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a b s t r a c t

Calcium oscillations are rhythmic fluctuations of the intracellular concentration of calcium ions (Ca2þ). As
Ca2þ evokes various cellular processes, its intracellular concentration is tightly regulated. Ca2þ oscilla-
tions control biological events, including neuronal differentiation and proliferation of mesenchymal stem
cells. The frequency and pattern of Ca2þ oscillations depend on cell type. Researchers have studied Ca2þ

oscillations to better understand how cells communicate and regulate physiological processes. Dysre-
gulation of Ca2þ oscillations causes health problems, such as neurodegenerative disorders. This review
discusses the potential functions of Ca2þ oscillations in stem cells.

© 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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Abbreviations

ATP adenosine triphosphate
Ca2þ calcium ion
CaMKII calciumecalmodulin-dependent protein kinase II
CS citrate synthase
eCS extramitochondrial citrate synthase
ER endoplasmic reticulum
eTCA cycle extramitochondrial TCA cycle
GPCR G protein-coupled receptor
HDAC4 histone deacetylase 4
HIF1a hypoxia-induced factor 1a
IDH isocitrate dehydrogenase
IP3 inositol 1,4,5-triphosphate;
KATP ATP-sensitive potassium
KDH a-ketoglutalate dehydrogenase

MFN2 mitofusin 2
MSCs mesenchymal stem cells
NFATc1 nuclear factor of activated T cells, cytoplasmic 1
NSCs neural stem cells
ORAI a membrane protein encoded by drosophila olf186-F

gene
PAWP postacrosomal sheath WW domain-binding protein
PLC phospholipase C
RANK receptor activator of nuclear factor-kB
RANKL receptor activator of nuclear factor-kB ligand
SR sarcoplasmic reticulum
STIMs stromal interaction molecules
TCA cycle tricarboxylic acid cycle
TET2 ten-eleven translocation 2
VGCCs voltage-gated Ca2þ channels
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1. Introduction

Calcium ion (Ca2þ) release and clearance from the cytoplasm are
finely regulated by various regulators, leading to repetitive changes
in intracellular Ca2þ concentration in differentiated cells (Table 1)
and stem cells (Table 2). Primarily, plasmamembrane Ca2þ-ATPases
maintain cytoplasmic Ca2þ concentrations by serving as Ca2þ

pumps on the plasma membrane [1]. Sarcoendoplasmic reticulum
Ca2þ-ATPases act as Ca2þ pumps in the endoplasmic reticulum (ER)
[2]. The mitochondrial Ca2þ uniporter regulates Ca2þ transport to
the inner mitochondrial membrane. The electrogenic NaþeCa2þ

exchanger is involved in Naþ influx and Ca2þ release into the
plasma membrane [3,4].

Upon stimulation with hormones, phospholipase C (PLC) g
generally produces inositol 1,4,5-triphosphate (IP3). IP3 binds to the
IP3 receptors on the ER membrane, causing Ca2þ release from the
ER [5]. To replenish Ca2þ levels in the ER, Ca2þ release-activated
Ca2þ channels, composed of stromal interaction molecules
Table 1
Regulatory factors of Ca2þ oscillations in differentiated cells.

