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Background: Studies have shown that gut microbe disorder in mice due to early-life
antibiotic exposure promotes glycolipid metabolism disorder in adulthood. However, the
underlying mechanism remains unclear and there is not yet an effective intervention or
treatment for this process.

Purpose: The study investigated whether early-life azithromycin (AZT) exposure in mice
could promote high-fat diet (HFD)-induced glycolipid metabolism disorder in adulthood.
Moreover, the effect of citrus reticulata pericarpium (CRP) extract on glycolipid metabolism
disorder via regulation of gut microbiome in mice exposed to antibodies early in life
were investigated.

Methods and Results: Three-week-old mice were treated with AZT (50 mg/kg/day) via
drinking water for two weeks and then were fed a CRP diet (1% CRP extract) for four
weeks and an HFD for five weeks. The results showed that early-life AZT exposure
promoted HFD-induced glycolipid metabolism disorder, increased the levels of
inflammatory factors, promoted the flora metabolism product trimethylamine N-oxide
(TMAO), and induced microbial disorder in adult mice. Importantly, CRP extract mitigated
these effects.

Conclusion: Taken together, these findings suggest that early-life AZT exposure
increases the susceptibility to HFD-induced glycolipid metabolism disorder in adult
mice, and CRP extract can decrease this susceptibility by regulating gut microbiome.

Keywords: Citrus reticulata pericarpium extract, early life, antibiotic exposure, glycolipid metabolism
disorder, TMAO
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INTRODUCTION

Glycolipid metabolism disorder, an important risk factor for
cardiovascular diseases, is the primary feature of several
metabolic diseases such as obesity, type 2 diabetes and non-
alcoholic fatty liver. In China, the prevalence of obesity increased
from 5.7% in 2010 to 6.3% in 2017, and the prevalence of
diabetes increased from 9.7% in 2007 to 11.2% in 2017 (1).
Abnormal glucose and lipid metabolism often occur in parallel.
Therefore, preventing or reducing glycolipid metabolism
disorder is of great practical significance.

Gut microbiome play an important role in the development of
glycolipid metabolism disorder and many factors, such as the use
of antibiotics, can lead to the disorder of gut microbiome (2).
Antibiotic exposure in childhood changes the composition of the
gut microbiome, leading to a decreased abundance of beneficial
bacteria and an increased abundance of harmful bacteria; this
then increases the susceptibility to glycolipid metabolism
disorder in adulthood (3). Animal studies have shown that
disorder of the gut microbiome in mice in early life can
promote high-fat diet (HFD)-induced glycolipid metabolism
disorder in adulthood (4, 5). However, the specific mechanism
remains to be elucidated. Therefore, it is particularly important
to further explore this mechanism and identify effective
intervention measures.
Abbreviations: CRP, Citrus reticulata pericarpium; AZT, azithromycin; HFD,
high-fat diet; Ctrl, control; TMAO, trimethylamine N-oxide; TNF-a, tumor
necrosis factor-a; IL-6, interleukin-6; IL-1b, interleukin-1b; caspase-1, cysteinyl
aspartate specific proteinase 1; NLRP3, NOD-like receptor protein 3; TG,
triglycerides; TC, total cholesterol; LDL-C, low density lipoprotein-cholesterol;
HDL-C, high density lipoprotein-cholesterol; ND, normal diet; OGTT, oral
glucose tolerance test.
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Glycolipid metabolism disorder is accompanied by chronic low-
level inflammation throughout the body; this ismainlymanifested as
increased expression levels of inflammatory factors such as IL-1b, IL-
6 and TNF-a (6). The NLRP3/caspase-1 signalling pathway plays an
important role in thisprocess (7).NLRP3 inflammasomesareprotein
complexes composed of NLRP3, ASC and caspase-1. When NLRP3
inflammasomes are activated, NLRP3 and ASC form a complex,
which activates caspase-1 to promote the maturation and release of
IL-1b and IL-18 (8). Trimethylamine N-oxide (TMAO) is a
metabolite in the gut; its expression level is positively correlated
with body weight, blood sugar and other indicators (9). Studies have
indicated that TMAO can activate NLRP3 inflammasomes, increase
the body’s inflammation level, and promote abnormal glucose and
lipid metabolism (10). Therefore, regulating the gut microbiome
and reducing the production of TMAO, a metabolite of the gut,
may be an important mechanism for improving glycolipid
metabolism disorder.

