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Abstract

Purpose: Virtual monoenergetic images (VMIs) derived from dual‐energy computed

tomography (DECT) have been explored for several clinical applications in recent years.

However, VMIs at low and high keVs have high levels of noise. The aim of this study

was to reduce image noise in VMIs by using a two‐step noise reduction technique.

Methods: VMI was first denoised using a modified highly constrained backprojection

(HYPR) method. After the first‐step denoising, a general‐threshold filtering method

was performed. Two sets of anthropomorphic phantoms were scanned with a clinical

dual‐source DECT system. DECT data (80/140Sn kV) were reconstructed as VMI ser-

ies at 12 different energy levels (range, 40‐150 keV, interval, 10 keV). For comparison,

the averaged VMIs obtained from 10 repeated DECT scans were used as the refer-

ence standard. The signal‐to‐noise ratio (SNR), contrast‐to‐noise ratio (CNR) and root‐
mean‐square error (RMSE) were used to evaluate the quality of VMIs.

Results: Compared to the original HYPR method, the proposed two‐step image

denoising method could provide better performance in terms of SNR, CNR, and

RMSE. In addition, the proposed method could achieve effective noise reduction

while preserving edges and small structures, especially for low‐keV VMIs.

Conclusion: The proposed two‐step image denoising method is a feasible method

for reducing noise in VMIs obtained from a clinical DECT scanner. The proposed

method can also reduce edge blurring and the loss of intensity in small lesions.
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1 | INTRODUCTION

After introduction of the first commercial dual‐source dual‐energy
computed tomography (DECT) system in 2006,1 several DECT‐based
techniques including iodine map, virtual non‐contrast and effective

atomic number have been proposed.2,3 These DECT‐based tech-

niques offer a wide variety of clinical applications.2,3 In particular,

virtual monoenergetic images (VMIs) derived from DECT images

have shown encouraging results and gained popularity recently.4

Clinical applications of DECT‐based VMIs include metal artifact

reduction, beam‐hardening correction,5,6 contrast and noise optimiza-

tion,7,8 and material differentiation.9,10 In addition, DECT‐based VMIs

can be used to assess fatty liver11 and hypervascularized abdominal

tumors.12 Despite promising results obtained in recent investigations,

the noise levels of DECT‐based VMIs were high at low and high

keVs.7,8,13,14

Many different strategies have been developed to reduce image

noise in DECT‐based VMIs. For example, VMIs obtained from either

projection‐ or image‐based methods can be improved using iterative

optimization algorithms. Several previous studies demonstrated the
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feasibility of using iterative optimization algorithms to improve the

image quality of DECT and resulting materials decomposition.15,16

Consequently, the reconstruction of DECT‐based VMIs can be

improved. However, these advanced optimization methods are not

provided by scanner vendors. Moreover, the raw data format is not

explicitly described by scanner vendors, and image reconstruction

requires calibration data. Lack of access to this data makes it difficult

to implement the reconstruction of VMIs. One possible method to

improve the image quality of VMIs is to apply an image denoising

method directly on the DECT‐derived VMIs.14 One previous study

showed that the highly constrained backprojection (HYPR)

method17,18 can be exploited to reduce noise in photon counting‐
based monoenergetic images.13 In addition, HYPR has been used for

reducing image noise in dynamic contrast‐enhanced perfusion

CT.19,20

Although post‐reconstruction denoising can improve the quality

of monoenergetic images obtained from a preclinical photon count-

ing‐based spectral CT scanner,13 it has not been validated using clini-

cal DECT‐derived VMIs. Moreover, reducing the radiation dose from

DECT remains an important topic.21 Using a low‐dose DECT scan

would increase the noise level which may affect the performance of

HYPR. In order to further improve the image quality of DECT‐based
VMIs, we proposed a two‐step noise reduction technique using a

combination of HYPR17,18 and the general‐threshold filtering (GTF)

method.22 In this study, the proposed two‐step noise reduction

method was compared with the original HYPR method.17,18 Two sets

of anthropomorphic phantoms were used to assess the image quality

and signal characteristics of denoised VMIs. We also investigated

whether the studied image denoising methods could effectively

reduce image noise while preserving edges and small structures.

