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Abstract: Although prevalent in the determination of protein structures; crystallography always has
the bottleneck of obtaining high-quality protein crystals for characterizing a wide range of proteins;
especially large protein complexes. Stable fragments or domains of proteins are more readily to
crystallize; which prompts the use of in situ proteolysis to remove flexible or unstable structures
for improving crystallization and crystal quality. In this work; we investigated the effects of in
situ proteolysis by chymotrypsin on the crystallization of the XcpVWX complex from the Type II
secretion system of Pseudomonas aeruginosa. Different proteolysis conditions were found to result in
two distinct lattices in the same crystallization solution. With a shorter chymotrypsin digestion at a
lower concentration; the crystals exhibited a P3 hexagonal lattice that accommodates three complex
molecules in one asymmetric unit. By contrast; a longer digestion with chymotrypsin of a 10-fold
higher concentration facilitated the formation of a compact P212121 orthorhombic lattice with only
one complex molecule in each asymmetric unit. The molecules in the hexagonal lattice have shown
high atomic displacement parameter values compared with the ones in the orthorhombic lattice.
Taken together; our results clearly demonstrate that different proteolysis conditions can result in the
generation of distinct lattices in the same crystallization solution; which can be exploited in order to
obtain different crystal forms of a better quality

Keywords: in situ proteolysis; X-ray crystallography; chymotrypsin digestion; type II secretion
system; pseudopilin tip complex

1. Introduction

For decades, X-ray crystallography has been the most powerful and robust approach to
determining atomic protein structures, which provides incisive insights into the three-dimensional
spatial arrangements of protein structures and allows for an in-depth exploration and understanding
of the structure-related protein functions [1–5]. A majority of the established protein structures have
been determined by X-ray crystallography, because it is a well-established methodology for solving
protein structures with a large span of molecular weights [2,6,7]. To obtain crystal structures, it is
required to experimentally obtain high-quality protein crystals for the X-ray diffraction experiments,
which is proven to be the bottleneck for many proteins [8,9], especially for those large proteins or
protein complexes that are over 100 kDa [10–12]. It is estimated that of all of the proteins used for
crystallization trials, only one-third can be crystallized, of which about a half can further produce
usable-quality X-ray diffraction data through devising and diversifying the proper optimization of
crystallization conditions (http://targetdb.pdb.org) [13,14].
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Years of protein crystallographic studies have revealed that stable fragments or domains of
proteins are more prone to crystallization, which increases the possibility of forming high-quality
crystals for diffraction experiments [15,16]. Stable molecules tend to pack into specific lattices more
easily, aiding in the formation of protein crystals. Therefore, the removal of flexible regions of protein
molecules to create stable protein fragments and domains benefits developing crystallization-favoring
crystals [17–19]. In situ proteolysis using a trace amount of proteases to diminish flexible or unstable
structures is deemed an effective way of improving protein crystallization [20–24]. A target protein
sequence can be engineered to express the potential crystallization-favoring truncation forms. On the
other hands, proteolysis can be somewhat serendipitous, and the results are often difficult to predict;
thus, researchers tend to add various proteases directly to crystallization solutions so as to increase the
possibility of crystallizing proteins of interest [24–26]. Additionally, digestion decreases the surface
conformational entropy of protein surface residues, which is a critical indicator for successful protein
crystallization [22,23,27,28].

Chymotrypsin (CT), widely used in in situ proteolysis, primarily targets the non-polar amino
acids that contain large aromatic side chains, including tyrosine, tryptophan, and phenylalanine.
It accommodates the aromatic groups into its hydrophobic active site and cleaves the carboxyl group
of amino acids [29–31]. In addition, CT also hydrolyzes the other amide bonds in peptides at slower
rates (i.e., leucine and methionine) [32]. CT is usually used for cutting thermally sensitive loops in
proteins to stabilize the molecules during crystallization [33,34].

The Type II secretion system (T2SS) is a sophisticated secretion machinery that is utilized by a
variety of Gram-negative pathogens to translocate large, structured virulence factors for bacterial
infection [35,36]. In Pseudomonas aeruginosa, this secretion system consists of twelve Xcp proteins,
in which four minor pseudopilins, Xcp-U, -V, -W, and -X, assemble into the tip complex of the piston-like
pseudopilus [37], which is critical for the secretion of diverse virulence factors [38,39].