Recently, Chinese medicines have been used to regulate the gut
microbiome, and most have been found to improve glycolipid
metabolism disorder (11, 12). Citrus reticulatae pericarpium (CRP),
also known as chenpi, is the dry, mature peel of Citrus Reticulata
Blanco (Rutaceae). CRP has long been used in traditional medicine
for treating digestive tract diseases and anti-inflammatory diseases; it
is also used as a seasoning in cooking and as a dietary supplement
(13). Studies have shown that its extracts and active ingredients may
improve glycolipid metabolism disorder by regulating the gut
microbiome (14–17). Therefore, CRP extract was selected as an
intervention drug in this study and its possible mechanism in
glycolipid metabolism disorder was explored in juvenile C57BL/6
mice referred to existing researches (4, 5). Based on the literature, it
was hypothesised that early lifeAZTexposure inmice could promote
HFD-induced disorder of gut microbiome, increase the level of
GRAPHICAL ABSTRACT | Citrus reticulatae pericarpium extract regulates AZT-induced gut microbial disorder in juvenile mice and reduces the level of the flora
metabolism product TMAO under HFD feeding in adulthood, thereby reducing inflammation levels and improving glycolipid metabolism.
November 2021 | Volume 12 | Article 774433

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lu et al. CRP Improves AZT-Exposed HFD-Induced Mice
TMAO, increase the levels of inflammatory factors, and induce
glycolipid metabolism disorder in adulthood. Moreover, it was
predicted that CRP extract could improve this process by
regulating AZT-induced disorder of gut microbiome in mice.
MATERIALS AND METHODS

Materials
CRP granules were purchased from China Resources Sanjiu
Pharmaceutical Co., Ltd (Guangzhou, Guangdong, China; Lot
Number: 1706002S). AZT was purchased from Aladdin Bio-
Chem Technology Co., Ltd (Shanghai, China). The production
method for the CRP granules was as follows. First, the CRP
extract was obtained by heating the pre-treated CRP twice. Then,
the extracts obtained from each extraction process were mixed,
filtered, and concentrated under reduced pressure into mushy
extracts with a specific gravity of 1.20 to 1.35, respectively.
Finally, the mushy extracts were spray-dried into granules. The
normal diet (ND; D12450B) and high-fat diet (HFD; D12492)
were purchased from the Guangdong Medical Laboratory
Animal Centre (GDMLAC; Foshan, Guangdong, China). The
specific ingredients of these diets are shown in Table S1. The
CRP diet (1% CRP granules based on D12450B) was provided by
GDMLAC (Foshan, Guangdong, China).

UPLC-Q/TOF MS Analysis of CRP
UPLC-Q/TOF MS analysis of CRP was conducted to explore the
possible effective ingredients of CRP and compare with the drug
standard of CRP extract. The CRP extract (1 g of CRP granules
dissolved in 10ml pure water) was left to stand for 30min, heated to
reflux for 2 h, and then passed through a 0.22m filter membrane for
UPLC-QTOF-MS analysis. Separation was performed on a Waters
XSelect HSS T3 (2.1 mm × 100 mm, 1.8 mm) column and elution
was performed with mobile phases of 0.1% formic acid (A) and
acetonitrile in water (B) in gradient mode. The proportion of
acetonitrile varied from 10 to 90% in 32 min (0-8 min, 90-85%
A, 10-15% B; 8-18min, 85-70%A, 15-30% B; 18-28 min, 70-50%A,
30-50% B; 28-32 min, 50-10% A, 50-90% B) at a flow rate of 0.3 ml/
min; each injection volume was set to 10 ml.