Gene name Coding protein Localiza

Atp2b1 Plasma membrane Ca2þ-ATPase Plasma m
Atp2a2 Sacro-endoplasmic reticulum Ca2þ-ATPase Sacro-en
Calm1 Calmodulin Cytoplas
Cs Citrate synthase Mitocho
IP3Rs Inositol 1,4,5-triphosphate receptors Endopla
Glut2 Glucose transporter 2 Plasma m
Csl Citrate synthase Extrami
Kit Truncated and ctytoplasmic form of c-kit receptor Plasma m
NFATc1 Nuclear factor of activated T cells, cytoplasmic 1 Nucleus
Ncx1 Sodium-calcium exchanger 1 Plasma m
Mcu Mitochondrial Ca2þ uniporter Mitocho
Orais ORAI calcium release-activated calcium modulators Plasma m
Plcg2 Phospholipase C-g Cytoplas
Plcz1 Phospholipase C-z Cytoplas
RANK Receptor activator of nuclear factor-kppa kB Plasm,a
RANKL Receptor activator of nuclear factor-kppa kB ligand Plasma m
Ryrs Ryanodine receptors Endopla
Ppp3ca Calcineurin Cytoplas
Slc8b1 Electrogenic Na þ -Ca2þ exchanger Mitocho
Stims Stromal interaction molecules Endopla
TRPCs Transient receptor potential channels Plasma m
PAWP Postoacrosomal sheath WW domain binding protein Plasma m
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(STIMs) and a membrane protein encoded by drosophila olf186-F
gene (ORAI), are involved in store-operated Ca2þ entry [6e9].
Decreased Ca2þ levels inside the ER initiate the translocation of
STIMs to the ER membrane for interaction with the plasma mem-
brane [10]. Translocated STIMs directly interact with ORAI channels
in the plasma membrane to regulate Ca2þ influx [10]. In addition,
the family of transient receptor potential channels and other Ca2þ

channels in the plasma membrane contribute to maintaining the
intracellular Ca2þ concentration via store-operated Ca2þ entry
[11,12]. Increased cytoplasmic Ca2þ concentration controls exocy-
tosis and cellular functions. Ca2þ signaling is critical for various
biological processes because a sufficient Ca2þ concentration is
continuously needed to perform cellular functions, including cell
proliferation and cytokine production. Remarkably, Ca2þ signaling
in each organelle regulates organelle-specific functions, leading to
gene regulation in the nucleus and oxidative metabolism in the
mitochondria [10,13]. To utilize Ca2þ signaling in these processes,
the Ca2þ concentration is translated into cellular signals, and
tion Cell type References

embrane Broad cells [1]
doplasmic retuculum Broad cells [2]
m Broad cells [1,14]
ndria Broad cells [50]
smic reticulum Broad cells [31]
embrane Broad cells [34]

tochondrial region Sperm and neurons [51]
embrane Sperm [28]

Osteoclast [31]
embrane Cardiac muscle cell [3,4,37]

ndria Broad cells [2]
embrane Broad cells [6e10]

m Broad cells [5]
m Sperm [19e21, 23, 26, 29, 30]
membrane Osteoclast [31e33]
embrane and lysosome Osteoblast [31e33]

smic reticulum Broad cells [37]
m Broad cells [14]
ndria Broad cells [3,4]
smic reticulum Broad cells [6e10]
embrane Broad cells [11,12]
embrane Sperm [26]



Table 2
Regulatory factors of Ca2þ oscillations in stem cells.

Gene name Coding protein Localization Cell type References

Atp2b1 Plasma membrane Ca2þ-ATPase Plasma membrane Pluripotent stem cell [1]
CaMKII Calciumecalmodulin-dependent protein kinase II Cytoplasm Pluripotent stem cell [48, 49]
HDAC4 Histone deacetylase 4 Nucleus Pluripotent stem cell [48, 49]
HIF1a Hypoxia-induced factor 1a Cytoplasm and nucleus Various types of stem cells [45]
IDH Isocitrate dehydrogenase Mitochondriia Various types of stem cells [47]
KDH a-ketoglutalate dehydrogenase Mitochondriia Various types of stem cells [47, 69]
MFN2 Mitofusin 2 Mitochondria Hematopoietic stem cell [48]
TET2 Ten-eleven translocation 2 Nucleus Pluripotent stem cell [48]
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proteins with Ca2þ-binding motifs play a role in such translation
[10]. These motifs are common in Ca2þ channel proteins, proteins
mediating Ca2þ-regulated cell functions, and Ca2þ-sensing proteins
[10]. In particular, Ca2þ-sensing proteins play an important role in
transducing Ca2þ concentration changes to calmodulin or calci-
neurin, cooperatively [14].