Herein, we report that in situ proteolysis conditions prompted the formation of XcpVWX
ternary complex crystals, but, intriguingly, resulted in generating two distinct lattice types in the
same crystallization solution under different CT digestion conditions, which are correlated with
the CT quantity and digestion duration. With the lower concentration and shorter incubation of
CT, complex molecules are packed into a hexagonal lattice with a P3 space group, which contains
three XcpVWX complex molecules in one asymmetric unit (ASU). In comparison, upon a longer CT
digestion at a higher concentration, the crystals exhibited an P212121 orthorhombic lattice, with only
one ternary complex molecule in each ASU. The orthorhombic lattice is smaller in size than the
hexagonal lattice, in which complex molecules are packed more compactly. The averaged atomic
displacement parameters (ADP) of the two structures indicate that all three molecules in the hexagonal
lattice have a relatively higher structural flexibility than the molecule in the orthorhombic lattice.
Therefore, changes in the in situ proteolysis conditions have direct impacts on the molecular packing
in crystals, which have implications for improving proteolysis-assisted crystallization, so as to obtain
crystals of a better quality.

2. Results

2.1. Purification of the XcpVWX Complex

The clones of the soluble forms of the individual minor pseudopilins were constructed into
pET32a, with N-terminal thioredoxin (Trx) and hexahistidine tags (Figure 1A). A TEV protease cleavage
site was engineered in the vector for tag removal. Expressed in E. coli codon plus competent cells,
all three Trx-tagged proteins (Xcp-V, -W and -X) were individually purified by nickel-NTA affinity
chromatography, followed by the cleavage of tags. The purity of tag-free pseudopilins was polished
using size exclusion chromatography (SEC). The XcpVWX complex was formed by mixing the three
purified pseudopilins. After incubation, the ternary complex was further purified by SEC (Figure 1B).



Int. J. Mol. Sci. 2020, 21, 308 3 of 14

The fractionated complex peak showed a molecular binding ratio of approximately 1:1:1 in the three
molecules, according to the SDS-PAGE result (Figure 1C).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 15 

 

 
Figure 1. Purification of the XcpVWX ternary complex. (A) Schematic of the clone structure of the 
minor pseudopilins. The sequence of the minor pseudopilin follows the TEV cut site to generate a 
soluble tag-free form of pseudopilins. (B) Purification of the XcpVWX ternary complex through size 
exclusion chromatography (SEC). The complex peak elutes at 60 mL on a Superdex 75 Hiload gel 
filtration column. (C) SDS-PAGE result of the fractionated peak eluate reveals the formation of the 
ternary complex by the three pseudopilin molecules. 
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The SEC-purified XcpVWX ternary complex sample was used for the sitting-drop vapor 
diffusion crystallization trials. Initial hits of the XcpVWX complex crystals were found in the 
crystallization solution containing 20% PEG 2000 MME, 0.1 M Tris, pH 8.5, and 0.2 M Trimethylamine 
N-oxide (TMAO) at 20 °C (Figure 2A,C). 

  

Figure 1. Purification of the XcpVWX ternary complex. (A) Schematic of the clone structure of the minor
pseudopilins. The sequence of the minor pseudopilin follows the TEV cut site to generate a soluble
tag-free form of pseudopilins. (B) Purification of the XcpVWX ternary complex through size exclusion
chromatography (SEC). The complex peak elutes at 60 mL on a Superdex 75 Hiload gel filtration column.
(C) SDS-PAGE result of the fractionated peak eluate reveals the formation of the ternary complex by
the three pseudopilin molecules.

2.2. Changes In In Situ Proteolysis Conditions Have Led to Distinct XcpVWX Complex Crystal Forms

The SEC-purified XcpVWX ternary complex sample was used for the sitting-drop vapor diffusion
crystallization trials. Initial hits of the XcpVWX complex crystals were found in the crystallization
solution containing 20% PEG 2000 MME, 0.1 M Tris, pH 8.5, and 0.2 M Trimethylamine N-oxide
(TMAO) at 20 ◦C (Figure 2A,C).

