weight or age on the day of examination among the three 
groups (P > 0.05) (Table 1). 

MRI scan 
All subjects were given 10% chloral hydrate 0.25–0.50 mL/kg 
by nasal feeding or enema, and subjected to scan after sleep-
ing soundly. Scans were performed on a 3.0 T MRI scanner 
(Philips Achieva, Philips Inc., Rotterdam, the Netherlands) 
with a head matrix coil. Sequences were as follows: Fast 
low-angle shot (FLASH) T1-weighted images (T1WI), (rep-
etition time 9.3 milliseconds, echo time 4.4 milliseconds, 
field of view 180 mm × 180 mm, matrix 0.9 mm × 0.9 mm, 
section thickness/intersection gap 4.5 mm/0.5 mm, number 
of excitations 2), turbo spin echo (TSE) T2-weighted imag-
es (T2WI) (repetition time 2,651 milliseconds, echo time 
105 milliseconds × 0.74 mm, section thickness/intersection 
gap 4.5 mm/0.5 mm, number of excitations 2), turbo inver-
sion recovery magnitude (T2 tirm) dark-fluid (repetition 
time 7,800 milliseconds, echo time 89 milliseconds, field of 
view 180 mm × 180 mm, matrix 0.9 mm × 1.1 mm, section 
thickness/intersection gap 4.5 mm/0.5 mm, number of exci-
tations 2). DTI used scanning with a single-shot, spin-echo, 
echo-planar sequence (repetition time 4,104 milliseconds, 
echo time 60 milliseconds, field of view 180 mm × 180 mm, 
matrix 1.8 mm × 1.8 mm, b value 1,000 seconds/mm2, diffu-
sion sensitive gradient direction (diffusion directions) for 12, 
section thickness/intersection gap 2 mm/0 mm, incentive 
times 4). The scan baseline and the number of scan layers 
were the same for all sequences.

Image processing
The patients’ imaging data were preprocessed. FSL software 
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(The Mathworks, Natick, MA, USA) was used for skull strip-
ping. The Johns Hopkins White Matter Parcellation Atlas 
Type II (JHU-WMPM) atlas was registered with a particular 
patient image. The patient-specific image was segmented us-
ing the atlas’ anatomical information. FA and ADC values in 
different areas of the specific patient images were calculated. 
b0, ADC, FA, and diffusion tensor tractography (DTT) dia-
grams were automatically generated with Neur03D software 
(The Mathworks). Twenty regions of interest (ROIs), includ-
ing bilateral parietal cortex, deep white matter of the frontal 
lobe, anterior and posterior limbs of internal capsule, genu 
and splenium of corpus callosum, head of caudate nucleus, 
lenticular nucleus, thalamus, and pons, were selected in the 
b0 diagram. These ROIs were generated automatically, and 
were normalized with a neonatal model. Data were input into 
the software (DTI studio, Wellcome Department of Cognitive 

Neurology, London, UK) for automatic generation of ADC 
and FA values. Each ROI was 10 ± 2 mm2. ROIs were placed 
within each measured structure according to its contour to 
avoid partial volume effects or adjacent structures. 

Prognostication
The neonatal behavioral neurological assessment (NBNA) 
score (Bao, 1995) was calculated at age 15 days by a doctor. 
The content of NBNA (5 parts 20 items) includes behav-
ioral ability (6), active and passive muscle tension (8 and 4, 
respectively), primitive reflex (3) and evaluation of general 
condition (3) for a total of 20 items, each item being scored 
0, 1, or 2. Infants scoring > 35 were graded as “normal,” 
and those with a score < 35 were graded as “abnormal.” All 
patients were assessed at an ambient temperature of 24–28 
°C in dim light and in a quiet environment. Each check was 
completed within 10 minutes. 