2 | MATERIALS AND METHODS

2.A | Two‐step noise reduction technique

In this study, we propose a two‐step noise reduction technique to

reduce image noise in DECT‐derived VMIs by using a combination

of HYPR17,18 and GTF.22 Firstly, VMIs obtained from vendor soft-

ware were denoised using HYPR.17,18 As originally developed for

contrast‐enhanced magnetic resonance angiography,17 HYPR is a

postprocessing technique that uses information obtained from all

time‐series images to improve the image quality of each individual

time‐series image. In brief, the HYPR‐processed VMI (VHYPR) at a vir-

tual monochromatic energy level denoted by E is calculated as fol-

lows:

VHYPR Eð Þ ¼ CI� F� V Eð Þ
F� CI

(1)

where V(E) is the VMI at the energy level of E (keV) obtained from

vendor software, CI is the composite image obtained from the sum

of 12 V(E) (i.e. 40 to 150 keV in 10 keV intervals) and F is a box‐ker-
nel (low‐pass) spatial filter function.17,18 A 7 × 7 pixel uniform square

kernel used in two previous studies13,20 can effectively reduce image

noise, though it may lead to edge blurring and loss of intensity in

small lesions. To resolve this problem, we modified HYPR to use a

two‐dimensional adaptive noise‐removal (Wiener) filter23 instead of a

uniform square convolution kernel. Moreover, to balance noise

removal and edge preservation, we used results obtained from the

adaptive Wiener filter with two different window sizes (i.e. 3 × 3

and 7 × 7). The final formula of the modified HYPR is:

VmHYPR Eð Þ ¼ 0:5� CI� WF3�3 V Eð Þð Þ
WF3�3 CIð Þ þWF7�7 V Eð Þð Þ

WF7�7 CIð Þ
� �

(2)

where WFn�n V Eð Þð Þ denotes the adaptive Wiener filtering of V(E)

with n × n window size. Note that the Wiener filter requires the

noise variance to be set to the average of all the local estimated

variances.

After the first‐step processing, we observed that the modified

HYPR reduced image noise only moderately. Thus, the HYPR‐pro-
cessed VMI obtained from Eq. (2) was refined by a second step. This

second step used a GTF method originally developed for CT image

reconstruction.24 Our previous study demonstrates that the GTF

method can be used for denoising diffusion weighted magnetic reso-

nance imaging,22 and it has good edge‐preserving smoothing prop-

erty.22 In brief, GTF applied to VmHYPR (E) can be described as

follows22:

VGTF
i Eð Þ ¼ 1

4
∑i0Q VmHYPR

i Eð Þ;VmHYPR
i0 Eð Þ; λ;p� �

; i0 ∈ Ni (3)

and

Q V1;V2;λ;pð Þ¼ V1þV2ð Þ=2 if V1�V2j j<ωλ;p
V1�sgn V1�V2ð Þ�hλ;p V1;V2ð Þ�2 if V1�V2j j≥ωλ;p

�
(4)

where hλ;p V1;V2ð Þ ¼ 0:5� λ� p� V1 � V2j j � 0:5� λ� p½ ��f
V1 � V2j j � 0:5� p� pp½ �p�1gp�1, ωλ;p ¼ 0:5� 2 - pð Þ � pp, pp ¼
1� pð Þ p�1ð Þ= 2�pð Þ

h i
� λ1= 2�pð Þ� 	

, Ni represents the 4‐neighborhood of

the ith pixel, λ is the regularization parameter that controls the filter-

ing strength and p (= 0.9) is the norm of the regularization term.

Further details on the GTF method can be found in Refs. [22,24].

In this study, λ was set to the noise level of VmHYPR (E) obtained

from the method described in Ref. [25]. The filtering process

shown in Eq. (3) was repeated 40 times in order to obtain sufficient

noise reduction.