The scan time was 0.2 s (first level) and 0.1 s (second level).
The acquisition time was 32 min. The acquisition range was 50-
1500 Da. The atomization gas flow rate was 50 mL/min. The
desolvent gas flow rate was 50 mL/min. The curtain gas flow rate
was 35 mL/min. The desolventizing gas temperature was 500°C.
The ion spray voltage was 4500 V (negative mode) and 5500 V
(positive mode). The declustering voltage was 100 V. The
collision energy was 10 V (first level) and 40 V (second level).
The dynamic background subtraction mode was used. The mass
spectrum drift range was 50 mDa. For analysis, 5 ml of the CRP
extract was accurately drawn and detected by UPLC-Q/TOF MS.

Animals and Treatment
The animal models were established with reference to existing
researches (4, 5). Forty juvenile specific pathogen free (SPF)
C57BL/6 mice (male, three-weeks-old, weight 12 ± 3g) were
Frontiers in Immunology | www.frontiersin.org 3
purchased from the GDMLAC (Permit number: SCXK 2013-
0002). The animals were housed under standard laboratory
conditions (22 ± 0.5°C, 40-70% relative humidity, and 12 h/12 h
light/dark cycle), with a standard diet and water at libitum for three
days. This study was carried out in accordance with the National
Act on the Use of Experimental Animals (China). The estimated
required sample size based on the degrees of freedom for analysis of
variance was five in each group, but due to the large individual
differences in the detection of gut microbiome, the sample size of
each group was increased to ten in each group. The experimental
grouping and procedures are shown in Figure 1. After three days of
adaptation, the 40 mice were randomly divided into four groups
(block random grouping, n=10, 2 cages, 5 in a cage): (1) Control
(Ctrl) group: mice were fed the ND during the entire experimental
process; (2) HFD group: mice were fed the HFD for five weeks
starting in the 7th week of the experiment; (3) AZT group: mice
were treated with AZT (50 mg/kg/day, conversion based on the
body surface area of humans and mice) in the drinking water for
two weeks at the beginning of the experiment and were fed the HFD
for five weeks starting from the 7th week of the experiment; (4) CRP
group: mice were treated AZT in drinking water for two weeks at
the beginning of the experiment (as above) and were subsequently
fed the CRP diet for four weeks and then the HFD for another five
weeks. Throughout the experiment, the body weights of the mice
were recorded weekly. The water tubes were replaced daily for the
administration of antibiotics during AZT treatment. At the end of
the experiment, the oral glucose tolerance test (OGTT) was
performed, and stool samples were collected and stored at -80°C
for further analyses. The mice were sacrificed after a 12 h fast. Blood
was collected and rapidly centrifuged at 3000 rpm for 10min at 4°C.
Then, the serum was collected from the supernatant and stored
at -20°C for subsequent analysis. Liver and abdominal adipose
tissues were removed and weighed immediately. Some of the
liver and adipose tissues were stored in 4% paraformaldehyde
for pathological analysis, and the remaining tissues were stored
at -80°C for further analysis.

Oral Glucose Tolerance Test (OGTT)
The mice were fasted for 6 h before the experiment. The fasted
mice were oral-gavaged with 20% (w/v) D-glucose solution (2 g/
kg body weight; Sigma-Aldrich, USA) and tail vein blood was
collected 0, 30, 60, 90 and 120 min after glucose gavage. The
blood glucose level was measured using a blood glucose meter
(Sano Biosensor Co., Ltd., Guangzhou, Guangdong, China). The
area under the curve (AUC) was calculated to quantify the
cumulative changes in the blood glucose response.

Biochemical Analysis
Serum triglycerides (TG), total cholesterol (TC), low-density
lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-
cholesterol (HDL-C) were determined using spectrophotometry,
according to the manufacturer’s instructions (Jiancheng,
Nanjing, China). The levels of TNF-a, IL-6, IL-1b (Beijing
Solibao Technology Co., Ltd, China) and TMAO (Guangzhou
Laizhi Biological Technology Co., Ltd, Guangzhou, Guangdong,
China) in the serum were quantified using mice ELISA kits,
according to the manufacturer’s instructions.
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Liver and Abdominal Adipose Tissue
Histology
Mice liver and adipose tissues were fixed in 4% paraformaldehyde
and embedded in paraffin. Next, the samples were sliced, stained
with the haematoxylin and eosin (HE) method, and then observed
under an optical microscope.

