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Abstract

Background: Novel multifunctional biomaterials were recently designed to allow

for an optimized tissue regeneration process.

Purpose: To comprehensively assess (photographic, radiographic and histological)

the in vivo functionality of demineralized bovine bone matrix (DBM) associated

with an experimental marine organic extract (MOE) from nacre in a sheep

ectopic grafting model.

Materials and methods: Synthesis of MOE was based on mixing powdered nacre

(0.05 g, particles average size <0.1 mm) with acetic acid (5 mL, pH 7) under

constant stirring for 72 hours (25 �C). Polyethylene tubes (3/animal, n ¼ 4,

diameter: 5.0 mm � length: 10.0 mm) from the control (empty) or experimental

groups (DBM or DBM þ MOE) were then intramuscularly implanted into the

lumbar regions of sheep (n ¼ 8, 2-years old, z45 kg). Animals were euthanized

at 3 and 6 months to allow for the collection of tissue samples. Tissue samples

were fixed in formalin 10% (buffered, 7 days) in preparation for photographic,
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radiographic and histological assessments. Acquired images were then analyzed

using digital image analysis software to quantify the amount of neoformed

tissues, whereas radiographic and histological analyses were performed to

determine radiopacity and classification of tissues deposited inside of the tubes.

Results: Photographic and radiographic analyses have shown that both pure

(unaltered) and MOE-modified DBM were capable of depositing neoformed

tissues (at 3 and 6 months), where higher levels of deposition and radiopacity

were observed on groups treated with experimental materials. Histological

results, however, demonstrated that tissues formed from both unaltered and

MOE-modified DBM were only fibrous connective in origin.

Conclusions: As an ectopic grafting in sheep, the experimental organo-biomaterial

association applied did not reveal any osteoinductive property but led to a fibrous

tissue repair only.

Keywords: Dentistry, Biomedical engineering, Materials science

1. Introduction

Traditional regenerative techniques aim to guide the repair of bone defects using au-

tografts (gold standard) [1], allografts or xenografts [2, 3]. However, despite their

widespread use [4], significant and critical limitations such as limited tissue avail-

ability [4, 5], donor site morbidity [6], transmission of diseases [7] (HIV, bovine

spongiform [8, 9] encephalitis or hepatitis) and graft-related issues (sequestration,

infection and rejection) [10] have been previously reported in the literature, and

therefore, represent an important and current challenge faced by oral surgeons

worldwide. Such disadvantages have precipitated the development of novel biocom-

patible materials for bone substitution using natural or sintered hydroxyapatite (HA)

[11], b-tricalcium phosphate (TCP), [12] and more recently, low-temperature apa-

tites (LTA) [13]. These materials were designed to provide a 3-D matrix with struc-

tural (scaffolding), osteoconductive and osteoinductive functionalities that allow for

a faster and optimized regenerative bone repair [14, 15, 16, 17, 18].

Novel biomaterials extracted from organic sources (herein designated as organo-

biomaterials) have been considered as a cost-effective and promising [19] source

of implantable graft materials with major industrial and scientific applications.

Organo-biomaterials include demineralized bone matrix (DBM) [20, 21], bone

morphogenic proteins (BMPs) [22, 23] and aragonite crystal tablets extracted from

the nacre lining of pearl oysters (Pincata maxima) [24]. As previously reviewed by

Gruskin et al. [17], DBM is a composite material containing collagens (predomi-

nantly type 1, with small amounts of collagen types IV and X), proteins, growth fac-

tors, calcium phosphates (up to 6%) and trace amounts of cellular debris. Its

processing is based on bone removal, soft tissue debridement, antibiotic soaking
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(sterilization), reduction into fibers or particles, demineralization in chloridric acid

(0.5e0.6 N) followed by one or more rounds of freeze-drying [17]. This process re-

sults in a hydrophilic and bio-resorbable organic matrix rich in signaling molecules

and bone morphogenic proteins (BMPs) [17, 20] that has been demonstrated to

have important scaffolding, tissue-support and low antigenicity and toxicity behav-

iors [18].