Many studies have provided compelling evidence that sperm
contain soluble factors (sperm factors) that initiate Ca2þ oscillations
in eggs after sperm fusion [15e21]. In frog and sea urchin eggs
[22e25], cyclic adenosine dinucleotide phosphate-ribose, nicotinic
acid-adenine dinucleotide phosphate, cyclic guanosine mono-
phosphate, inositol 1,4,5-triphosphate, and nitric oxide have been
identified as candidate soluble sperm factors. Nitric oxide also
functions as a sperm factor in sea urchin eggs [24]. In mammals, the
postacrosomal sheath WW domain-binding protein (PAWP) has
been suggested as a sperm factor [26]. Furthermore, Ca2þ oscilla-
tions were shown to be triggered by recombinant PAWP injections
into cow and pig eggs [27].

In mice, the truncated cytoplasmic form of the c-kit receptor has
been proposed as a potential sperm factor [28]. Ca2þ oscillations are
also triggered by the activation of IP3 signaling, implying that PLC
may be a predominant candidate sperm factor. A novel testis-
specific PLCz1 (PLCz1) was identified, and two recent studies
have reported that Plcz1-deficient (Plcz1-KO) mice are drastically
subfertile but not completely infertile, albeit with defects in trig-
gering Ca2þ oscillations [29,30]. These findings suggest the pres-
ence of other sperm factors.

In this review, we discuss the biological importance of Ca2þ

oscillations in stem cells.
2. Ca2þ oscillations in differentiated cells

2.1. Osteoclasts

Ca2þ oscillations play roles in osteoclast differentiation and
bone resorption [31e33]. Osteoclasts are specialized cells respon-
sible for breaking down bone tissue, and Ca2þ signaling regulates
their function [31]. Osteoclast differentiation begins with the acti-
vation of osteoclast precursor cells. This activation involves the
binding of the receptor activator of nuclear factor-kB ligand
(RANKL) to its receptor RANK on the surface of precursor cells.
Binding of RANKL to RANK triggers Ca2þ oscillations in osteoclast
precursor cells which are mediated by the release of Ca2þ from
intracellular stores, particularly the ER, through the activation of
Ca2þ release channels, such as inositol trisphosphate receptors
(IP3Rs) [31].

Ca2þ oscillations also activate the transcription factor nuclear
factor of activated T cells, cytoplasmic 1 (NFATc1) through the Ca2þ-
dependent phosphatase, calcineurin [31]. NFATc1 is a key regulator
of osteoclast differentiation and is responsible for the expression of
genes involved in osteoclast formation and function. Ca2þ oscilla-
tions also affect the cytoskeletal reorganization of osteoclast
813
precursor cells [31]. This reorganization is essential for formation of
the sealing zone, a specialized structure inwhich osteoclasts attach
to bone surfaces during resorption.

Overall, Ca2þ oscillations play a pivotal role in osteoclast dif-
ferentiation and bone resorption. They regulate the expression of
genes involved in osteoclast formation, influence cytoskeletal
changes required for bone attachment, and contribute to the acidic
and proteolytic environment necessary for efficient bone
resorption.

2.2. Pancreatic b cells

Calcium oscillations refer to rhythmic fluctuations in Ca2þ con-
centration in pancreatic islet cells and play a role in regulating in-
sulin secretion [34]. Pancreatic islets, also known as the islets of
Langerhans, contain different types of cells, including b cells that
secrete insulin. The primary trigger for insulin secretion in
pancreatic b cells is an increase in blood glucose levels. When
glucose enters b cells through glucose transporters, it undergoes
glycolysis and generates adenosine triphosphate (ATP).