Western Blotting Analysis
Western blot analysis of liver tissues was performed according to
standard procedures using specific antibodies including NLRP3,
caspase-1, IL-1b and IL-18 (Affinity Biosciences, USA). b-actin
was used as an internal control. After reacting with the
secondary antibody, proteins were detected with an enhanced
chemiluminescence (ECL) Western blotting detection reagent
(Millipore, USA) and visualised on a FluorChem E ultra-sensitive
automatic imaging analysis system (ProteinSimple, USA).

DNA Extraction and 16S rRNA Sequencing
The V3-V4 regions of 16S rRNA were amplified with the following
primers: 314F: ACTCCTACGGGAGGCAGCAG; 805R:
GGACTACHVGGGTWTCTAAT. The samples were sequenced
on a HiSeq2500 PE250 (Illumina, Inc., USA). Analysis was
performed at the phylum and genus levels. In-house Perl scripts
were used to analyse alpha (within samples) and beta (among
samples) diversity. The Shannon index was used to analyse alpha
diversity. Principal coordinate analysis (PCoA) based on weighted
UniFrac distance matrices was performed for the beta diversity
analysis. Phylum- and genus-level taxonomic distributions of the
microbial communities, a heat map at the genus level, and
Spearman correlation analysis were used to identify specific bacteria.

Statistical Analysis
All statistical analyses were performed using SPSS version 20.0
software (SPSS, Chicago, IL, USA). The data are presented as
means ± SEM. Analysis of variance (ANOVA) was used to test
for group differences, with the Bonferroni correction for post hoc
comparisons. P <0.05 was considered to be statistically significant.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

UPLC-Q/TOF MS Analysis of RP
As shown in Figure 2, a total of seven components were
identified in the CRP extract according to their retention times
(Table S2).

CRP Extract Reduced Body Weight in
HFD-Induced Mice With Early-Life
AZT Exposure
As expected, there was no significant difference in body weight
between the groups before the 6th week of the experiment;
differences were observed in the 7th week of the experiment
(Figures 3A, B). At the end of the experiment, the body weight
and the adipose tissue/body weight ratio in the HFD group were
significantly higher than the Ctrl group. Notably, the AZT group
exhibited a significantly increased body weight and adipose tissue/
body weight ratio than the HFD group, while CRP significantly
mitigated this increase in body weight and the adipose tissue/body
weight ratio (Figures 3C, D). However, no significant difference was
observed between the groups in the liver/body weight ratio
(Figure 3E). Histological analysis showed that mice in the HFD
group had more severe liver steatosis and bigger adipocyte size than
the Ctrl group. Mice in the AZT group had more severe liver
steatosis and bigger adipocyte size than the HFD group, and these
histological changes were ameliorated in the CRP group
(Figures 3F, G). These results suggest that CRP extract reduces
body weight and modifies glycolipid metabolism disorder in HFD-
induced glycolipid metabolism disorder mice treated with AZT.

CRP Extract Improved Glycolipid
Metabolism in HFD-Induced Mice With
Early-Life AZT Exposure
As expected, glucose tolerance in the HFD group was increased
compared to the Ctrl group. More importantly, the AZT group
showed increased glucose tolerance compared to the HFD group,
FIGURE 1 | The experimental flow chart. Forty three-week-old mice were treated with or without AZT in drinking water for two weeks and were subsequently fed
with or without a CRP diet for four weeks and then an ND or HFD for another five weeks.
November 2021 | Volume 12 | Article 774433
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and the CRP diet restored the glucose tolerance of the AZT-
treated mice (Figures 4A, B). In addition, serum TG, TC and
LDL-C levels were markedly increased, and HDL-C levels were
significantly decreased in the HFD group compared to the Ctrl
group. The AZT group exhibited further exacerbation of lipid
metabolism disorder, and the CRP diet improved this disorder in
the AZT-treated mice (Figures 4C–F). These results suggest that
CRP extract improves glucose and lipid metabolism in HFD-
induced glycolipid metabolism disorder mice treated with AZT

CRP Extract Reduced Serum Inflammation
Levels in HFD-Induced Mice With Early-
Life AZT Exposure
The ELISA results showed that the serum levels of TNF-a, IL-6
and IL-1b in the HFD group were increased compared to the Ctrl
group. Notably, AZT further increased the TNF-a, IL-6 and IL-
1b levels compared to the HFD group, while the CRP diet
mitigated these increases in TNF-a, IL-6 and IL-1b levels in
the AZT-treated mice (Figures 5A–C). These results suggest that
CRP extract reduces serum inflammation levels in HFD-induced
glycolipid metabolism disorder mice treated with AZT.