Likewise, nacre is a self-assembled nanocomposite consisting of organic (layered

biopolymer, 5e20 nm thick/layer) and inorganic components (polygonal aragonite,

200e500 nm thick) with a unique and highly organized hierarchical structure that

resembles the native structure of bone [25]. The present study’s rationale for the se-

lection of nacre-extracts as bone-growth promoters was based on the excellent

biocompatibility, biodegradability and osteoinductive functionalities, that were pre-

viously shown to result in the production of highly-mineralized extracellular ma-

trixes in shorter periods of time [26, 27, 28]. In addition, a recent report suggested

that materials based on nacre may participate in highly dynamical biomineralization

processes in mammals (e.g., sheep and humans) without triggering inflammatory re-

actions or fibrous formation [25].

More recently, a study investigating the impact of bone characteristics on the healing

of soft tissues, indicated that bone mineral content, volume and support are consid-

ered as biomodulation factors that may directly affect the recovery process of soft

tissues [29]. In this context, novel organo-biomaterials have been extensively inves-

tigated, both in vitro and in vivo (mice, rat, rabbit and sheep) [30, 31, 32, 33, 34, 35],

in regards to their osteoconductive and osteoinductive properties, as well as their role

in the regulation, formation, remodeling and regeneration of both hard and soft tis-

sues surrounding dental implants and bone defects [36]. Recent approaches have

combined the use of DBM with water-soluble nacre matrix to promote mineral con-

tent replenishment while providing an organic matrix that is capable of promoting

the stimulation of living cells and enough mechanical support for an enhanced recov-

ery of tissues [26]. Therefore, the aim of the present in vivo pilot study was to

comprehensively assess (photographic, radiographic and histologically) the

in vivo functionality of DBM associated with MOE from nacre in a sheep ectopic

grafting model.
2. Materials and methods

2.1. Ethics statement

The present randomized and controlled in vivo pilot study was submitted and

approved by the Ethics Committee on Animal Use of the Positivo University

(CEUA 21/11).
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2.2. Marine organic extract preparation

The method used for the preparation of the experimental MOE was developed by our

laboratory. In brief, whole and frozen brown mussels (Perna perna), a bivalve

mollusk from the Mytilidae family, were obtained from a local seafood supplier

in preparation for the MOE extraction. The shells of thawed mussels were separated,

thoroughly washed in tap water (30 sec/each) and air dried for at least 24 hours. A

bone pestle (Moedor de osso tipo pil~ao, Kopp, Paran�a, Brazil) was then used to

reduce the shells into large particulates that were further ground into a fine loose-

powder (average size <0.1 mm) using a ball mill (AMEF, S~ao Paulo, Brazil). A

portion of the powdered nacre (0.05 g) was then mixed with acetic acid (5 mL,

pH 7) at room temperature. The mixture was continuously stirred for a 72-hour

period using a magnetic stir plate (Tongtuo, Hayward, USA). The experimental

MOE sample was then centrifuged (4000 rpm, 15 min, MPW-350R, MPWMed. In-

struments, Warsaw, Poland) to separate solid particles suspended from the liquid

nacre extract.
2.3. Experimental design

Eight female sheep (2 years old, z 45 kg) from the same herd were selected to

participate in the present in vivo pilot study. The animals were then randomly as-

signed to each experimental time monitoring group (3 or 6 months) using a freeware

available online [Research Randomizer (Version 4.0), Social Physcology Network,

Pennsylvania, USA; www.randomizer.org]. Sterile polyethylene tubes (3/animal,

diameter: 5.0 mm � length: 10.0 mm) as control (empty, sham) and containing

DBM (GenOx Org, Baumer, S~ao Paulo, Brazil) without (pure DBM) and with 40

mL of MOE (DBM þ MOE) were then intramuscularly implanted into the lumbar

region of each animal. Animals pertaining to each implantation period (either 3 or

6 months) have received a total of 3 tubes, as described in Table 1. The rationale

for the implantation model selected was based on its ability to mimic unstable me-

chanical environments [1] and evaluate the biocompatibility and regenerative
Table 1. Experimental design.

