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Summary 
Transfectants of mature B cell lines that bind phosphorylcholine were made in order to understand 
the role of the COOH terminus of the/z chain of membrane IgM (mlgM) in generation of 
antigen-specific signals. A chimeric receptor (I-Ac~ tail) was constructed by replacing 40 amino 
acids from the # COOH terminus with that of major histocompatibility complex dass II I-Aot 
chain. The effect of wild-type and chimeric tails were studied on representative immediate-early 
antigen-specific signals. The I-Aot tail hybrid, but not the wild-type receptor, was defective in 
antigen-driven Ca 2+ mobilization, although it could effectively endocytose ligand-receptor 
complexes. Signal(s) transduced through the wild-type receptor led to transient induction of 
selected immediate-early gene messages (Egr-1, c-fos,Jun) above basal levels. However, the signal(s) 
generated after crosslinking of the I-Ac~ tail receptor either showed no effect (c-los) or actually 
repressed basal level expression of Egr-1 and Jun. Thus, we have established that receptor-mediated 
endocytosis can be distinguished from other early events associated with B cell activation, based 
on their differential dependence upon the structural fidelity of the COOH-terminal sequence 
of mlgM. 

I gM molecules on the B cell surface serve as antigen-specific 
receptors (1). Crosslinking of these receptor molecules by 

antigen or antiidiotypic antibody generates a complex series 
of biochemical reactions (2, 3). One of the immediate reac- 
tions includes activation of phospholipase C-catalyzed hy- 
drolysis of phosphatidyl inositol into inositol 3-phosphate and 
diacylglycerol, followed by a rise in intracellular Ca 2+ levels 
(4). One of the next documented consequences is induction 
of various immediate-early gene messages such as Egr-1, c-fos, 
Jun, c-myc (5-7). Recently, several laboratories have identified 
phosphorylation of proteins on tyrosine residues after cross- 
linking of mlgM (8-10), indirectly implicating the activa- 
tion of tyrosine kinase(s). While these and various other bio- 
chemical changes are taking place, the mIgM receptor-ligand 
complex is endocytosed, ligand is processed, and some of the 
ligand peptides are presented to T cells in a MHC class II-re- 
stticted fashion (11). Eventually, B ceils undergo either growth 
arrest (12) or proliferation and differentiation, often requiting 
help from T ceils (13). 

The extracellular NH2 terminus of membrane IgM (mlgM) 1 

1 Abbreviations used in this paper: HRP, horseradish peroxidase; mlgM, 
membrane IgM; PC, phosphorylcholine. 

endows specificity for antigen, whereas the membrane-as- 
sociated COOH terminus in concert with associated mem- 
brane proteins (reviewed in reference 14) is responsible for 
initiating various biochemical changes inside the cell. The 
# heavy chain COOH terminus consists of 12 extracellular, 
26 transmembranal, and three intracellular residues, all unique 
to the membrane form (Fig. 1). We have been interested in 
understanding the structure-function relationship of mlgM 
and in dissecting out various complex biochemical changes 
that take place upon antigen stimulation of mature B cells. 
The experimental approach we have taken is to replace the 
40-amino acid COOH-terminal segment of the/z heavy chain 
(15) with that of the MHC class II I-Aot chain (16). In a 
previous study, we showed that this I-Ao~ chimeric receptor, 
with T15 idiotype, when transfected into an immature B cell 
line, CH33, did not lead to growth arrest upon crosslinking 
with anti-T15 antibody (17). To study the effect of this replace- 
ment on generation of immediate-early signals in mature B 
cells, we have now transfected these chimeric and wild-type 
mlgM molecules of identical PC specifidty into tumor models 
of mature B cells (M12.4, CH12.Lx). We show here that 
the COOH terminus of mlgM is required for an induction 
of second messenger, Ca 2+, and some of the immediate- 
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early gene messages. In contrast, another mlgM-mediated 
function, endocytosis of  antigen, is not dependent upon the 
precise structure of  the mlgM C O O H  terminus. 