CRP Extract Reduced Serum TMAO Levels
in HFD-Induced Mice With Early-Life
AZT Exposure
The results showed that serum levels of TMAO in the HFD
group were increased compared to the Ctrl group. More
importantly, the AZT group exhibited a further increase in
TMAO levels compared to the HFD group, and the CRP diet
significantly decreased the serum TMAO levels compared to the
AZT group (Figure 5D). These results suggest that CRP extract
Frontiers in Immunology | www.frontiersin.org 5
reduces serum TMAO levels in HFD-induced glycolipid
metabolism disorder mice treated with AZT.

CRP Extract Inhibited the NLRP3/
Caspase-1 Signalling Pathway in
HFD-Induced Mice With Early-Life
AZT Exposure
The Western blotting results showed that the expressions of the
NLRP3, caspase-1, IL-1b and IL-18 proteins in the livers of the
HFD group were increased compared to the Ctrl group. Notably,
the AZT group exhibited further increased expression of the
NLRP3, caspase-1, IL-1b and IL-18 proteins in the liver
compared to the HFD group, and the CRP diet significantly
reduced the expression of these liver proteins compared to the
AZT group (Figure 6). These results suggest that CRP extract
reduces the expression of liver NLRP3/caspase-1 signalling
pathway-related proteins in HFD-induced glycolipid
metabolism disorder mice treated with AZT.

CRP Extract Recovered the Disordered
Gut Microbiome in HFD-Induced Mice
With Early-Life AZT Exposure
The Shannon index showed that the community richness in the
guts of mice in the AZT group was significantly decreased
compared to the HFD group, and the CRP group showed
increased community richness compared to the AZT group.
However, there was no significant difference in community
richness between the HFD group and Ctrl group (Figure 7A).
UniFrac-based PCoA revealed that the HFD, AZT and CRP
groups clustered differently from the Ctrl group, and there were
overlaps in these groups (Figure 7B).
FIGURE 2 | HPLC analysis of CRP extract. (1) narigin-4’-O-glucoside, (2) narirutin, (3) naringin, (4) hesperidin, (5) poncirin, (6) nobiletin and (7) tangeretin.
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A

B C

D

F

G

E

FIGURE 3 | Phenotypic changes between the groups. (A) Changes in body weight throughout the experiment. (B) Changes in body weight in nine-week-old mice.
(C) Changes in body weight in 14-week-old mice. (D) The ratio of adipose tissue to body weight. (E) The ratio of liver to body weight. (F) H&E staining of liver.
(G) H&E staining of adipose tissue. (200×, scale bar, 100 µm). Differences were assessed by ANOVA. Data are expressed as the mean ± SEM, n = 10 in each
group. *P < 0.05.
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At the phylum level, Firmicutes and Bacteroidetes were the
dominant phyla in these groups (Figure 8A). The HFD
significantly increased the relative abundance of Firmicutes in
the gut microbiome. However, there was no significant difference
in the relative abundance of Firmicutes between the HFD group
Frontiers in Immunology | www.frontiersin.org 7
and Ctrl group. Notably, the AZT group showed increased
relative abundance of Firmicutes and decreased relative
abundance of Bacteroidetes compared to the HFD group. The
CRP group showed significantly decreased relative abundance of
Firmicutes and increased relative abundance of Bacteroidetes
A B

DC

FE

FIGURE 4 | Indices of glycolipid metabolism between the groups. (A) OGTT curve. (B) Area under the curve (AUC) of the OGTT. (C) Serum triglycerides (TG). (D)
Serum total cholesterol (TC). (E) Serum low-density lipoprotein-cholesterol (LDL-C). (F) Serum high-density lipoprotein-cholesterol (HDL-C). Differences were
assessed by ANOVA. Data are expressed as the mean ± SEM, n = 10 in each group. *P < 0.05, **P < 0.01.
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FIGURE 6 | Expression levels of liver NLRP3/caspase-1 signalling pathway-related proteins and grey value analysis between the groups. Differences were assessed
by ANOVA. Data are expressed as the mean ± SEM, *P < 0.05, **P < 0.01.
A B