Chunk-like crystals appeared in the starting crystallization condition when the ternary complex
was under low-dosage CT digestion (complex = 10 mg/mL, CT = 0.01 mg/mL, complex:CT = 1000:1;
Figure 2A,B). Instead of forming single crystals, the crystals under this condition grew into overlapping
multi-crystals. Attempts were made to reduce the nuclei in the crystallization drops to produce single
crystals, specifically using microseeding. Nevertheless, limited success was seen, as the multi-crystals
were difficult to isolate for obtaining usable seeds. During optimization, however, more crystal shapes
were observed, including hexagonal, cubic, diamond-like, etc. under the same digestion condition as
in the crystallization process (Figure 2B). These crystals usually require three to four days to mature
after microseeding.

Interestingly, a 10-fold higher concentration of CT (complex = 10 mg/mL, CT = 0.1 mg/mL,
complex:CT = 100:1) produced clusters of needle- or rod-like crystals in a radial pattern (Figure 2C).
This type of crystals usually needed relatively longer time (~15 days) after microseeding to develop into
a full shape. In contrast to the chunk-shaped crystals, the needle-like crystals tended to feature a more
solid shape when experiencing longer digestion (Figure 2D). Despite clustering, single crystals could
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be isolated from clusters by carefully touching the nucleation centers. These crystals were suitable for
X-ray diffraction experiments.
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Figure 2. Crystals of the XcpVWX complex before and after optimization. (A) Initial hits of the chunk-
like, overlapping multi-crystals of the XcpVWX complex under a bright field and UV scopes. The 
complex was subjected to a low-dosage and shorter digestion of chymotrypsin (CT). (B) Optimized 
chunk-like crystals under bright field. Crystals became larger in size after microseeding. (C) Initial 
crystal hits of the needle clusters of the XcpVWX complex under bright field and UV scopes using 
high-quantity and longer digestion of CT. (D) Optimized needle clusters of crystals under a bright 
field. This type of crystal not only grew in size, but also formed well-shaped three-dimensional 
clusters of rod-like crystals. 
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high-intensity synchrotron X-ray light source at the Advanced Photon Source was used to acquire 
diffraction data. The collected diffraction data were indexed and scaled using XDS [40]. Phasing, 
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manual refining using Coot [42]. The crystal structure of the XcpVWX complex that originated from 
the chunk-like crystals was determined (Figure 3A and Table 1). 

The chunk-like crystals diffracted the X-rays to the highest resolution of 2.83 Å. The XcpVWX 
complex crystal belonged to a P3 hexagonal lattice with a cell dimension of a = b = 158.1 Å and c = 64.7 
Å. An analysis of the diffraction data by Xtriage confirmed the twinning of the crystals, which was 

Figure 2. Crystals of the XcpVWX complex before and after optimization. (A) Initial hits of the
chunk-like, overlapping multi-crystals of the XcpVWX complex under a bright field and UV scopes.
The complex was subjected to a low-dosage and shorter digestion of chymotrypsin (CT). (B) Optimized
chunk-like crystals under bright field. Crystals became larger in size after microseeding. (C) Initial
crystal hits of the needle clusters of the XcpVWX complex under bright field and UV scopes using
high-quantity and longer digestion of CT. (D) Optimized needle clusters of crystals under a bright field.
This type of crystal not only grew in size, but also formed well-shaped three-dimensional clusters of
rod-like crystals.

2.3. Different Crystal Forms of the XcpVWX Complex Demonstrate Different Crystal Lattices

To better characterize the nature and diversity of the crystal forms of the XcpVWX complex, a
high-intensity synchrotron X-ray light source at the Advanced Photon Source was used to acquire
diffraction data. The collected diffraction data were indexed and scaled using XDS [40]. Phasing,
model building, and structure refinement were carried out using the PHENIX [41] combined with
manual refining using Coot [42]. The crystal structure of the XcpVWX complex that originated from
the chunk-like crystals was determined (Figure 3A and Table 1).