Mater ia l s  and  Methods 
Parental Ceils and T15-Id+-transfected Cell Lines. M12.4 (I-A k+, 

surface Ig-) (18), CH12.Lx (I-A k+, #+, Ly-1 +) (19) murine B cell 
lymphomas were used as parental cell lines in all experiments. The 
T15-Id + transfectants were generated by electroporating 10-15/~g 
of linearized plasmid DNAs into parental cells (20). All plasmid 
constructs contain Escherichia coli ampicillin and guanine phos- 
phoribosyl transferase genes and murine genomic sequences for 
productively rearranged V,S107-C# and V,22-Cg Ig chains (21). 
The chimeric plasmid I-Ace tail, as shown in Fig. 1, was made by 
replacing the 1.7-kb fragment spanning the/~ membrane exons with 
a 2.8-kb fragment spanning the membrane exon of the MHC class 
II I-Ac~ chain (22). 

Reagents. All reagents except hypoxanthine, xanthine, thymi- 
dine, adenine, and acetomethyl-ester of Indo 1 (Indo 1-Am) were 
purchased from Gibco Laboratories (Santa Clara, CA). The Indo 
1-AM was purchased from Molecular Probes (Eugene, OIL), and 
the remaining reagents were purchased from Sigma Chemical Co. 
(St. Louis, MO). The antigen, phosphorylchdine (PC) conjugated 
to KLH, was kindly provided by Dr. M.C. Yang (University of 
Texas Southwestern Medical Center, Dallas, TX). Purified anti-T15- 
Id + antibody, AB1-2 (23), fluorescein-conjugated goat anti-mouse 
IgG1, and anti-# antibody were obtained from Southern Biotech- 
nology Associates (Birmingham, AL). Another anti-T15-Id anti- 
body I=6 was obtained from Dr. R.. E. Ward (Roswell Park Memorial 
Institute, Buffalo, NY) (24). 

Iramunofluorescent Staining. The T15-Id + surface positivity of 
transfected cell lines was established by staining transfectants ei- 
ther with AB1-2 or F6 as a primary antibody and fluorescein- 
conjugated goat anti-mouse IgG1 as a secondary antibody (23). 
As controls, transfectants were stained with secondary antibody 
alone, and untransfected parental cell lines were stained with anti- 
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Figure 1. Schematic representation of a mlgM molecule (wild type). 
(A) Illustrated are the antigen-combining rites and the membrane-anchored 
COOH terminus, which is divided into three hypothetical domains: spacer, 
transmembranal, and cytoplasmic. (B) Comparison of amino acid sequences 
of the COOH termini of wild-type and I-Ace tail mutant. 

T15-Id + . Staining profiles were analyzed by FACS | (Becton Dick- 
inson & Co., Mountain View, CA). 

Cakiura Analysis. The method used to measure changes in 
Ca 2§ levels by FACS | (Ortho 50HH FACS | and associated 2150 
computer; Ortho diagnostic systems, Westwood, MA) was as de- 
scribed (25). Analysis was done at the rate of m300 cellsA. The 
baseline was established for 1 rain before activating cells with ei- 
ther antigen (PC-KLH), anti-# antibody, or anti-T15-Id + anti- 
body. Within 10-20 s after addition ofligand, recording of changes 
in levels of Ca 2+ was resumed. The data were analyzed using 
"Normcon" and "cyto2D" programs. 

Northern BlotA~lysi~ Ceils grown to log phase were harvested, 
and 2 x 10 ~ cells/0.9 ml of medium were distributed into the 
wells of a 24-well plate. They were rested for 3-4 h and were then 
induced by addition of 1/~g of PC-KLH in 0.1 ml of medium. 
Cells were harvested at indicated times except for a 0-h sample, 
which was harvested along with the 0.5-h sample. This was done 
in order to confirm that induction was due to the addition of an- 
tigen only and not due to the accompanying manipulations. Total 
RNA was isolated by the hot phenol method as described by Mani- 
atis et al. (26). Total RNA samples (10/~g/lane) were subjected 
to electrophoresis in a 1.2% formaldehyde-agarose gel and were 
transferred and covalently linked to Gene-Screen membrane (DuPont 
Co., Wilmington, DE). The filters were hybridized with 32p_ 
labeled probes (Egr-1, c-fos,Jun) under the conditions recommended 
by the manufacturer. The washes were done at 42~ for 1 h in 
0.1x SSC and 0.5% SDS, and then blots were exposed to Kodak 
XAR-5 x-ray film with an intensifying screen at -70~ for 2-3 
d. The Egr-1 probe was provided by Dr. J. Monroe (University 
of Pennsylvania, Philadelphia, PA) whereas c-~s andJun probes were 
obtained from Dr. B. Ozane (BICR, Glasgow, Scotland). 