Statistical analysis
The data, expressed as the mean ± SD, were analyzed with 
SPSS 17.0 software (SPSS, Chicago, IL, USA). The F-test was 
used to analyze DTI parameters, including ADC and FA 
values in the ROIs, and voxel volume, as well as the integrity 
and quantity of white matter fibers in DTT images, among 
the three groups. FA values and NBNA scores were analyzed 

Table 3 FA values in different brain areas of normal, moderate, and 
severe HIE patients

Control 
(n = 10)

Moderate HIE 
(n = 14)

Severe HIE 
(n = 8) F P

Corticospinal 
tract

Left 0.36±0.14 0.35±0.08 0.31±0.12 1.33 > 0.05
Right 0.39±0.14 0.33±0.11 0.30±0.13 1.56 > 0.05

Cingulate gyrus
Left 0.33±0.11 0.32±0.06 0.49±0.11 1.11 > 0.05
Right 0.25±0.14  0.24±0.08 0.23±0.11 1.45 > 0.05

SLF
Left 0.33±0.12 0.32±0.16 0.29±0.11 2.33 > 0.05
Right 0.25±0.11 0.24±0.18 0.23±0.14 2.78 > 0.05

ALIC
Left 0.26±0.04 0.25±0.08 0.22±0.10  1.45 > 0.05
Right 0.38±0.04 0.32±0.04 0.25±0.06 1.88 > 0.05

PLIC
Left 0.59±0.09  0.39±0.13* 0.19±0.08# 5.18 < 0.05
Right 0.63±0.08 0.53±0.07* 0.15±0.07# 5.55 < 0.05

IFOF
Left 0.35±0.15 0.34±0.08 0.24±0.10 2.12 > 0.05
Right 0.39±0.13 0.36±0.15 0.25±0.03 2.11 > 0.05

Thalamus
Left 0.54±0.08 0.34±0.10* 0.24±0.10# 4.12 < 0.05
Right 0.56±0.15 0.35±0.13* 0.15±0.03# 5.11 < 0.05

Data are expressed as the mean ± SD, and analyzed by F-test. *P < 0.05, 
vs. control group; #P < 0.05, vs. moderate HIE group. SLF: Superior 
longitudinal fasciculus; ALIC: anterior limbs of internal capsule; PLIC: 
posterior limbs of internal capsule; IFOF: inferior fronto-occipital 
fasciculus; HIE: hypoxic-ischemic encephalopathy.

Table 2 ADC values (× 10–3 mm2/s) in different brain areas of 
normal, moderate, and severe HIE patients

Control 
(n = 10)

Moderate HIE 
(n = 14)

Severe HIE 
(n = 8) F P

Corticospinal 
tract

Left 1.16±0.04 1.18±0.08 1.15±0.06 9.32 > 0.05
Right 1.17±0.04  1.19±0.06 1.23±0.09 8.46 > 0.05

Cingulate gyrus
Left 1.31±0.04 1.32±0.06 1.29±0.11 10.01 > 0.05
Right 1.25±0.04 1.26±0.08  1.23±0.04   9.25 > 0.05

SLF
Left 1.23±0.04 1.22±0.06  1.39±0.11 9.11 > 0.05
Right 1.25±0.04 1.24±0.08 1.23±0.04 9.45 > 0.05

ALIC
Left 1.26±0.04 1.36±0.08 1.22±0.10 7.35 > 0.05
Right 1.78±0.04 1.32±0.04  1.25±0.06 8.68 > 0.05

PLIC
Left 1.19±0.09 1.29±0.13  1.19±0.08 7.98 > 0.05
Right 1.13±0.08  1.23±0.07   1.15±0.07 8.55 > 0.05

IFOF
Left 1.15±0.05 1.19±0.08 1.14±0.10 9.12 > 0.05
Right 1.19±0.03 1.16±0.05 1.15±0.03 7.11 > 0.05

Thalamus
Left 1.15±0.08 1.14±0.10  1.16±0.10   9.02  > 0.05
Right 1.16±0.05 1.15±0.03 1.16±0.09 7.17 > 0.05

Data are expressed as the mean ± SD, and analyzed by F-test. SLF: 
Superior longitudinal fasciculus; ALIC: anterior limbs of internal 
capsule; PLIC: posterior limbs of internal capsule; IFOF: inferior 
fronto-occipital fasciculus; HIE: hypoxic-ischemic encephalopathy. 