Increased ATP levels lead to the closure of ATP-sensitive potas-
sium (KATP) channels in the cell membrane [35]. These channels
are normally open when ATP levels are low, allowing potassium
ions (Kþ) to flow out of the cell and leading to membrane hyper-
polarization. The closure of KATP channels causes membrane de-
polarization, leading to the opening of voltage-gated Ca2þ channels
(VGCCs). These Ca2þ channels allow Ca2þ to enter b cells. The influx
of Ca2þ through VGCCs leads to a rapid increase in the intracellular
Ca2þ concentration. Ca2þ influx is essential for triggering insulin
secretion. Rather than a sustained elevation in Ca2þ levels, b cells
often exhibit Ca2þ oscillations in response to glucose stimulation.
Each Ca2þ spike triggers the fusion of insulin-containing vesicles
with the cell membrane, thereby releasing insulin into the blood-
stream. In addition to glucose, various factors, such as hormones
(incretins-like glucagon-like peptide-1) and neural inputs, modu-
late Ca2þ oscillations in b cells [36].

Dysregulation of Ca2þ signaling in pancreatic b cells leads to
impaired insulin secretion and is associated with type 2 diabetes.
Studying Ca2þ oscillations in the islets is essential for understand-
ing the physiology of insulin secretion and may contribute to the
development of new therapeutic strategies for diabetes
management.

2.3. Cardiac muscle cells

Ca2þ oscillations are a key mechanism for maintaining the car-
diac action potential, an electrical signal that controls the
contraction of cardiac muscle cells (cardiomyocytes) [37]. Ca2þ is
essential for the initiation and regulation of muscle contraction in
the heart [38]. At rest, cardiomyocytes maintain low intracellular
Ca2þ concentrations. This is mainly achieved by actively pumping
Ca2þ out of the cells using a sodium-Ca2þ exchanger and storing it
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in the sarcoplasmic reticulum (SR), a specialized organelle within
the cells.

When cardiac pacemaker cells in the sinoatrial node generate an
electrical impulse, they travel through the conduction system of the
heart and reach the cardiomyocytes. This electrical signal causes
the depolarization of the cardiomyocyte membrane, leading to the
opening of voltage-gated Ca2þ channels (L-type) in the cell mem-
brane. The opening of these Ca2þ channels allows the influx of
extracellular Ca2þ into cardiomyocytes, which enhances the intra-
cellular Ca2þ concentration.

Ca2þ influx activates the ryanodine receptors in the SR. This
activation causes the SR to release a larger amount of stored Ca2þ

into the cytoplasm in a process known as Ca2þ-induced Ca2þ

release. This sudden increase in the intracellular Ca2þ concentra-
tion is critical for the initiation of muscle contractions. Ca2þ binds to
troponin, a component of myofilaments in cardiomyocytes. This
binding causes a conformational change in the troponin-
tropomyosin complex, allowing actin and myosin to interact and
initiate muscle contractions.

The cyclical changes in the intracellular Ca2þ concentration that
occur during each cardiac cycle can be referred to as Ca2þ oscilla-
tions. The timing and magnitude of these oscillations are tightly
regulated and are critical for maintaining the rhythmic beating of
the heart and effective pumping of blood throughout the body.
2.4. Uterine endometrium

Protease-induced Ca2þ oscillations in endometrial epithelial
cells are a specific cellular response observed in the endometrium,
inner lining of the uterus [39]. Ca2þ oscillations are triggered by the
action of proteases. This phenomenon is particularly relevant dur-
ing the menstrual cycle and embryo implantation.

The endometrium undergoes cyclic changes during the men-
strual cycle in preparation for embryo implantation [40]. The lining
thickens in the anticipation of pregnancy. If fertilization occurs, the
embryo must attach to endometrial epithelial cells for implanta-
tion. During the menstrual cycle, endometrial epithelial cells and
surrounding tissues release proteases, such as matrix metal-
loproteinases and tissue plasminogen activators. These proteases
play a role in tissue remodeling and facilitate embryo implantation.
Proteases released by endometrial cells activate cell surface re-
ceptors or cleave extracellular matrix components [39]. This acti-
vation leads to the generation of intracellular signaling molecules
and initiation of downstream signaling pathways.