Monitoring LigandEndocytosis. Horseradish peroxidase (HRP)- 
labeled PC-KLH and an anti-T15-Id + antibody were used to mon- 
itor endocytosis. HRP labeling was performed as described by Huru 
and Chantler (27). Endocytosis of HKP-labeled ligands by mlgM 
was determined and quantitated according to a variation of a method 
(28) previously reported by Antoine and Avrameas (29). 

Briefly, the procedure was carried out between 2 and 4~ unless 
otherwise specified. HRP-labeled ligands were bound to cells for 
30 min on ice, and endocytosis was initiated at 37~ in an at- 
mosphere of 5% CO2 for various periods of time. Endocytosis was 
stopped by placing cells on ice, and excess free ligand was removed 
by washing. The samples, in which the total amount of cell- 
associated ligand was to be measured, were treated with 1% NP- 
40 in PBS solution for 10 min at room temperature. The other 
samples were kept on ice during this time. The amount of ligand 
was determined by measuring HRP activity at pH 6.0 in the dark 
for 15 min at room temperature and in the presence of 5 mM 
O-phenylenediamine, HC1, and 0.015% H202 (28). The HRP 
reaction was stopped by addition of one drop of 6 N HCI. The 
reaction mixture was then centrifuged to remove cell debris. The 
optical absorbance of the supematant was measured at 492 nm, 
and all values in an experiment were normalized to a value of 100%, 
representing the total amount of ligand initially bound to the cells 
(30). The distribution of HRP-labeled ligand was determined by 
measuring the amount of HRP on the external surface of the cells, 
and the total amount of cell-associated HRP detected after lysis 
of the cells. The amount of ligand internalized by the cell was then 
determined by substracting the amount of ligand detected on the 
external surface of the cell from the total amount of ligand de- 
tected after cell lysis. The difference between the amount of ligand 
detected after cell lysis and the amount of ligand bound initially 
was considered as amount of antibody shed. 
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Cytochemical Staining for Light Microscopy. The method used to 
visualize the morphological distribution of the HRP-labeled ligands 
was that of Graham and Karnovsky (31). The procedure for spec- 
trophotometricaUy monitoring ligand endocytosis was followed up 
to and including the point where the cells were placed on ice after 
the 37~ incubations. For microscopy, the cells were attached to 
an alcian blue-coated cover slip (32), fixed, and then stained with 
substrate and H202 for 45 min in the dark. Analysis was per- 
formed with a microscope at x 1,000 (Swift Instruments Inc., San 
Jose, CA). 

Results 

Establishment of Antigen-specific, Wild-type, and Mutant Cell 
Lines. The COOH terminus of the/x chain can be divided 
into three domains: spacer, transmembranal, and cytoplasmic 
(Fig. 1 A). The entire 40 amino acids comprising these do- 
mains were replaced with the analogous amino acids from 
the MHC class II I-Aoe (Fig. 1 B). The I-Aot COOH ter- 
minus was chosen because the genomic clone was available, 
it used the same RNA-splicing site as #m, and there is no 
significant homology to #m in any of the COOH-terminal 
domains (Fig. 1 B). 

Wild-type and I-Aot mutant molecules with specificity for 
PC were transfected into the B cell lines, M12.4 and CH12.Lx. 
The expression of transfected receptors was analyzed by sur- 
face immunofluorescence staining with an antiidiotypic an- 
tibody, AB-1, whose recognition requires both transfected 
heavy and light chains and thus does not recognize endoge- 
nous mlgM or molecules formed by the mixing of trans- 
fected and endogenous heavy and light chains. The surface 
staining of the parental cell line, as shown in Fig. 2, was nega- 
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Figure 2. Wild-type and I-Aot receptors are expressed equivalently on 
the cell surface of transfected cell lines. Shown are the surface expression 
profiles of T15 idiotype-bearing receptors on M12.4 and CH12.Lx cells 
transfected with wild-type (A and C) and I-Ao~ tail mutant receptors, respec- 
tively (B and D). The untransfected M12.4 and CH12.Lx parental cells 
used as control are designated by the dotted line. Cells were stained with 
anti-T15 idiotype-specific antibody followed by FITC-labeled goat 
anti-mouse IgG1. 

