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Novel biomarkers of ciliary extracellular vesicles interact with ciliopathy and 
Alzheimer’s associated proteins

ABSTRACT
Ciliary extracellular vesicles (ciEVs), released from primary cilia, contain functional proteins that 
play an important role in cilia structure and functions. We have recently shown that ciEVs and 
cytosolic extracellular vesicles (cyEVs) have unique and distinct biomarkers. While ciEV bio
markers have shown some interactions with known ciliary proteins, little is known about the 
interaction of ciEV proteins with proteins involved in ciliopathy and neurodegenerative dis
orders. Here, we reveal for the first time the protein-protein interaction (PPI) between the top 
five ciEVs biomarkers with ciliopathy and Alzheimer disease (AD) proteins. These results 
support the growing evidence of the critical physiological roles of cilia in neurodegenerative 
disorders.
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Introduction

Extracellular vesicles have been shown to exhibit 
numerous physiological functions. Ciliary extracellular 
vesicles (ciEVs) have been shown to play a key role in 
cardiovascular function in a murine model, resulting in 
hypotension, left ventricle hypertrophy, cardiac fibrosis, 
arrhythmia, and high mortality rate [1]. While the 
cellular-derived cytosolic EVs (cyEVs) have been widely 
studied, ciEV characteristics, including their size, pro
teins composition, and potential biomarkers, are not 
fully understood. Recently, we revealed for the first 
time the unique characteristics of ciEVs and cyEVs 
[2]. In addition to the different sizes between ciEVs 
and cyEVs, both vesicles exhibited unique biomarkers. 
However, the interaction of top-identified ciEVs with 
known human disorders is still not clear.

Ciliopathy and neurodegenerative disorders have long 
been associated with ciliary proteins. The mutation of 
specific ciliary genes (e.g., TMEM216, DCTN1, AHI1) 
leads to ciliopathy disorders and results in a wide range 
of phenotypes. These phenotypes may include neurologi
cal disorder features characterized by psychomotor dis
ruptions and associated with dysmorphism (TMEM216 
mutation), early-onset of Parkinson’s disease and depres
sion (DCTN1 mutation), abnormal cerebellar develop
ment, and axonal decussation (AHI1 mutation) [3–5]. 

Alzheimer’s disease (AD) is one of the major neurode
generative disorders characterized by dementia, impaired 
cognition, and language [6]. Significant protein interac
tions’ overlaps between cilia and AD have recently been 
revealed, suggesting an important role of cilia in AD [7]. It 
is believed that abnormality in cilia may result in the 
deteriorating of new memory formation in AD by affect
ing the dentate gyrus (DGy) neurogenesis [8–12]. 
However, the interaction between ciliopathy and AD 
with novel ciEV biomarkers has not been examined yet. 
We analyze here the novel ciEV biomarkers and their 
potential interaction with ciliopathy and AD disorders 
for the first time.

Results and discussion

Unique biomarkers of ciliary extracellular vesicles 
(ciEVs)

EVs isolated from ciliated (wild-type; ciEVs) and non- 
ciliated (Ift88; cyEVs) mouse endothelial cells were 
examined by proteomic analyses. The comparative pro
teomic analyses revealed 145 cyEV and 79 ciEV unique 
biomarkers (Figure 1a). To efficiently identify the top 
five biomarkers from both vesicles, we used the volcano 
plot to measure the comparative-proteome’s effect sizes 
and significance values. The annotated five data-points 
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represented in the volcano plot had the largest distance 
(Manhattan) from the origin and above the thresholds 
indicated by the dashed lines (Figure 1b). To confirm 
the specificity of these biomarkers to each vesicle, we 
examined the expression of the top identified biomar
kers in each vesicle, using immunoblot (dot blot) ana
lyses (Figure 1c). The two selected biomarkers 
NADPH-cytochrome P450 reductase (POR) and 
CD166 antigen (CD166) demonstrated the exclusive 
expression in ciEV and cyEV lysates, respectively.

Interaction of novel ciEV biomarkers with 
associated human diseases

We used the protein-protein interaction (PPI) net
work analyses to examine the potential interaction 
of the top ciEV biomarkers with known human 
diseases. Because ciliary proteins have long been 

associated with ciliopathy disorders, we first exam
ined the interaction of top ciEV biomarkers with 
known ciliopathy proteins [1]. All top ciEV biomar
kers (POR, TOP2A, LAMA5, CD151, BMP1) inter
acted with known ciliary or ciliary-associated 
proteins (Figure 2a). The ciliary-associated proteins 
here refer to a subfamily of known ciliary proteins 
that interact with ciliary protein. The result suggests 
that ciEV proteins could be involved in ciliopathy 
disorder. The potential direct or indirect interaction 
of ciEV biomarkers with known ciliopathy genes 
(e.g., TMEM216) further substantiated our previous 
findings that repression of ciEV genes (e.g., 
PGRMC2 and F11R) resulted in ciliopathic pheno
types [1].