Protease-induced signaling enhances intracellular Ca2þ levels in
endometrial epithelial cells [39]. These increases are often
observed in oscillatory patterns. Protease-induced Ca2þ oscillations
trigger various cellular responses in endometrial epithelial cells.
These responses may include changes in gene expression, alter-
ations in cell adhesion properties, and the secretion of factors that
facilitate embryo implantation. Dynamic changes in Ca2þ levels and
associated cellular responses help prepare the endometrial
epithelium for embryo implantation [39]. Adequate Ca2þ signaling
is crucial for proper embryo attachment and successful pregnancy.

Protease-induced Ca2þ oscillations in the endometrial epithelial
cells are tightly regulated and coordinated by hormonal fluctua-
tions during menstruation [41]. Hormones (estrogen and proges-
terone) influence the expression and activity of proteases and their
receptors, thereby contributing to the timing and effectiveness of
Ca2þ oscillations [41]. Understanding protease-induced Ca2þ os-
cillations in endometrial epithelial cells is essential to elucidate the
mechanisms involved in embryo implantation and female repro-
ductive health. Dysregulation of these processes causes reproduc-
tive disorders and infertility.
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3. Ca2þ oscillations in stem cells

3.1. Neural stem cells

Neural stem cells (NSCs) are responsible for generating new
neurons and glial cells throughout their lifetime [42]. To maintain
stem cell identity, NSCs must carefully regulate their behaviors,
including self-renewal and differentiation into specialized cell
types.

Ca2þ oscillations regulate NSC proliferation and self-renewal.
Intracellular Ca2þ levels affect the activity of various signaling
pathways, transcription factors, and cell cycle regulators that
determine whether NSCs divide or remain quiescent [42]. Ca2þ

oscillations in NSCs are crucial for neural circuit formation during
embryogenesis. NSCs give rise to neurons that establish functional
connections and synaptic contacts with other neurons. Ca2þ

signaling helps orchestrate the precise timing and guidance of
neurite outgrowth and axon pathfinding [42].

In the adult brain, certain regions, such as the hippocampus and
subventricular zone, maintain NSCs that continue to produce new
neurons [42]. Ca2þ oscillations in adult NSCs are essential for
regulating the integration of new neurons into existing neural cir-
cuits, and memory and learning processes [42]. Understanding the
precise mechanisms of Ca2þ oscillations in NSCs is crucial for the
development of potential therapeutic interventions.

3.2. Mesenchymal stem cells

Ca2þ oscillations play a role in regulating various cellular pro-
cesses in mesenchymal stem cells (MSCs), which are multipotent
cells that can differentiate into various cell types, including osteo-
blasts, adipocytes, and others [43]. Ca2þ oscillations help maintain
MSCs in an undifferentiated state, thus preserving their stem cell
properties [43]. Low levels of intracellular Ca2þ are often associated
with themaintenance of stem cell phenotypes. Ca2þ oscillations are
involved in MSC differentiation into specific cell lineages [43]. The
pattern and frequency of the Ca2þ oscillations dictate the direction
of differentiation.

Various extracellular signals, including growth factors, hor-
mones, and cytokines, can trigger Ca2þ oscillations in MSCs [43].
These signals often act via G protein-coupled receptors or tyrosine
kinases to initiate intracellular Ca2þ release.

Ca2þ oscillations are involved in regulating MSC migration.
Changes in calcium levels affect cytoskeletal dynamics and cell
motility, allowing MSCs to respond to chemotactic signals during
tissue repair and regeneration [43]. MSCs play a role in tissue repair
and wound healing. Ca2þ oscillations in MSCs are implicated in
their ability to sense and respond to injury signals and initiate
healing.

In tissue engineering and regenerative medicine, understanding
and manipulating Ca2þ oscillations in MSCs are important for
directing their differentiation into specific cell types for therapeutic
purposes.