C D

FIGURE 5 | Serum inflammation and trimethylamine N-oxide (TMAO) levels between the groups. (A) Tumour necrosis factor-a (TNF-a). (B) Interleukin-6 (IL-6). (C)
Interleukin-1b (IL-1b). (D) TMAO. Differences were assessed by ANOVA. Data are expressed as the mean ± SEM, n = 10 in each group. *P < 0.05.
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compared to the AZT group (Figures 8B, C). Overall, the ratio of
Firmicutes/Bacteroidetes was increased in the AZT group and
reduced in the CRP group (Figure 8D).

At the genus level, the HFD group showed significantly
decreased relative abundance of Parabacteroides and increased
relative abundance of Sutterella compared to the Ctrl group. The
AZT group showed significantly decreased relative abundance of
Parabacteroides, Adlercreutzia and Prevotella, and increased
relative abundance of Sutterella compared to the HFD group.
More importantly, the CRP group showed significantly increased
relative abundance of Parabacteroides, Adlercreutzia and
Prevotella, and decreased relative abundance of Sutterella
compared to the AZT group (Figure 9).

To further determine the differences in the faecal microbiota
community between the groups, 36 genera are presented as a
function of relative abundance in a heat map (see Figure 10). The
relative abundance of certain bacteria, such as an increased relative
abundance of Enterococcus and Streptococcus in the AZT group
andadecreased relative abundance in theCRPgroup, canbe seen in
the heat map; however, there were no significant differences.
Spearman correlation analysis revealed that improved body
weight and glucose and lipid metabolism were negatively
correlated with the relative abundance of Bilophila and positively
correlated with the relative abundance of Bifidobacterium,
Veillonella, Prevotella, Paraprevotella and Butyricimonas
(Figure 11). Collectively, these results show that CRP extract
improves gut microbiome disorder in HFD-induced glycolipid
metabolism disorder mice treated with AZT.
DISCUSSION

AZT is a second-generation, broad-spectrum macrolide
antibiotic. AZT is mainly used to treat respiratory infections in
Frontiers in Immunology | www.frontiersin.org 9
children; its use in the paediatric population is preceded only by
penicillin (18). Although penicillin is the dominant antibiotic
used in the paediatric population, studies have shown that the
use of macrolide antibiotics causes more serious disorder of the
gut microbiome than penicillin under the same conditions (3).
Studies have shown that disorder of the gut microbiome caused
by AZT exposure in juvenile mice can promote HFD-induced
glycolipid metabolism disorder in adulthood (4, 5). Therefore, in
this study, AZT exposure was first used to induce gut
microbiome disorder in juvenile mice, and then these mice
were fed an HFD in adulthood to induce glycolipid
metabolism disorder. Finally, CRP extract was used to treat
these mice to investigate whether CRP regulated the disordered
gut microbiome in these mice.

CRP is widely used in medicines for the treatment of diseases
and as a material for food preparation. Thus, there is a long
history of evidence of its impact on the daily health of the whole
people. Therefore, CRP extract, rather than a component of CRP
extract, was chosen as a treatment, and its efficacy and possible
mechanism of action were observed. In order to explore the
possible components of CRP extract, UPLC-Q/TOF MS analysis
was first performed. The results showed that among the seven
components detected, naringin, hesperidin, poncirin, nobiletin
and tangeretin all exhibited an improvement effect on glycolipid
metabolism disorder (19–23), while naringin, hesperidin,
nobiletin and tangeretin have been found to regulate the gut
microbiome (19, 23–25). It is worth noting that hesperidin is a
component that should be detected in the drug standard of CRP
extract, suggesting that hesperidin may play a key role in this
process (Supplementary Materials: Drug standard of CRP
extract). However, further researches are required to explore
the content of each component in CRP extract and the role of
each component. In summary, these fingding indicated that CRP
extract may improve the gut microbiome dysbiosis in childhood,
A B

FIGURE 7 | Alpha diversity and beta diversity between the groups (n = 9 for the CRP group and n = 10 for the other groups). (A) Alpha diversity. The larger the
value, the higher the community richness of the gut microbe. (B) Beta diversity. The greater the distance between the groups, the greater the difference in
community richness.
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thereby improving HFD-induced glycolipid metabolism disorder
in adulthood.