The chunk-like crystals diffracted the X-rays to the highest resolution of 2.83 Å. The XcpVWX
complex crystal belonged to a P3 hexagonal lattice with a cell dimension of a = b = 158.1 Å and c = 64.7
Å. An analysis of the diffraction data by Xtriage confirmed the twinning of the crystals, which was
also observed in the crystallization, which contained three merohedral twin operators (Table S1).
The calculated Matthew’s coefficient indicated that there were three molecules in the asymmetric unit
(ASU) with a solvent content of 48.3%. In the phasing stage, a stepwise phasing strategy by molecular
replacement was implemented to find the three complex molecules in the ASU. The initial round of
molecular replacement enabled us to capture the first complex molecule in the unit cell. Treating the
first molecule as a partial solution, two further solutions with a similar likelihood gain were computed
by Phaser. In terms of the molecule arrangement in the P3 space group, the two solutions reflected
the locations of the remaining two ternary complex molecules, separately. Consequently, using either
of the two solutions as a partial solution led to building up the entire structure model of the ternary
complex (Figure 3A). In the plane formed by the sides of a and b, the molecules were packed relatively
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loosely to form triangular cavities (Figure 3B, left panel, and Figure S1, left panel). However, it is noted
that the packing was tight, based on the side view (Figure S1, left panel), owing to the small c side.
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Figure 3. Packing of the complex molecules in the two different lattices. (A) Crystal structure of the
XcpVWX ternary complex (PDB ID: 6UTU). (B) Spatial arrangement of the XcpVWX complex molecules
in the P3 hexagonal lattice (left panel) and the P212121 orthorhombic lattice (right panel). The chuck-like
P3 hexagonal crystals show a triangular packing pattern in the lattice. The three molecules in each
asymmetric unit (ASU; colored yellow, blue, and pink, respectively) form triangles with the symmetry
molecules in the lattice. The compactly packed orthorhombic lattice by XcpVWX molecules is observed
in the rod-like crystals (PDB ID: 5VTM). The complex molecules associate with symmetry molecules
tightly in this type of lattice. There is only one molecule in each ASU.

As shown by our previously reported results [43], the long rod-like crystals were obtained via
high-concentration CT digestion. The crystals belonged to a P212121 orthorhombic lattice, with cell
dimensions of a = 61.54, b = 76.76, and c = 102.86 Å (Figure 3B, right panel). One ASU contained one
XcpVWX complex molecule, with a solvent content of only 34.0%, which is substantially lower than
the 48.3% of the hexagonal space group. Unlike the molecular packing in the hexagonal lattice of
the chunk-like crystals, in the orthorhombic lattice, molecules were packed into a tighter lattice with
symmetry molecules. As a result, limited space was available for the solvent.

To better demonstrate the precise differences between the crystal structures in the two lattices,
the complex structure of the orthorhombic lattice was superimposed pairwise with the three individual
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complex structures in the hexagonal lattice (Figure 4, Figure S2, and Table 2). The overall structures
aligned well. The major missing residues in all three structures of the P3 hexagonal lattice were found
in the XcpV molecules (Figure 4A, Figure S2a, and Table 2). They mainly lacked two connecting loops,
namely: (1) 59–66, between the N-terminal α-helix and the β-sheet, and (2) 103–113, between the two
β-strands. The β-sheet domains were not well established because of residue missing, especially in
XcpV of Mol2. The XcpW structures were all intact in the four structures (Figure S2b and Table 2).
Some loop regions in XcpX were also missing in the structures of 6UTU (Figure S2c and Table 2).
However, the loop regions that formed the calcium binding sites in XcpX were well maintained
(Figure 4B).

Table 1. Data collection and refinement statistics.

Data Collection XcpVWX

Space group P3
Cell dimensions

a, b, c (Å) 158.1, 158.1, 64.7
α, β, γ (◦) 120, 120, 60

Resolution (Å) 43.5–2.83 (3.00–2.83) *
Rmerge 13.8 (19.9)
CC (1/2) 99.8 (64.6)

I/σ 10.3 (1.6)
Completeness (%) 99.2 (95.7)

Redundancy 10
Refinement

Resolution (Å) 43.5–2.83
No. unique reflections 42465

Rwork/Rfree 0.21/0.30
R.m.s. deviations
Bond lengths (Å) 0.009
Bond angles (◦) 1.12

* Values in parentheses are for the highest resolution shell.

Table 2. Missing residues in structures.