3.3. Hypoxia and Ca2þ oscillations

Metabolic profiles inpluripotent stemcells are related to their self-
renewal and cell fate decision [44]. Hypoxia-induced reactive oxygen
species (ROS) accumulation leads to apoptosis in various types of cells.
Hence, metabolic switching prevents the excessive ROS production
and maintains the physiological states of stem cells [45]. The expres-
sion and nuclear localization of hypoxia-induced factor 1a (HIF1a) are
tightly regulated, whereas HIF1b is constitutively expressed [45]. The
increase of intracellular Ca2þ concentration is an intrinsic response
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exposed to hypoxia in many cell types. Hypoxia-mediated Ca2þ in-
crease enhances HIF1A transcription, and HIF1a translation and sta-
bilization. Moreover, MSCs primed with both hypoxia and Ca2þ

enhance their stemness and capacity for immunomodulatory activity,
thereby attenuating graft-versus-host disease [46].
3.4. Epigenetic regulation of Ca2þ oscillations and pluripotency

The epigenome, a set of modifications comprising DNA
methylation and hydroxymethylation, and histone modifications,
controls cellular identity. Ten-eleven translocation (TET) enzymes
play essential roles in the early development and differentiation
[47]. TET2 plays a role in stem cells by suppressing the expression of
lineage-specific genes. The post-translational histonemodifications
are regulated by the balanced action of histone acetyltransferases
and deacetylases (HDACs) [48]. Ca2þ-calmodulin-dependent pro-
tein kinase II (CAMKII) activation facilitates self-renewal of human
embryonic stem cells [48], suggesting that the CAMKII works in
self-renewal of pluripotent stem cells in humans and mice. CaMKII
phosphorylates HDAC4, which forms complexes with HDAC5,
promoting HDAC4 transportation to the cytoplasm [49].
4. Contribution of mitochondrial enzymes to Ca2þ

oscillations

4.1. Possible involvement of citrate synthase

Citrate synthase (CS), a rate-determining enzyme in the tricar-
boxylic acid (TCA) cycle, has been reported to function as a sperm
factor in newts [50], raising the possibility of a similar mechanism
in mammals. A recent study provided evidence of a defect in the
initiation of Ca2þ oscillations in mouse eggs fused with extra-
mitochondrial citrate synthase (eCs)-knockout (KO) sperm [51]. The
initiation of the first spike of Ca2þ oscillations was markedly
delayed in eggs fused with eCs-KO sperm, despite normal expres-
sion of the sperm factor PLCz1, implying that eCS independently
triggers the first spike of Ca2þ oscillations. In particular, eCs-KO
sperm revealed that the first spike and frequency of Ca2þ oscilla-
tions were significantly delayed and reduced compared to that in
Fig. 1. Schematic model of Ca2þ oscillations in eggs after sperm fusion. (a) The conventiona
the egg. Phospholipase C zeta 1 (PLCz1) is considered to be a sperm-derived factor responsibl
[57]. Two sperm-derived factors, PLCz1 and eCS, are involved in triggering Ca2þ oscillations in
alone and/or assisting PLCz1 to induce Ca2þ oscillations. Impressively, eCs-KO male mice ex
may be due to insufficient citrate synthesis due to mitochondrial dysfunction with aging. T
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wild-type sperm. Thus, these findings clarify the existence of at
least two sperm factors in mice (Fig. 1), implying that Ca2þ oscil-
lations are divided into two processes, namely, initiation and
persistence.
4.2. Age-dependent eCS function

Mitochondria, the energy powerhouses of cells, are important
organelles for ATP production. ATP supply is essential for the suc-
cess of fertilization and early embryonic development [52], as the
midpiece of the sperm is packed with mitochondria that supply
energy for tail motility, capacitation, and the acrosome reaction.
Hence, problems in sperm mitochondrial function directly cause
sperm dysfunction and male infertility [53].