In order to further understand the mechanism underlying the
effects of the CRP extract, 16S rRNA sequencing technology was
used to assess the changes of gut microbiome in the mice in each
group. Bacteroidetes and Firmicutes are the two dominant
bacteria in the gut, and many studies have demonstrated that
the relative abundance of Firmicutes is increased while the
relative abundance of Bacteroides is decreased in glycolipid
metabolism disorder (26–28). Parabacteroides belong to the
Porphyromonadaceae family and have been found to be more
dominant in obese subjects with low relative abundance (29).
Short-chain fatty acids and bile acids are the main metabolites of
Parabacteroides and studies have shown that the relative
abundance of Parabacteroides is reduced in mice with
glycolipid metabolism disorder induced by an HFD (30).
Adlercreutzia is a genus from the phylum Actinobacteria. This
genus was originally identified in human faeces and was found to
play an important role in glycolipid metabolism (31). Studies
have indicated that there is low abundance of Adlercreutzia in
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mice with glycolipid metabolism disorder (32). Prevotella and
Paraprevotella can degrade carbohydrates and polysaccharides in
food and participate in the synthesis of vitamins in the body.
Studies have shown that the abundance of Prevotella and
Paraprevotella are negatively correlated with serum TG, TC
and LDL-C levels, and positively correlated with the HDL-C
level, suggesting that Prevotella and Paraprevotella may have
anti-obesity effects (33). Sutterella belongs to the family
Sutterellaceae and has been shown to be associated with liver
lipogenesis; studies have shown that the relative abundance of
Sutterella is increased in obese individuals (34). Bilophila is an
LPS-producing bacteria that can aggravate inflammation in
HFD-mice and cause metabolic disorder. Studies have shown
that mice with glycolipid metabolism disorder have lower
relative abundance of Bilophila (35). Bifidobacterium is a
short-chain fatty acids (SCFAs)-producing bacteria that can
degrade polysaccharides and dietary fibre. The relative
abundance of Bifidobacterium is directly related to improved
body weight and glycolipid metabolism (36). Veillonella has been
shown to be related to lactate metabolism, and Veillonella is
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FIGURE 8 | Changes in microbes at the phylum level in faeces between the groups. (A) Changes in the relative abundance of microbes at the phylum level. (B)
Relative abundance of Firmicutes. (C) Relative abundance of Bacteroidetes. (D) Firmicutes/Bacteroidetes ratio. Differences were assessed by ANOVA. Data are
expressed as the mean ± SEM, n = 9 for the CRP group and n = 10 for the other groups. *P < 0.05, **P < 0.01.
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positively correlated with glycolipid metabolism (37).
Butyricimonas is a beneficial bacteria that can produce SCFA
to reduce inflammation. Studies have shown that increased
relative abundance of Butyricimonas is associated with
improved metabolic parameters and insulin resistance in mice
(38). Taken together, these results indicate that CRP extract
improved the gut microbiome in AZT-treated juvenile mice and
improved glycolipid metabolism disorder in adulthood under
HFD feeding.
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The heat map indicated that the relative abundance of
Enterococcus and Streptococcus in the AZT group exhibited
an increasing trend, while there was a decreasing trend in the
CRP group. Enterococcus is one of the normal gut microbiome
present in humans and animals. It was previously thought to be
harmless to the body, but its pathogenicity has been
demonstrated in recent years. Studies have indicated that
Enterococcus increases obesity and causes insulin resistance
(39). Most Streptococcus are conditional pathogens that can
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FIGURE 9 | Changes in microbes at the genus level in faeces between the groups. (A) Changes in the relative abundance of microbes at the genus level. (B)
Relative abundance of Parabacteroides. (C) Relative abundance of Adlercreutzia. (D) Relative abundance of Prevotella. (E) Relative abundance of Sutterella. Data are
expressed as the mean ± SEM, n = 9 for the CRP group and n = 10 for the other groups. *P < 0.05, **P < 0.01.
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cause body infections such as sepsis and endocarditis. Studies
have shown that the relative abundance of Streptococcus is
increased in obese individuals (40). Enterococcus and
Streptococcus can metabolize choline substances into
trimethylamine (TMA) through microbial enzyme complexes,
finally increasing the serum level of TMAO (41). Therefore, the
TMAO levels in serum were examined in this study. The results
showed that serum TMAO levels were increased in the AZT
group and decreased in the CRP group. Glycolipid metabolism
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disorder is often accompanied by low-grade chronic
inflammation (42), and the NLRP3/caspase-1 signalling
pathway plays an important role in the development of
inflammation in glycolipid metabolism disorder (43). Studies
indicate that TMAO may cause glycolipid metabolism disorder
by increasing NLRP3/caspase-1-mediated inflammation (10, 44).
Therefore, inflammation levels and NLRP3/caspase-1 signalling
pathway-related proteins were examined in this study. The
results demonstrated that serum inflammation markers and
FIGURE 10 | Heat map at the genus level between the groups. Red indicates high values; blue indicates low values.
November 2021 | Volume 12 | Article 774433