Although GTF can remove noise while preserving edges, it leads

to a certain loss of intensity in edges and small lesions. To address

this problem, an additional step was performed to recover the inten-

sity of edges and small lesions. First, we applied the Canny's edge

detection algorithm to VGTF (E). Second, the edge (binary) image was

dilated using a disk shaped structuring element with radius of 2 pix-

els. The dilated edge image may contain many pixels which had sig-

nal loss. Finally, the average of VGTF (E) and VmHYPR (E) was assigned

to pixels belonging to the edges. Since VmHYPR (E) was less blurred

than VGTF (E), the average of VGTF (E), and VmHYPR (E) can alleviate

the loss of intensity while maintaining image quality. The final

denoised VMI VF
i Eð Þ� �

would be:
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VF
i Eð Þ ¼ VmHYPR

i Eð Þ þ VGTF
i Eð Þ

h i.
2 if i∈ edges

VGTF
i Eð Þ otherwise

(
(5)

Note that VMIs read from DICOM files have pixel values ranging

from 0 to 4095. After noise reduction, all processed VMIs were sub-

tracted by 1024 to yield Hounsfield units (HU).

2.B | Phantoms, DECT data acquisition, and image
reconstruction

Two sets of anthropomorphic phantoms were scanned using a sec-

ond generation dual source CT scanner (SOMATOM Definition

Flash, Siemens Healthcare, Forchheim, Germany). For both phan-

toms, DECT data were acquired using a DE default scan protocol at

80 kV/Sn140 kV, 200/95 effective mAs. Other settings were: gantry

rotation time, 0.5 s; pitch, 0.6 and collimation, 32 mm × 0.6 mm. All

DECT raw data were reconstructed with a dedicated dual‐energy fil-

tered back projection medium‐soft convolution kernel (D30f). DECT

image series were exported as axial images with a slice thickness of

1.5 mm and an increment of 1 mm. Finally, VMIs from 40 to

150 keV in 10 keV intervals were reconstructed with a dedicated

application (Monoenergetic Application Class) and software on a

multimodality workstation (Syngo MMWP VE 40A, Siemens Health-

care, Forchheim, Germany).

2.C | Data analysis

In this study, averaged VMIs obtained from 10 repeated DECT

scans were used as reference standards. The averaged VMIs have

higher image quality than conventional VMIs obtained from one

normal‐dose (ND) DECT scan. For objective comparison of

F I G . 1 . Dual‐energy computed tomography‐derived virtual monoenergetic images of the anthropomorphic cardiac phantom
(window settings: level 100 HU, width 200 HU). From top to bottom: 40 keV; 60 keV; 90 keV; 120 keV; 150 keV.
From left to right: 10 normal‐dose (ND); ND; ND denoised by the highly constrained backprojection method; ND denoised by the
proposed method.
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different VMIs, we calculated the signal‐to‐noise ratio (SNR)

defined by the ratio of the average signal value to the standard

deviation of the signal and the contrast‐to‐noise ratio (CNR)

defined by the absolute difference in the average signal between

two lesions divided by the average standard deviation of two

lesions. To investigate the difference between the denoised and

referenced values, the root‐mean‐square error (RMSE) was calcu-

lated as follows:

F I G . 2 . Difference between the 10
normal‐dose (ND) and the results of
denoised ND (Fig. 1). From top to bottom:
40 keV; 60 keV; 90 keV; 120 keV;
150 keV. From left to right: 10 ND minus
ND; 10 ND minus ND denoised by the
highly constrained backprojection method;
10 ND minus ND denoised by the
proposed method.

F I G . 3 . The (a) signal‐to‐noise ratio (SNR) and (b) root‐mean‐square error (RMSE) of various virtual monoenergetic images at different energy
levels (40 to 150 keV). The SNR was calculated with a region of interest (see white square shown in Fig. 1). The RMSE was calculated
between the 10 normal‐dose (ND) and the results of denoised ND.
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RMSE Eð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1
�V1 Eð Þ � VF

i Eð Þ� 	2
N

s
(6)

where N denotes the total number of pixels in the image, �V1 Eð Þ is

the CT number of the averaged VMI (i.e. 10 ND) in the ith pixel, and

VF
i Eð Þ is the CT number of the final denoised VMI obtained from

one DECT scan (i.e. ND) in the ith pixel.