Experimental Groups Implantation time

3 months (4 animals) 6 months (4 animals)

Sham S3 S6

DBM D3 D6

DBM þ MOE DM3 DM6

A total of 8 animals participated in the present pilot study. Each animal received one empty tube (Sham,
S), one tube with pure demineralized bovine bone matrix (DBM, GenOx Org�) and one tube with dem-
ineralized bovine bone matrix associated with the marine organic extract (MOE). S3 ¼ group Sham of 3
months. S6 ¼ group Sham of 6 months. D3 ¼ group DBM of 3 months. D6 ¼ group DBM of 6 months.
DM3 ¼ group DBM þ MOE of 3 months. DM6 ¼ group DBM þ MOE of 6 months.
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capacity of biomaterials [37]. The same materials were also used in the mandible of

the sheep in critical defects, but this research was assigned to a different paper.
2.4. Surgical procedures

The European Community guidelines for the handling, care and use of laboratory

animals (DE 86/609/CEE) were followed in the present study [34]. Prior to surgery,

the animals were deprived from solid food and water for a period of 24 and 8 hours,

respectively. At the day of surgery, Acepromazine (0.55 mg/kg, Acepran 1%, Vetnil,

S~ao Paulo, Brazil) and Ketamine (20 mg/kg, Dopalen, Vetbrands, S~ao Paulo, Brazil)

were administered intramuscularly as a pre-anesthesia medication. Animals were

then induced to anesthesia with Sodium Thiopental (5 mg/kg, Thiopentax, S~ao

Paulo, Brazil) that was intravenously administered and animals’ sedation was main-

tained with oxygen vaporization (3 L/min, Biochimico, Rio de Janeiro, Brazil) with

Isoflurane (oxygen flow of 3 L/min., Biochimico, Itatiaia, RJ, Brasil). Intraoperative

procedures also included the intramuscularly administration of anti-inflammatory

(Ketoprofen 10%, 3 mg/kg, Biofarm Quimica e Farmacêutica Ltda, S~ao Paulo,

Brazil) and antibiotic (Enrofloxacin 10%, 2.5 mg/kg, Chemitec agro Veterin�aria,

S~ao Paulo, Brazil) drugs.

After traditional trichotomy procedures, surgical sites were randomly assigned either

to the right or to the left of vertebral column and were outlined 3 cm above from the

sacral promontory. Surgical sites extended 20 cm anteriorly and 6 cm laterally from

the vertebral column, and were disinfected with povidone-iodine (Rioquímica, S~ao

Jos�e do Rio Preto, Brazil). Three incisions (z 3 cm/each, 4 cm apart) were made on

the dermis to expose the muscular fascia (Longissimus dorsi) where one incision

(z 1 cm, parallel to column) per surgical site was then performed to allow individual

intramuscularly implantation of sterile polyethylene tubes (control and experi-

mental) among muscular fibers, as shown in Fig. 1.

A simple suture of the muscle and fascia was performed with a resorbable material

(Vicryl 5-0, Ethicon, S~ao Paulo, Brazil), whereas the continuous external dermis su-

ture was performed with a non-resorbable material (Nylon 5-0, Shalon Fios Cir�urgi-

cos Ltda., Goias, Brazil).
2.5. Euthanization procedures

Intramuscularly administration of anti-inflammatory (Ketoprofen 10%, 3 mg/kg,

Biofarm Quimica e Farmacêutica Ltda, S~ao Paulo, Brazil) and antibiotic (Enroflox-

acin 10%, 2.5 mg/kg, Chemitec agro Veterin�aria, S~ao Paulo, Brazil) drugs were per-

formed for 3 and 5 days, respectively. Euthanize procedures (either at 3 or 6 months)

were performed using Sodium Thiopental IV (8 mg/kg, Thiopentax, S~ao Paulo,

Brazil) to allow for the removal of tissue samples containing the tubes, with
on.2018.e00776
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approximately 1 cm of surrounding tissues all around each tube. After removal,

collected samples were immediately fixed in 10% neutral buffered formalin

(Sigma-Aldrich, S~ao Paulo, Brazil; 4 �C). Samples were kept immersed in the fixa-

tion solution for 7 days, in order to guarantee the preservation of fragile tissues inside