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lu et al. CRP Improves AZT-Exposed HFD-Induced Mice
NLRP3/caspase-1 signalling pathway-related proteins were
increased in the AZT group and decreased in the CRP group.

There are several strengths and limitations of this research that
should benoted. The strengths of this study are as follows: 1)There
were no adverse reactions due to theCRP intervention observed in
this study. 2) In order to reduce the irritation to animals, the
antibiotics were dissolved in water to allow the mice to drink
freely, instead of administering them by gavage. 3) The estimated
required sample size based on the degrees of freedom for analysis
of variance was five in each group, but due to the large individual
differences in the detection of gut microbiome, the sample size of
each group was increased to ten in each group. The limitations of
this study are as follows: 1). There was only one intervention dose
of CRP; thus, it was not possible to determine the dose-effect
relationship between CRP and changes in gut microbiome.
However, the dose used in this study is based on the body
surface area conversion of humans and mice, so its efficacy is
worthy of affirmation. 2)OnlyTMAO,which is ametabolite of gut
microbiome, was tested; the role of other metabolites in this
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process was not able to be determined. In this study, the results
suggest that the changes of gut microbiome is closely related to
TMAO, so it is reason to believe that TMAOmay play a key role in
this process. Therefore, there is no doubt about the important role
of TMAO. 3) The content of each component of CRP was not
quantitatively analysed to identify the effective components that
play key roles. An important reason is that we wonder to know
whether the detection components of CRP extract are comparable
to the drug standard. 4) For animalmodels, we should set upmore
groups to explore the effects of AZT and CRP treatments on the
gut microbiome under the ND. But our research is sufficient to
show whether early-life AZT exposure in mice could promote
HFD-induced glycolipid metabolism disorder in adulthood and
the intervention of CRP extract in the process. Overall, this
research indicates that early-life AZT exposure in mice
promotes HFD-induced glycolipid metabolism disorder in
adulthood, and CRP extract can improve this glycolipid
metabolism disorder by regulating AZT-induced gut microbial
disorder in mice.
FIGURE 11 | Spearman correlations between glycolipid metabolism indices and microbes at the genus level in the four groups of mice. Red indicates high values;
blue indicates low values. Data are expressed as the mean ± SEM, n = 9 for the CRP group and n = 10 for the other groups. *P < 0.05, **P < 0.01, ***P < 0.001.
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CONCLUSION

In conclusion, the results showed that early-life AZT exposure
increases the susceptibility to HFD-induced glycolipid
metabolism disorder in adult mice, and CRP extract can
decrease the susceptibility to glycolipid metabolism disorder in
mice by regulating gut microbiome. These findings provide
information about the health benefits of CRP and verify the
potential of CRP as an effective intervention for the prevention of
antibiotic-associated glycolipid metabolism disorder.
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