Table 1 Baseline characteristics of HIE and control participants

Item Control Moderate HIE Severe HIE F/χ2 P

Number 10 14 8
Gestational age 

(week)
39.4±2.2 40.3±2.8  39.1±2.9 1.224  > 0.05  

Weight (g) 3,084±370 3,367±480 3,167±340 1.001 > 0.05
Age at DTI (day) 15.9±5.1 16.3±4.4 14.3±4.9 1.142 > 0.05

HIE: Hypoxic-ischemic encephalopathy; DTI: diffusion tensor imaging. 
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with Pearson correlation analysis. Receiver operating char-
acteristic (ROC) curves were used to evaluate FA values in 
predicting the sensitivity and specificity of the prognosis in 
HIE children. A value of P < 0.05 was considered statistically 
significant. 

Results
DTI parameters in normal, moderate and severe HIE 
patients
The ADC values in normal, moderate and severe HIE pa-

tients were not significantly different (P > 0.05; Table 2). 
FA values in the posterior limbs of the internal capsules 

and in the thalami showed statistically significant differenc-
es between the moderate and severe HIE groups (F value 
respectively 5.18/5.55 4.12/5.11 P < 0.05), and were signifi-
cantly different between the control and moderate groups (P 
< 0.05; Table 3). 

Voxel volumes in the superior longitudinal fasciculi, pos-
terior limbs of the internal capsules and anterior limbs of the 
internal capsules showed statistically significant differences 
between the moderate and severe HIE groups (P < 0.05). 
There was no statistically significant difference between the 
control and moderate HIE groups (P > 0.05; Table 4). 

DTT parameters in normal, moderate, and severe HIE 
patients
The fiber numbers in the posterior limbs of the internal 
capsules, cingulate gyri, superior longitudinal fasciculi and 
inferior fronto-occipital fasciculi were significantly different 
between the moderate and severe HIE groups (P < 0.05), but 
not significantly different between the control and moderate 
HIE groups (P > 0.05; Table 5, Figure 1).

Correlation between FA value and NBNA scores
All 10 cases of the control group had an NBNA score ≥ 35; 
the moderate HIE group included 3 cases scoring < 35, and 

Table 5 Tract numbers in different brain areas of normal, moderate, 
and severe HIE patients

Control 
(n = 10)

Moderate HIE 
(n = 14)

Severe HIE 
(n = 8) F P

Cingulate gyrus
Left 245±72 225±52 145±62# 4.31 < 0.05
Right 405±94 365±114 185±84# 5.54 < 0.05   

Corticospinal 
tract

Left 494±54 444±84 334±67 13.22 > 0.05
Right 209±84 219±94 188±84 14.11 > 0.05

Thalamus
Left 23±12 22±11 23±14 9.88  > 0.05
Right 187±31 134±33 145±54 9.12 > 0.05

ALIC
Left 245±62 295±77  145±62 7.45 > 0.05
Right 685±84 585±112 455±68 8.88 > 0.05

PLIC
Left 284±112 234±67 114±67# 4.98 < 0.05
Right 988±233 678±234 188±84# 5.44 < 0.05   

IFOF
Left 33±12 49±22 26±19# 3.12 < 0.05
Right 156±39  197±33 112±33# 4.33 < 0.05   

SLF
Left 225±52 155±72 56±15# 4.12 < 0.05
Right 165±74 125±114 23±12# 3.87 < 0.05   

Data are expressed as the mean ± SD, and analyzed by F-test. #P < 0.05, 
vs. moderate HIE group. SLF: Superior longitudinal fasciculus; ALIC: 
anterior limbs of internal capsule; PLIC: posterior limbs of internal 
capsule; IFOF: inferior fronto-occipital fasciculus; HIE: hypoxic-
ischemic encephalopathy. 