Mitochondria are also involved in important cellular functions,
such as homeostasis, defense against oxidative stress, and
apoptosis [54]. Mitochondria undergo fusion and fission to main-
tain normal cellular function [55]. Mitochondria are increasingly
being recognized as important organelles in the aging process.
Diseases and aging greatly disturb in mitochondrial function;
neurodegenerative diseases with mitochondrial involvement are
well-known aging-related diseases [56].

Similarly, a decline in Ca2þ signaling with age affects the regu-
lation of cellular functions [57]. The amplitude of the Ca2þ rise is
negatively related to age [58], leading to a decrease in ATP pro-
duction. Ca2þ signals are important factors in neurodegenerative
and aging processes [56] because alterations in Ca2þ signals
contribute to cell death. Alterations in Ca2þ signals may affect
metabolite and mitochondrial functions and, consequently, may
contribute to dysfunction and impaired cellular function.

As mentioned above, eCs-KO male mice are initially fertile and
exhibit declining fertility by only six months after birth (corre-
sponding to the age of 30 years in humans), suggesting that eCS
plays a role in aging-related male infertility [51]. It is likely that the
CS and eCS ratios for citrate synthesis change with age, resulting in
an aging-dependent decline in mitochondrial function. In addition,
testicular size has been reported to be related to sperm production
[59]. Although there were significant differences in testis size be-
tween wild-type and eCs-KO male mice, there were no significant
l theory. After sperm-egg fusion, the sperm-derived factors trigger Ca2þ oscillations in
e for successful mammalian oocyte activation. (b) A new theory based on a recent study
the mouse egg. eCS may function to initiate Ca2þ oscillations, especially the first spike,

hibit impaired initiation of Ca2þ oscillations, leading to late-onset male infertility. This
his figure was modified from Figure 3 in Ref. [65].
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differences in sperm function, such as motility and morphology,
between the two groups.
4.3. Predicted existence of extramitochondrial TCA cycle

Changes in metabolism regulate molecular pathways, such as
apoptosis and angiogenesis. The therapeutic approach to metabolic
regulation attempts to treat pancreatic cancer in preclinical studies
[60], indicating that energy metabolism is one of the tools for
controlling the molecular function of cells.

Even among the same type of cells, an individual cell has a
unique ability and is capable of playing different roles depending
on the situation. Since recent advances have enabled us to
perform omics analysis using a single cell [61], individual
expression variability has been demonstrated in the same cell
type. If there are some functional differences among cells of the
same type, cell function may depend on the status of the cell as
well as changes in metabolic conditions with aging. In fact, rat
testes and mouse sperm exhibit a remarkable aging-dependent
alteration in metabolites [62], suggesting that changes in meta-
bolic conditions may be attributed to a fertility decline in older
eCs-KOmale mice. Thus, in combinationwith aging, the loss of eCS
enhances the TCA cycle, leading to a shortage of extra-
mitochondrial citrates and critical sperm dysfunction at the
initiation of Ca2þ oscillations in the egg. This finding raises the
possibility that eCS could compensate for the decline in energy
metabolism that accompanies aging. Accordingly, energy meta-
bolism regulated by eCS may be involved in the decline in fertility
of older eCs-KO mice.

Citrate is one of eight acids that operate in the TCA cycle and
functions in themitochondria. Fromyeast to humans, all eukaryotic
cells havemitochondria and produce ATP as an energy source at the
beginning of citrate synthesis via the TCA cycle. However, before
the TCA cycle, glycolysis occurs in the cytoplasm to produce ATP,
albeit less efficiently than in the TCA cycle.