Since cilia and EVs have been associated with 
Alzheimer disease (AD) [13–17], we again examined 
the interaction of top ciEV biomarkers with AD 

Figure 1. ciEVs and cyEVs have unique biomarkers.
(a) EV isolation from ciliated (wild-type; ciEVs) and non-ciliated (IFT88; cyEVs) cells reveals unique biomarkers. (b) The volcano plot shows the 
top five distinctive identified biomarkers based on their pvalue and fold-change for cyEVs (blue color) and ciEVs (red color). The dot blot 
analyses show the expression of the top cyEV and ciEV biomarkers (CD166 and POR, respectively) in isolated EVs. HSP70 and Golgi-97 were 
used as positive and negative controls for extracellular vesicles, respectively. 
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proteins (Figure 2b). Three of the top ciEV biomar
kers (POR, TOP2A, CD151) have potential direct 
interactions with known AD markers (APP, PIN1, 
CTSB), respectively. The other two ciEV biomarkers 
(LAMA5 and BMP1) show potential indirect 

interactions through other ciliary proteins (CFTR, 
NCAPD2, KIF2C) with known AD biomarkers 
(FHL2, NAP1L1, FLNB, APP). Of note, the hedgehog 
signaling (Shh) regulated by primary cilia proteins 
(e.g., KIF3A) is thought to associate with AD [18– 

Figure 2. Bioinformatic analyses of ciliary extracellular vesicles (ciEVs) and potential interaction with AD biomarkers.
(a) The PPI analyses show the top five ciEV biomarkers (light red color) interaction with known ciliary (light yellow color) and ciliary- 
associated (light green color) proteins.(b) The protein-protein network analyses show the top five ciEV biomarkers (light red color) 
interaction with known ciliary (light yellow color) and AD (light blue color) biomarkers. 
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20]. The disruption of Shh signaling has been shown 
to induce the neurodegenerative disease, 
including AD by enhancing cognitive impairment 
and memory loss [21]. Interestingly, some of the 
ciEV and AD proteins presented in the PPI here 
(POR, TOP2a, CD151, LAMA5, CFTR, APP, PIN1, 
CTSB, FHL2) have been shown to associate with Shh 
signaling [15,21–30]. These novel findings support 
previous reports on the cross-talk between ciliary 
proteins and AD and the involvement in neurode
generative mechanisms [7,10].

In summary, our follow-up analyses revealed for 
the first time the potential PPI of novel ciEV bio
markers with known ciliopathy and AD-associated 
proteins. However, cilia and EV proteins have been 
associated with other major neurodegenerative and 
psychiatric disorders, including Parkinson’s disease, 
schizophrenia, autism spectrum disorder, bipolar dis
order, and major depressive disorder [14,31]. 
A comprehensive analysis is necessary to examine 
the causal relationship between ciEV genes and the 
neurodegenerative disorders. In conclusion, our find
ings substantiate the growing evidence that ciliary 
extracellular vesicles play a significant role in cilio
pathy and neurodegenerative disorders.

Methods

Immunoblot analyses
EVs were isolated from ciliated (ciEVs) and non-ciliated 
(Ift88; cyEVs) mouse knockout endothelial cells as pre
viously described [2]. Briefly, cells were grown to reach 
70–80% confluence. Next, cells were induced with a shear 
flow of 2.0 dyn/cm2 for 30 minutes. Growth media was 
then collected respectively and centrifuged at four differ
ent speeds: 300 × g for 10 minutes, 2,000 × g for 10 minutes 
10,000 × g for 30 minutes, and 100,000 × g for 70 minutes. 
As the supernatants were collected in all first three rounds 
of centrifugation, the supernatants were discarded at the 
fourth round of centrifugation, and the vesicle pellets 
were re-suspended in radioimmunoprecipitation assay 
(RIPA) buffer. Next, the EV concentration of protein 
lysates were determined using Pierce BCA Protein assay 
kit, and proteins expressions were analyzed by dot blot 
approach.

Nitrocellulose membranes were blocked with 5% 
milk, incubated with primary antibodies (1:500, POR; 
1:500, CD166; 1:500, golgi-97; and 1:100, HSP70) for 
overnight at 4°C and secondary antibodies (1:1000 for 
both anti-mouse and anti-rabbit) for 1 hour at room 
temperature, and imaged with the ChemiDoc XRS+ 
system.

Proteomic and bioinformatic
Upon a series of steps, isolated EVs from ciliated and non- 
ciliated endothelial cells were purified, resuspended in 
RIPA buffer, reduced, and digested for proteomic ana
lyses. EVs protein samples were analyzed using liquid 
chromatography with tandem mass spectrometry (LC- 
MS-MS), as previously described [2]. The volcano plot 
was analyzed using the R project for statistical computing 
software (version 3.5.3). The PPI interaction network was 
analyzed with Cytoscape software (version 3.3.0). The 
network interaction was simplified to examine only inter
acted top novel ciEVs with ciliopathy and AD proteins.
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