Table 4 Voxel volume in different brain areas of normal, moderate, 
and severe HIE patients

Control 
(n = 10)

Moderate HIE 
(n = 14)

Severe HIE 
(n = 8) F P

Corticospinal 
tract

Left 299±112 236±87 221±116 5.33 > 0.05
Right 305±94 255±89 211±109 6.56 > 0.05

Cingulate gyrus
Left 504±54 487±96 443±71 4.11 > 0.05
Right 559±84 499±108 456±94 4.45   > 0.05

SLF
Left 1,094±112 980±116 546±111# 10.11 < 0.05
Right 1,123±113 1,021±128 689±144# 9.45 < 0.05

ALIC
Left 947±104 854±118 1,843±233# 7.33 < 0.05
Right 1,237±184 799±114 311±126# 8.45 < 0.05

PLIC
Left 2,047±129 1,843±233 867±118# 12.65 < 0.05
Right 2,137±238 1,753±247  999±167# 11.23 < 0.05

IFOF
Left 109±45 97±48 88±30 3.19 > 0.05
Right 119±33 87±35 65±23 4.65  > 0.05

Thalamus
Left 406±78 332±110 329±20 4.77 > 0.05
Right 521±195 355±113 313±63 3.61 > 0.05

Data are expressed as the mean ± SD, and analyzed by F-test. #P < 0.05, 
vs. moderate HIE group. SLF: Superior longitudinal fasciculus; ALIC: 
anterior limbs of internal capsule; PLIC: posterior limbs of internal 
capsule; IFOF: inferior fronto-occipital fasciculus; HIE: hypoxic-
ischemic encephalopathy.

Table 6 Correlation between FA value and NBNA scores in different 
brain areas 

Brain area rs  P

Corticospinal tract 0.478 < 0.05
Cingulate gyrus 0.460 < 0.05
SLF 0.311 > 0.05
ALIC 0.271 > 0.05
PLIC 0.646 < 0.01
IFOF 0.231 > 0.05
Thalamus 0.481 < 0.05

rs: Correlation coefficient; SLF: superior longitudinal fasciculus; ALIC: 
anterior limbs of internal capsule; PLIC: posterior limbs of internal 
capsule; IFOF: inferior fronto-occipital fasciculus. 
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Figure 1 Diffusion tensor tractography of a normal infant, a moderate HIE infant and a severe HIE infant. 
PLIC: Posterior limbs of internal capsule (green); CG: cingulate gyrus (purple); SLF: superior longitudinal fasciculus (green); IFOF: inferior fron-
to-occipital fasciculus (purple); HIE: hypoxic-ischemic encephalopathy. 

Figure 2 Receiver operating characteristic curve of diagnosis in 
posterior limb of internal capsule fractional anisotropy behavioral  
values and neonatal neurological assessment scores.
The area under the receiver operating characteristic curve (AUC) of 
fractional anisotropy values in anterior limbs of internal capsules is 
0.779 (P = 0.006). The normal AUC value is between 1.0 and 0.5. In 
the case of AUC > 0.5, AUC is close to 1, to diagnose the better results. 
AUC in 0.5–0.7 with low accuracy, AUC in 0.7–0.9 with a certain accu-
racy, AUC in higher accuracy at above 0.9. The AUC = 0.5, no diagnos-
tic value. 

11 cases scoring ≥ 35; in the severe HIE group, all NBNA 
scores were < 35 (31.1 ± 1.6). F-test results showed that  
NBNA scores were significantly different among the three 
groups, with the severe HIE group having the lowest scores (P 
< 0.01). The correlation coefficient in the posterior limbs of 
the internal capsules was 0.646, higher than in other areas by 
Pearson relative analysis (Table 6). 

The area under the ROC curve of FA values in the anterior 
limbs of the internal capsules was 0.779 (P = 0.006), using 
NBNA scores ≥ 35 as a good outcome. FA values (≥ 0.395) in 
the posterior limbs of the internal capsules predicted a good 
outcome and the corresponding sensitivity and specificity 
was 70.2% and 79.5%, respectively (Figure 2).