Protein Orthorhombic 5VTM
Hexagonal 6UTU

Mol1 Mol2 Mol3

XcpV 89–92

60–66
71
79

87–90
104–113

59–65
87–98

103–112

62–65
88–91

106–113

XcpW 87 86

XcpX
67–75

95
263–267

67–75
93

66–75
92–98

287–291

67–75
91–98

161–163
263–266
286–291

2.4. Atom Displacement Parameter Analysis Reveals a Different Flexibility of Molecules in the Two Lattices

The atom displacement parameter (ADP; also called the temperature factor or B-factor) usually
reflects the flexibility of the protein structure [44], which is related to the atomic thermal Debye–Waller
factor in the lattice dynamics theory [45]. This critical crystallographic parameter is deemed to represent
the atomic motion and static displacive disorder in protein structures [44,46].

In the hexagonal P3 lattice, the relatively loose packing in the dimensions of a and b has rendered
the residues of all three molecules with considerable flexibility in the lattice, resulting in high ADP



Int. J. Mol. Sci. 2020, 21, 308 7 of 14

values (Figure 5A). Polypeptides colored in red show the highest ADP, indicating a high atomic motion
in these regions. Owing to the diversified roles in the associations with the symmetry molecules,
the three complex molecules show different ADP distribution patterns throughout the structures.
Systematic ADP mapping displays the averaged ADP values of the individual residues across each
pseudopilin molecule in the ternary complex (Figure 5B). Certain residues in specific regions score
higher than the rest, such as residues 90–100 and 166–176 in XcpW, and residues 83–88, 110–116,
and 262–271 in XcpX. Of all of the three complex molecules in the unit cell, Mol1, which mainly
accounts for contact formation with symmetry molecules, has a lower overall ADP, ranging from 40 to
100, compared with the other two molecules.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 15 
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Figure 4. Comparison between the complex structure in the orthorhombic lattice and the ones in the
hexagonal lattice. (A) The crystal structure of the XcpVWX ternary complex in the orthorhombic lattice
(PDB ID: 5VTM) was superimposed onto the individual structures of three complex molecules in the
hexagonal lattice (PDB ID: 6UTU). The regions in the dotted box show the main structural differences
in pair-wise structure comparisons. (B) Calcium binding sites are identical in the four structures.

High-ADP regions are found to form in the sides of the triangular cavities between the molecules
and adjacent symmetry molecules, which allow for more extensive atomic motions (Figure S3).
However, because of the contacts between the interacting molecules, the regions close to the interaction
interface are relatively stable (e.g., the assembly bundled by the N-terminal α-helices of the three
pseudopilins). The inter-pseudopilin interactions narrow the space and limit the atomic motions of the
amino acids (Figure 5A).

However, the average ADP values of the residues are smaller in the P212121 orthorhombic lattice
due to a stronger association between the adjacent molecules (Figure 5C,D). The complex molecules
in this lattice are positioned closely to each other, which restrains the atomic motion of the residues.
Similar to the ADP distribution pattern in the P3 space group, the interaction interface composed by
the N-termini, colored in blue or cyan, has the lowest ADP values (Figure 5C). Despite the relatively
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higher flexibility in the surface polypeptides, it is evident that in general, ADP values are substantially
lower (≤65) than the same regions in the P3 space group (Figure 5D).

Through contact analysis, molecules in the orthorhombic lattice, although lower in molecule
numbers, form even more inter-complex contacts with symmetry molecules with regard to the
total number of residues involved in the association and the total contact interface area (Table S2).
The establishment of more contacts reduces atomic motions, supporting the low ADP scores in
this lattice.
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3. Discussion

Structural determination and characterization of biomacromolecules have played an indisputably
fundamental role in understanding their structures and functions, including target-oriented drug
design and development [2,47–49]. Structure-guided drug design has remarkably led to developing
more specific and efficient therapeutic cures, which facilitates the advent and production of novel
drugs in the market. In this regard, researchers are indulged in structurally characterizing protein
drug targets to discover potential drug sites for therapeutic purposes [50,51].

As the most powerful and well-established tool, X-ray crystallography has at all times been the
predominant methodology used for identifying protein structures. Many optimization strategies are
designed and implemented in order to improve the quality of protein crystals for X-ray diffraction.
The technology of the in situ proteolysis has been gradually used to improve protein crystallization,
especially in cases where proteins are difficult to form crystals. Although the precise mechanisms
have not been fully clarified, the method of in situ proteolysis has been proven to be useful in many
studies [24,25,52].