3 | RESULTS

Figure 1 shows the DECT‐derived VMIs of the anthropomorphic car-

diac phantom for the 10 ND, the ND, the ND + HYPR method, and

the ND + Proposed method. Compared to the vendor software (i.e.

ND), both HYPR and the proposed method can effectively reduce

image noise. However, the proposed method provides superior noise

reduction, especially in low‐keV VMIs. Figure 2 shows the difference

in VMIs between the 10 ND and the other three results (i.e. ND,

ND + HYPR and ND + Proposed). It is clear that the loss of inten-

sity in edges and small lesions can be greatly reduced using the pro-

posed method compared to HYPR. Moreover, the objective

measures (i.e. SNR and RMSE) shown in Fig. 3 show that the pro-

posed method outperforms HYPR. Note that Fig. 3(a) shows the

SNR of the tissue‐equivalent solid material (see white square shown

in Fig. 1). Figures 4–6 are the same as Figs. 1–3, respectively, but
are obtained from a different axial slice. Similar findings can be

observed. Note that Fig. 6(a) shows the CNR between the water‐
and tissue‐equivalent solid materials (see white square shown in

Fig. 4).

To further evaluate the performance of the proposed method,

a second phantom study was conducted. Figure 7 shows the

DECT‐derived VMIs of the anthropomorphic brain phantom for

F I G . 4 . Dual‐energy computed tomography‐derived virtual monoenergetic images of the anthropomorphic cardiac phantom (window
settings: level 100 HU, width 200 HU). From top to bottom: 40 keV; 60 keV; 90 keV; 120 keV; 150 keV. From left to right: 10 normal‐dose
(ND); ND; ND denoised by the highly constrained backprojection method; ND denoised by the proposed method.
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the 10 ND, the ND, the ND + HYPR method, and the ND + Pro-

posed method. Both HYPR and the proposed method provided

image quality better than the vendor software (i.e. ND). Figure 8

shows the difference in VMIs between the 10 ND and the other

three results (i.e. ND, ND + HYPR and ND + Proposed). Compared

to HYPR, the proposed method has better edge‐preserving
performance, especially in low‐keV VMIs. As shown in Fig. 9,

the proposed method was superior to HYPR in terms of SNR

and RMSE. However, we noticed that the improvement seems

limited.

F I G . 5 . Difference between the 10
normal‐dose (ND) and the results of
denoised ND (Fig. 4). From top to bottom:
40 keV; 60 keV; 90 keV; 120 keV;
150 keV. From left to right: 10 ND minus
ND; 10 ND minus ND denoised by the
highly constrained backprojection method;
10 ND minus ND denoised by the
proposed method.

F I G . 6 . The (a) contrast‐to‐noise ratio (CNR) and (b) root‐mean‐square error (RMSE) of various virtual monoenergetic images at different
energy levels (40 to 150 keV). The CNR was calculated with two regions of interest (see white square shown in Fig. 4). The RMSE was
calculated between the 10 normal‐dose (ND) and the results of denoised ND.
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4 | DISCUSSION

In this study, we propose a two‐step noise reduction method for

DECT‐derived VMIs. We modified HYPR17,18 by replacing the uni-

form square convolution kernel with the Wiener filter. To maintain

the edge‐preserving smoothing property, we used the results

obtained from the Wiener filter with two different window sizes (i.e.