Discussion
There were no significant differences in ADC values among 
the different groups, which was consistent with a previous 
study (van Laerhoven et al., 2013). ADC values are import-
ant in the early diagnosis of HIE, and show pseudo-normal-
ization after the acute stage (Winter et al., 2007). Guo et al. 
(2016) reported that within one week after birth, DWI used 
to detect ADC values demonstrated that the HIE sensitivity 
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was 83%, specificity was 63% and positive predictive value 
was 83%. However, patients in the acute stage possibly had 
severe lesions and unstable vital signs in each group. MRI 
examination was difficult to conduct in the acute phase (Li 
et al., 2014). HIE enters the subacute stage 1–3 weeks after 
birth. Studies have demonstrated that the diagnostic value 
of ADC values in the subacute stage is significantly de-
creased (de Vries et al, 2011). Our results verified that the 
FA values had a high diagnostic value. In particular, FA val-
ues were remarkably decreased in the dense white matter, 
splenium of the corpus callosum, and posterior limbs of the 
internal capsules. Significant differences in FA values were 
detected between the case and control groups. Currently, it 
is thought that decreased FA values are linked to cell death 
and loss of structural components of white matter fibers. 
Rutherford et al. (1998) reported that apoptosis was more 
obvious than necrosis in children in the subacute stage of 
HIE, which could explain why FA values decreased, but 
ADC values were normal. In this study, MRI in two cases of 
moderate HIE children revealed symmetric high-signal in-
tensity in the thalami, without associated visible white mat-
ter damage; however, FA values were dramatically reduced 
in the thalami. This kind of basal ganglia/thalamus injury 
could cause athetoid cerebral palsy (de Vries et al., 2011). 
and indicates the possibility of severe cognitive impairment 
(Li et al., 2016b). 

This has important clinical significance for early interven-
tion (Dopwell et al., 2017). This report also analyzed the vox-
el volume. It is reported that a low voxel volume represents 
a severe injury. Conventional MRI T1WI and T2WI of the 
patients with severe HIE also showed damage in the thalami 
and basal ganglia. We found that voxel volume in various re-
gions was significantly lower in the severe HIE group than in 
the moderate HIE group, especially in the thalami and heads 
of the caudate nuclei, suggesting serious motor impairment 
in the severe HIE group, which is consistent with the find-
ings from a study by Lee et al. (2012b) concerning hypox-
ic-ischemic brain injury in adults. 

The fiber numbers in the corticospinal tracts, inferior 
fronto-occipital fasciculi, anterior limbs of the internal 
capsules, and thalami were significantly different between 
the moderate and severe HIE groups, but were not signifi-
cantly different between the control and moderate HIE 
groups. The injury to the integrity of white matter fibers 
means that the corresponding function may be affected. 
For example, corticospinal tract damage will affect motor 
function of the limbs. The superior longitudinal fasciculi, 
inferior longitudinal fasciculi, and frontooccipital fasciculi 
belong to long association fibers in the cerebral cortex and 
connect various areas of the cerebral cortex, so their in-
juries may affect cognitive, sensory, and motor functions. 
The inferior longitudinal fasciculi and frontooccipital fas-
ciculi were damaged in the mild and moderate HIE groups, 
mainly affecting the temporal lobe and occipital lobe, and 
auditory, olfactory, taste, and language centers (Li et al., 
2016a). Nevertheless, the corticospinal tract was the chief 
site of damage in the severe HIE group, affecting motor 

function. This is matched with deductible item of NBNA 
scores and has some guiding significance for the evaluation 
of prognosis.

Correlation between FA values and NBNA scores in 
the moderate and severe HIE groups demonstrated that 
the rank correlation coefficient rs of FA values and NBNA 
scores in the posterior limbs of the internal capsules was 
higher than that in the other regions. This may be associat-
ed with closely arranged white matter fibers, white matter 
fibers arranged in parallel, myelinization at birth, and are 
easily detected by DTI after injury (Li et al., 2015). More-
over, these locations contain important white matter pro-
jection fibers associated with neuromotor function, and 
the anatomical location is easy to identify and measure. 
However, we did not obtain a threshold with a high sensi-
tivity and specificity, which is possibly associated with the 
small sample size. 

In summary, FA values, voxel volume, and number of fiber 
bundles in some ROIs quantitatively reflected white matter 
injury in neonates with HIE. The changes in DTI parame-
ters were most obvious in the posterior limbs of the internal 
capsules, and may allow accurate and objective assessment 
of the degree of white matter injury in children with HIE. 
Among these parameters, the FA values in the posterior 
limbs of the internal capsules closely correlated with NBNA 
scores. DTI can be carried out in a single individual, so it 
has important clinical significance, and can accurately and 
objectively assess the prognosis. 
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