the tubes.
2.6. Photographic analysis

After fixation, polyethylene tubes (control and experimental) were carefully

removed from the excess surrounding muscle; tissues were removed from inside

the tubes and photographed using a digital camera (Canon T3i, 105 mm macro

lens, Oita Japan). Digital photographs were then exported into a computer where

the diameter of the newly formed tissue (central region) was measured [3�, metric

scale (mm)] on each sample (Fig. 2), using the ImageJ computer software (Freeware,

available online at http://imagej.nih.gov/ij/).
2.7. Radiographic analysis

Each sample was then individually radiographed (0.005 mSv, 0.3 seconds) to deter-

mine the radiopacity levels achieved within each experimental group tested with a

standard X-ray device (Spectro 70x, Dabi Atlante, S~ao Paulo, Brazil) coupled

with a digital sensor (RVG 5100, Kodak Company, New York, U.S.A.)
2.8. Histological analysis

Samples were subjected to decalcification in trichloroacetic acid (TCA) for 7 days.

Decalcified samples were then embedded in paraffin blocks and serially sectioned
on.2018.e00776
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(6 mm/slice). Each slice was then stained with hematoxylin and eosin (HE) and Mas-

son’s trichrome (MT) in accordance with traditional histological techniques. Stained

slices were imaged with an optical microscope (BX 41, Olympus Optical Company,

Tokyo, Japan) coupled with a digital camera (Canon T3i, Oita Japan). Images were

analyzed using Photoshop CS4 (Adobe Systems Inc., California, U.S.A.) and ImageJ

(Freeware, available at http://imagej.nih.gov/ij/). The objective measurement

(pixels2) of the formation of collagenous matrix on MT-stained samples was per-

formed at the central region of each sample (200� magnification), also using

ImageJ.
2.9. Statistical analysis

Mean values from the photographic histological analyses were analyzed for normal

distribution using the Shapiro-Wilk test, where the results were not normally distrib-

uted. Thus, Kruskal-Wallis was used to test samples’ distribution and Fisher’s least

significant differences for treatment comparisons (p < 0.05).
3. Results

3.1. Photographic analysis

The results obtained from the image analysis, at three and six months, are presented

in Figs. 3 and 4, respectively. All groups were capable of promoting the deposition
on.2018.e00776
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Fig. 3. Macroscopy and radiography of tissue formed in the presence of clot (sham). (A) 3-month sam-

ple; black arrows indicate the thickness of the newly formed tissue. (B) Radiograph of the sample in A.

(C) 6-month sample; white arrows indicate the thickness of the newly formed tissue. (D) Radiograph of

the sample in C.

Fig. 4. Macroscopy and radiography of tissue formed inside the tubes in the presence of demineralized

bovine bone matrix (DBM) and marine organic extract (MOE). (A) At 3 months. (B) Radiograph of the

sample in A. (C) At 6 months. (D) Radiograph of the sample in C. (E) At 3 months with MOE. (F)

Radiograph of the sample in E. (G) At 6 months with MOE. (H) Radiograph of the sample in G.
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of neoformed tissues. The levels of tissue formation observed at three months, have

demonstrated that samples from the control group (sham) displayed the lowest levels

of tissue formation, whereas experimental groups containing either DBM or DBMþ
MOE showed more tissue formation compared to the control. At six months, a

similar trend of tissue formation was observed where samples from the experimental

group treated with DBM þ MOE displayed the highest levels of tissue formation

among all groups investigated. The obtained results further demonstrated that the

combined use of DBM and MOE led to a significant increase in the levels of newly

formed tissue in the DM6 group (Table 2.)
3.2. Radiographic analysis

The visual examination of radiographs indicated that both the control and experi-

mental groups seemed to promote the formation of mineral tissues that were radi-

opaque at radiographic assessment (Figs. 3 and 4), thereby suggesting that the

control group could have promising osteoconductive and osteoinductive properties.