In our research, we applied limited chymotrypsin proteolysis to propel the crystallization of
the minor pseudopilin ternary complex of XcpVWX. Conspicuously, it is found that the crystal lattice
formation and the resulting protein packing are correlated to the quantity of the protease and the
duration of digestion used in the crystallization. Dong et al. implied in their paper that the concentration
of the digesting enzyme could be varied for exploring optimum conditions [23]. We have illustrated
that the quantity of the protease used in the proteolysis induces different ways of packing. Digested by
low-concentration CT, the XcpVWX complex molecules pack into a P3 hexagonal lattice, which exhibits
large lattice dimensions. Differently, after experiencing a longer CT proteolysis of 100-fold higher in
amount, the complex has gone through a more thorough digestion in order to generate a more stable
and compact crystal form, generating a stringently packed P212121 orthorhombic lattice.

Through the analysis of the spatial layouts of the two different lattices, it is noted that along the
dimensions of a and b, immense solvent cavities existed between the protein triangles of the same plane
in the hexagonal lattice. The inter-plane space allows for an extensive atomic motion of the residues
in this crystal form, manifested by the high ADP factors throughout the three complex molecules.
The stable orthorhombic form instead has restrained room, which causes low ADP scores for all of
the residues in the complex structure. In one specific lattice, the establishment of residue contacts
confines the mobility and flexibility of polypeptides, and accordingly, their ADP scores are lower than
the residues not involved in contact formation.

From the perspective of the proteolysis-involved crystallization progress at different stages,
the complex molecules underwent chymotrypsin digestion while the crystallization and packing were
taking place. Aided by digestion, flexible regions that impede packing (i.e., connecting the loops
between the secondary structures) were minimized to generate a stable form of molecules. As presented
in Figure 4 and Figure S2, some surface unstable loops in different component molecules are found
to be missing in the structures, which are highly probable to prevent the association among adjacent
molecules from forming a specific lattice. The removal of them reduced the system Gibbs free energy
so as to facilitate crystallization. The P3 hexagonal lattice appears to represent a stage of semi-digestion
by CT, in which the packing is in a transition state. Insufficient proteolysis, timewise and quantity-wise,
refrains the crystal development into a fully packed form. The packing progress would be driven and
continue in the presence of more enzymes. This is evident that the two forms were found to coexist in
the same drop (Figure S4). It is thus suggested that the in situ digestion-induced molecular packing to
generate a specific Bravais lattice is likely dynamic with the progress of proteolysis.

Additionally, based on the crystal structures and the sequences of the pseudopilins, chymotrypsin
barely fragmentated the three pseudopilin molecules, but instead removed the flexible regions to
stabilize the overall structures, which is not exactly similar to the usage of proteases for protein
fragmentation for mass spectrometry.
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Interacting contacts formed by protein molecules propel and reinforce lattice packing. Proteolysis
may change the interacting behaviors by removing the residues in the flexible regions on an interacting
interface between the packing molecules. As proteases have specific recognition sequences, choosing
suitable enzymes is critical, because a loss of interaction between molecules or domains can be induced
by improper digestion of the interacting residues. A detailed investigation should be conducted for
pinpointing appropriate digestion conditions.

Our research has, for the first time, established the correlation between the formation of a Bravais
lattice and the conditions of in situ proteolysis. The results reported here demonstrate the impact of
proteolysis conditions on molecule packing and crystal formation in the same crystallization solution.
Our work suggests that varying proteolysis conditions serve as a useful way not only for optimizing
protein crystallization, but also providing the possibility of generating crystals of different lattices,
some of which would have a better quality. Taken together, limited in situ proteolysis should be
more widely practiced for protein crystallization, particularly in exploring the possibility of obtaining
different crystals with a better diffraction quality.

4. Materials and Methods

4.1. Cloning of the Soluble Form of Minor Pseudopilins

Soluble truncations of individual minor pseudopilins (XcpV (28–129), XcpW (28–237), and XcpX
(29–313)) were amplified from P. aeruginosa PAO1 genomic DNA using Q5 high-fidelity polymerase
(NEB, Ipswitch, MA, USA). Purified DNA inserts were subjected to digestion of Kpn I and Xho I
restriction endonucleases (NEB) for 1 h, and introduced into the pET32b vector (Novagen, Darmstadt,
Germany), which contains an N-terminal hexahistidine tag and a thioredoxin (Trx) tag, followed by
the TEV protease recognition sequence (gaaaacctgtacttccagggt) that was engineered into the vector.
The recombinant plasmid was introduced into BL21 (DE3) competent cells following standard protocol
for transforming chemically-competent cells. All of the resulting constructs were verified by sequencing.