Generally, ATP is produced using the TCA cycle under aerobic
conditions. However, even under aerobic conditions, cancer cells
Fig. 2. TCA cycle-related enzymes and human diseases. This cycle occurs in the matrix of
extramitochondrial forms, such as eCS, aconitase, isocitrate dehydrogenase, fumarase, and
ported as human disease-related enzymes. This figure was modified from Figure 4 in Ref. [
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rely on glycolysis for ATP production [63]; this is also known as the
Warburg effect (aerobic glycolysis) [63,64]. Although cancer cells
mainly generate ATP via this process, its benefits for their function
remain unclear [64]. This suggests new possibilities for the War-
burg effect caused by the dysfunction or gain-of-function of citrate
synthase, as citrate synthesis is essential for the switch from
glycolysis to the TCA cycle.

Owing to the lack of a mitochondrial targeting sequence in eCS,
it is predominantly present in the acrosome of sperm and not in
the mitochondria. So, eCS may be involved in energy production
for sperm function via the extramitochondrial TCA (eTCA) cycle
[65] (Fig. 2). In addition, eCs-KO male mice exhibited decreased
fertility with age, suggesting an increasing contribution of eCS to
sperm function in older male mice. This finding implies the pos-
sibility of the existence of the eTCA cycle in the extra-
mitochondrial space.
5. Relation between stem cell biology and mitochondrial
research

Stem cells primarily rely on glycolysis for energy production,
while differentiated cells often shift towards oxidative phosphor-
ylation for ATP synthesis [66]. Mitochondria influence the stem cell
fate decision from self-renewal to differentiation by modulating
signaling pathways and gene expression [66,67]. Mitochondria are
also key regulators of cell death through the release of pro-
apoptotic factors [66]. In stem cells, this function is crucial for
maintaining the proper cell population during development and
tissue homeostasis.

Various types of stem cells depend on glycolysis for ATP pro-
duction to a larger extent than differentiated cells [48]. Mito-
chondria affect the epigenome through intermediates of the TCA
cycle. For example, increased TCA metabolites, including a-keto-
glutarate, fumarate, succinate, and L(S)-2-hydroxylate, are associ-
ated with histone hypermethylation and hypoacetylation, and DNA
hypermethylation in hematopoietic stem cells [68].
mitochondria and is catalyzed by eight enzymes. Interestingly, enzymes function in
malate dehydrogenase. Particularly, isocitrate dehydrogenase and fumarase were re-
65].
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The Ca2þ-mediated enhancement of mitochondrial respiration
is expected to be associated with exit from the stem cell state. Two
enzymes of the TCA cycle, a-ketoglutarate dehydrogenase (KDH)
and isocitrate dehydrogenase are increased by Ca2þ stimulation
[48]. Nuclear KDH is also involved in histone succinylation [69].
Mitofusin 2 (MFN2) is one of two mitofusins that promote mito-
chondrial fusion. Mfn2 transcripts are dominantly expressed in
adult hematopoietic stem cells, which have highly fused mito-
chondria, and intracellular Ca2þ concentration is elevated In the
absence of Mfn2 mRNA [48].

Mitochondria are central to cellular redox balance, producing
ROS as natural byproducts of metabolism [67]. Proper regulation of
ROS levels is critical in stem cells to maintain signaling pathways
that regulate self-renewal, differentiation, and apoptosis. Under-
standing how mitochondrial enzymes regulate these metabolic
transitions is crucial for optimizing stem cell culture conditions and
enhancing cell differentiation efficiency.

6. Conclusion

Ca2þ oscillations play a critical role in various types of cells. TCA
cycle-related enzymes are also essential for maintaining cell func-
tions. The two mechanisms may be very closely related. Ca2þ os-
cillations have been thought to occur in limited types of cells.
However, considering its relationship with the TCA cycle, it may be
a universal event in almost all cells, including stem cells. Manipu-
lating mitochondrial enzymes and metabolism holds promise for
enhancing stem cell-based therapies and regenerative medicine.
Strategies aimed at optimizing mitochondrial function, such as
mitochondrial transplantation or pharmacological interventions
targeting mitochondrial enzymes, are actively being explored to
improve stem cell survival, integration, and therapeutic efficacy.
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