This result was not confirmed by the histological analysis, and the observed radio-

pacity was explained by the tissue fixation technique used, with periods that were

longer than normal. Such protocol was made necessary to preserve the structure

and morphology of fragile tissues formed within the tubes at the time of euthanasia

(3 and 6 months).
3.3. Histological analysis

The results from the histological assessment have clearly demonstrated that speci-

mens from the control group (sham, Fig. 5, Table 3) did not promote any formation

of mineralized tissues. In fact, what was microscopically observed, was the presence

of a fibrous tissue of connective origin with organized collagenous bundles that were

deposited in a parallel orientation to the long axis of the polyethylene tubes, nurtured

by regular blood vessels presencee basically the same tissue characteristics at either

3 and 6 months (Fig. 5). A similar behavior was observed for samples from exper-

imental groups treated with DBM or DBM þ MOE, bundles of collagen fibers with
Table 2. Thickness of the center of the newly formed tissue.

Groups Monitoring period

3 months 6 months

Sham 0.50 mmc 0.59 mmc

DBM 1.04 mmbc 1.87 mmbc

DBM þ MOE 1.35 mmb 3.40 mma

Sham ¼ empty tube, negative control. DBM ¼ Demineralized bovine bone matrix. MOE ¼ marine
organic extract. Values followed by the same superscript letters are statistically similar (p < 0.05).
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Fig. 5. Sham microscopy images. (A and B) At 3 months. (A) Original magnification �40, HE (Hema-

toxylin and Eosin). (B) Original magnification �200, HE. (C and D) At 6 months. (C) Original magni-

fication �40, HE. (D) Original magnification �200, HE. nv ¼ neovascularization; cf ¼ connective fiber
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blood vessels within. No giant cells of foreign-body, macrophages or other inflam-

matory cells were evident on these groups, neither at 3 or 6 months. At six months of

observation, the use of these biomaterials led to the attainment of increased deposi-

tion of collagenous fibers with the presence of an interconnected fiber matrix, espe-

cially observed on DBM þ MOE group (Fig. 6, Table 3).

bundles.
4. Discussion

The present controlled and randomized pilot study aimed to investigate the in vivo

utility of DBM modified or not by an experimental MOE extracted from nacre to
Table 3. Collagenous matrix area at 3 and 6 months.

Groups Areas (pixels2 3 105)

3 months 6 months

Sham 4.75b 6.20b

DBM 7.36b 6.37b

DBM þ MOE 8.65b 11.16a

Sham ¼ empty tube, negative control. DBM ¼ Demineralized bovine bone matrix. MOE ¼ marine
organic extract. Values followed by the same superscript letters are statistically similar (p < 0.05).

on.2018.e00776
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Fig. 6. Demineralized bone matrix (DBM) microscopy images. (A and B) At 3 months with pure DBM

only. (C and D) At 3 months with the association of DBM and MOE. (E and F) 6 months of monitoring

with pure DBM. (G and H) 6 months monitoring with DBM associated with MOE. A, C, E, and G ¼
Original magnification �40, HE (Hematoxylin and Eosin). B, D, F, and H ¼ Original magnification

�200, HE. nv ¼ neovascularization; cf ¼ connective bundle fibers.
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promote the guided deposition of tissues, perhaps bone. The rationale for the selec-

tion of the animal model used, was based on reports previously published in the liter-

ature who have demonstrated that sheep models (i) are sensitive, fast and efficient

[34], (ii) provide testing conditions that are similar to those found in humans

(both physiologically and biochemically) [38] and (iii) have an outstanding ability

to screen foreign-body related reactions (such as the accumulation of macrophages,

formation of giant cells and deposition of fibrous connective tissues) [39], that are

typically triggered by implantable materials such as the ones herein investigated

(e.g., polyethylene tubes, DBM and DBM þ MOE).

Polyethylene tubes were selected as non-reactive carriers for the organo-biomaterials

investigated based on the results reported in a previous publication from our group

[40], where the intramuscularly implantation of tubes, of similar compositions, did

not result in allergic or inflammatory reactions in a sheep model. Shah et al. [41],

while investigating the expression of wound healing cellular biomarkers, have

demonstrated that polyethylene tubes tested under comparable conditions (both

experimental and surgical), did not result in the observation of either acute or chronic

infiltrates, thereby demonstrating the high biocompatibility levels of polyethylene

tubes and further corroborating the present study’s rationale for the selection of poly-

ethylene carriers.