4.2. Expression and Purification of Xcp-V, -W, and -X, and the XcpVWX Complex

Colonies of cells were transferred into 25 mL of an LB medium for overnight culturing.
The overnight cultures were inoculated into 500 mL of Terrific Broth for large-scale protein expression.
Expression was induced using 1 mM IPTG at 16 ◦C overnight after the OD600 of the culture reached
0.6. The harvested cells were sonicated for lysis using Buffer A (50 mM Tris, pH 8.0, 150 mM NaCl,
and 10 mM imidazole), and high-speed centrifugation was used to remove the precipitate and cell debris
at 18,000 rpm for 30 min. The supernatant was applied to Ni2+-NTA resins for incubation, followed by
column washing with 50 mL of Buffer A. The proteins were eluted using Buffer A plus 200 mM
imidazole. Eluted Trx-tagged proteins were subjected to overnight TEV protease cleavage together
with dialyzing against Buffer B (50 mM Tris, pH 8.0, 150 mM NaCl, and 5 mM imidazole). The digested
samples were reloaded to an Ni2+-NTA column to remove the Trx tag, and the flow-through that
contained the pseudopilins were fractionated. The proteins were concentrated and loaded onto the
Superdex 75 column (GE Healthcare) for size exclusion chromatography using Buffer C (25 mM HEPES,
pH 7.0, 150 mM NaCl, and 1 mM CaCl2). Fractionation was done based onthe UV absorbance of peaks,
and the fractions were analyzed by SDS-PAGE for purity. The purified components of Xcp-V, -W, and -X
were mixed together at a molar ratio of 1.5:1:1 (XcpV:XcpW:XcpX) and incubated at 4 ◦C overnight
to form the XcpVWX complex. The ternary complex was purified by size exclusion chromatography
using Buffer C, and the fractions were assayed by SDS-PAGE.

4.3. Crystallization and Structure Determination

The XcpVWX ternary complex was first subjected to in situ proteolysis using chymotrypsin
(protein:chymotrypsin = 1000:1, w/w). Initial chunk-like crystals were discovered in 19%–22% PEG 2000
MME, 0.1 M Tris, pH 8–9, and 0.2 M trimethylamine N-oxide (TMAO) by sitting-drop vapor diffusion
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at 20 ◦C. The crystals were optimized by microseeding. Cryo-protectant was 25% of the ethylene glycol
in the optimized crystallization solution. The diffraction data were collected at beamline 23-ID-B of the
Advanced Photon Source, Argonne National Laboratory (Argonne, IL). Complete data sets containing
360 frames of images were collected at a 1.033-Å wavelength at 100 K from a single crystal with the
exposure of 1 s per frame. As XDS is a fast and efficient software package for processing twinned data,
it was used to index and scale our datasets [53]. The structure of the XcpVWX complex was phased by
molecular replacement (Phaser) using the high-quality crystal structure of the XcpVWX complex (PDB
ID:5VTM) as a search model. The computed solution was refined iteratively using PHENIX, which is
suitable for handling twinned data [54,55], with manual fitting and refining in Coot.

4.4. Calculation of ADP

The overall ADP values of the XcpVWX complex structures were calculated in PyMol, so as to
demonstrate the distribution of ADP in each of the ternary complex molecules of the same unit cell
in the hexagonal P3 lattice. The ADP analysis of the individual residues of each pseudopilin in the
ternary complex was performed using BAVERAGE in the CCP4 program suite [56].

4.5. Calculation of the Inter-Molecule Contact Formation

The crystal structures of the XcpVWX complex in the P3 hexagonal lattice (PDB ID: 6UTU)
and the P212121 orthorhombic lattice (PDB ID: 5VTM) were uploaded to the PDBePISA server
(https://www.ebi.ac.uk/pdbe/pisa/) for calculating the contact formation between the complex molecules
and symmetry complex molecules. The number of residues on both the ASU molecules and the
symmetry molecules involved in the contacts and interface area were used for evaluating the contact
formation in the two lattice types.
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