3 × 3 and 7 × 7). Furthermore, we show that GTF22 applied to

HYPR‐processed VMIs could further improve the image quality of

VMIs. Overall, the proposed method has better results than the orig-

inal HYPR. In particular, the proposed method can reduce not only

image noise [Fig. S1(a)] but also edge blurring and the loss of inten-

sity in small lesions for low‐energy (e.g. 40 keV) VMIs [Figs. S1(b)

and S1(c)]. The spatial resolution26 of VMIs denoised by the pro-

posed method was similar to that of undenoised VMIs (i.e. ND), but

the spatial resolution of VMIs was slightly deteriorated by the

F I G . 7 . Dual‐energy computed tomography‐derived virtual monoenergetic images of the anthropomorphic brain phantom (window settings:
level 100 HU, width 200 HU). From top to bottom: 40 keV; 60 keV; 90 keV; 120 keV; 150 keV. From left to right: 10 normal‐dose (ND); ND;
ND denoised by the highly constrained backprojection method; ND denoised by the proposed method.
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F I G . 8 . Difference between the 10
normal‐dose (ND) and the results of
denoised ND (Fig. 7). From top to bottom:
40 keV; 60 keV; 90 keV; 120 keV;
150 keV. From left to right: 10 ND minus
ND; 10 ND minus ND denoised by the
highly constrained backprojection method;
10 ND minus ND denoised by the
proposed method.

F I G . 9 . The (a) signal‐to‐noise ratio (SNR) and (b) root‐mean‐square error (RMSE) of various virtual monoenergetic images at different energy
levels (40 to 150 keV). The SNR was calculated with a region of interest (see white square shown in Fig. 7). The RMSE was calculated
between the 10 normal‐dose (ND) and the results of denoised ND.
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original HYPR method [Fig. S1(d)]. Although the proposed noise

reduction technique uses both the modified HYPR and GTF, these

two methods can be used independently. We used the two‐step
approach because using either the modified HYPR or GTF provided

limited improvement (data not shown).

Despite promising results obtained in this study, we note sev-

eral issues in the present method. First, the results obtained from

two anthropomorphic phantom studies may not be sufficient. Low‐
dose data and real patient data should be used to validate the per-

formance of the proposed method. Second, in the case of the

anthropomorphic brain phantom, the proposed method provided

only moderate improvement. One possible reason is that the GTF

method with 40 repetitions seems insufficient for the brain phan-

tom (Figs. 7–9). The selection of optimal repetitions was not investi-

gated, but will be studied in our future work. Third, we only

compared the proposed method with the original HYPR. Other

image denoising methods, including the time‐intensity profile simi-

larity bilateral filter,27 the partial temporal nonlocal means filter,28

and the k‐means clustering guided bilateral filter,29 can be used to

reduce noise in VMIs. Because these methods have many parame-

ters that need to be optimized, we did not implement these

approaches in this study.

In this study, the modified HYPR used composite image obtained

from the sum of 12 energy levels (i.e. 40 to 150 keV in 10 keV

intervals). We found that the composite image obtained from the

sum of six energy levels can provide similar results (data not shown).

In other words, increasing the number of energy levels may not

improve the performance of the proposed method. One possible rea-

son is that VMIs obtained from neighbouring energy levels have sim-

ilar image statistical properties. As a result, the advantage of

increasing the number of energy levels may be negligible. However,

further improvements may be made in the following ways. First, the

aforementioned methods27–29 may be combined either with GTF or

with the modified HYPR. Second, the vendor’s iterative reconstruc-

tion software can be used to produce high‐quality DECT images

which may improve the reconstruction of VMIs. Third, DECT‐derived
VMIs reconstructed using iterative image‐domain decomposition

methods30,31 may have improved image quality.

5 | CONCLUSION

VMIs derived from DECT have shown encouraging results for a

broad clinical application. However, the image noise of the VMI was

high at low and high energies. We have demonstrated that the pro-

posed two‐step image denoising method can reduce image noise in

different energy‐level VMIs. Moreover, the proposed image denois-

ing method can reduce edge blurring and alleviate the loss of inten-

sity in small lesions.
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Supporting Information section at the end of the article.

Fig. S1. (a) Noise of various virtual monoenergetic images (VMIs)

at different energy levels (40 to 150 keV) and horizontal profiles

crossing three different sized circles for (b) 40‐keV and (c) 50‐keV
VMIs. (d) The modulation transfer function curves of various VMIs at

40 keV. The noise was calculated with a region of interest (see white

square shown in Fig. 1)
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