Implantable biomaterials and bone substitutes, from both natural or synthetic origins,

are being currently used in many areas of dentistry and medicine to guide the repair

of critical bone defects (>10 mm) [42, 43], where the lack of support [44], may

result in longer than usual healing periods and esthetic outcomes below patients’ ex-

pectations and needs [45, 46]. In this direction, graft materials from organic sources

(e.g., DBM) may be used as scaffolds to promote the deposition of undifferentiated
on.2018.e00776
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mesenchymal cells, upregulate the adhesion and expression of osteoblasts and, ulti-

mately, lead to the optimized formation of bony tissues [18, 20, 21]. Nacre was

selected as a bone-growth promoter because of its biocompatibility, low antigenicity

properties and growth factor concentrations (e.g. BMP-like) in levels that have been

previously considered adequate for use in humans [19, 23]. The latter factor is of

particular importance during the engineering step of novel implantable organo-

biomaterials, because previous studies have demonstrated that undesired heterotopic

ossification at the implantation site, exostosis, adverse life-threatening and inflam-

matory reactions (spinal surgery and off-label use) have been correlated with the

presence of materials containing high concentrations of bone growth factors

(BMP, BMP-2 or rhBMP-2) in a dose-dependent manner [47, 48, 49, 50].

Even though the organo-biomaterials investigated in the present study (DBM and

MOE) were previously demonstrated to have BMPs in their compositions [17, 23,

51], the histological findings herein reported, have suggested that BMP concentra-

tions present in the experimental organo-biomaterials investigated did not result in

the formation of ectopic bone. Our results have also demonstrated that the experi-

mental organo-biomaterials used in this work were resorbed at 3 and 6 months,

and were completely replaced by newly formed tissue (fibrous connective only) in

quantities that completely filled the implanted polyethylene tubes, which in turn,

may demonstrate the potential application to guide the formation of tissues. Such

relevant property may suggest at least that experimental materials investigated

may be considered an interesting alternative to current biomaterials that are capable

of maintaining the volume of tissues but are rarely resorbed [15].

Although the radiopaque aspect seen in the radiographic analysis was not due to

mineralization but to the tissue fixation periods that were longer than normal [52],

the results reported from the photographic and radiographic analyses, at 3 and 6

months, have indicated high-levels of deposition of neoformed tissues, where im-

plants pertaining to the control group (sham) displayed the lowest levels of tissue

formation among the groups. However, the radiopaque aspect herein found means

that fixation methods can interfere with the results of x-ray imaging analytical

methods used in the detection of mineralization levels of neoformed tissues (e.g.

radiography, micro computed tomography).

Wu et al. [1] have demonstrated that subcutaneous implantation of native deprotei-

nized bovine bone (DBB) resulted in the formation of soft connective tissues asso-

ciated with significant numbers of foreign-body giant cells (inflammatory reaction)

in a rat model. In the present study, probably due to the time of monitoring, no re-

sidual DBM particles or giant cells were detected.

According to previous studies, intramuscular and subcutaneous models are routinely

used to evaluate the osteoconductivity [53] and biocompatibility [54] in the search of

functionalities of biomaterials. However, the lack of mechanical stability that is
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commonly associated with these types of implantation sites, may translate into dele-

terious movements of implanted materials [1], subsequent encapsulation (dense

fibrous connective tissues) and overall reduction of engineered osteogenic function-

alities [55]. In this context, the use of biomaterial or association with high remodel-

ing capacity may be problematic because these materials could accelerate the

resorption process and result in tissues of low or none mineralization levels e

some authors suggest the incorporation of bioceramic nanoparticles to counteract

this effect [56]. That might be the main reason and limitation for the findings of

the present work. This laboratory is part of a research group currently working

with the development of nanostructured bioceramic particles.
5. Conclusions

The present controlled and randomized study has reported a protocol for the fabri-

cation of MOE obtained from nacre and its in vivo functionality in ectopic grafting

when associated or not with DBM. This experimental organo-biomaterial associa-

tion did not reveal any osteoinductive property but led to a fibrous tissue repair

only. Other studies are made necessary to improve nacre’s osteoinductive, osteo-

genic characteristics and to further investigate the in vivo utility of these novel or-

gano-biomaterials.[56]
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