Table 1. Endocytosis of Anti-T15-Id HRP 

Distribution M12.4 M12.4 
of anti-T15-Id HRP wild type I-As tail 

Exteru~ 59+ 45 
Internal 37 37 
Shed 04 19 

HRP-labeled anti-T15-Id antibody was bound to cells on ice and then 
incubated for I h at 37~ to allow endocytosis. The distribution of HRP- 
labeled antibody was determined by measuring the amount of HR.P ac- 
tivity on the external surface of the cells and the total amount of cell- 
associated HRP detectable after lysis of the calls. The amount of anti- 
body internalized by the ceUs was determined by substracting the amount 
of ligand detected on the external surface of the cells from the total amount 
of cell-assodated ligand. The difference between the amount of HR.P- 
labeled antibody initially bound and the amount detected after the cell 
lysis was accounted as "Shed" antibody. The amount of HRP-hbded 
antibody bound to control parental cells was below the level of detection. 

tive, whereas both wild-type and I-Aot tail receptor mole- 
cules were generally expressed equivalently. The fact that the 
expression of the I-Ac~ tail receptor in CH12.Lx cells was 
higher than the wild-type receptor further confirmed that 
differential functional activities (see below) could not be 
ascribed to differential cell surface expression. 

The I-Aa Receptor Endocytoses Ligand-Receptor Complex 
Efficiently. mlgM-mediated endocytosis is the first impor- 
tant step in the sequential process of antigen presentation. 
The replacement of the COOH terminus of mlgM did not 
have any effect on mlgM-mediated endocytosis. Wild-type 
and I-Ao~ tail transfectants of M12.4 cells endocytosed HRP- 
labeled antiidiotypic antibody or PC-KLH equally well, as 
analyzed by a spectrophotometric assay, in which ligand was 
quantified (Table 1). The same results were obtained com- 
paring wild-type and I-Ac~ tail transfectants in CH12.Lx cells 
(data not shown). Cytochemical staining monitored by light 
microscopy showed that neither HRP-conjugated PC-KLH 
nor the anti-T15-Id + antibody bound the parental cell line 
M12.4, and that no internalization of either ligand was de- 
tectable (Fig. 3, A and B). These results sustain the notion 
that the internalization observed with both the wild-type 
and I-Ac~ tail transfectants was due to receptor-mediated en- 
docytosis and not by pinocytosis. Binding of HRP-labeled 
ligand to the surface of wild-type and mutant transfectant 
cells was observed, and the HRP-labeled ligand was endocy- 
tosed by both cell lines after 60 min of incubation at 37~ 
(Fig. 3, C, D, and E). We conclude that endocytosis of the 
receptor-ligand complex of the B cell is not dependent upon 
the COOH-terminal sequence of mlgM. 

Induction of lntracellular Ca 2+ Levels Requires the COOH 
Terminus ofmlgM. Crosslinking of mIgM leads to a rapid 
increase in levels of intracellular Ca 2 +. This induction is con- 
sidered to be a major step in receptor-mediated signaling 
pathways (33). Neither M12.4 (Fig. 4 A) nor CH12.Lx (data 
not shown) parental cell lines mobilize Ca 2+ upon induc- 
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Figure 3. Both wild-type and 
mutant mlgM mediate endocytosis 
efficiently. Microscopic analysis of 
the endocytosis of anti-T15 antibody 
by M12.4 parental (A and/3), M12.4 
wild-type (C and D), and M12.4 
l-Aa tail mutant (E and F) cells. The 
cells were incubated with HRP- 
labeled anti-T15 antibody for 0 min 
(.4, C, and E) or 60 min (/3, D, and 
F) at 37~ The surface-bound (C 
and E) and internalized (D and F) 
HRP anti-T15 molecules are indi- 
cated with arrows. 

tion with either PC-KLH or antiidiotypic antibody, and, in 
the case of  M12.4, with anti-# antibody. An  immediate rise 
in Ca 2 + was observed upon the crosslinking of wild-type 
receptor (Fig. 4 B), whereas the mutant receptor was com- 
pletely defective (Fig. 4 C). Since the chimeric receptor is 

competent in endocytosis of  antigen, its defect in Ca 2+ in- 
duction indicates mechanistic segregation of  these two early 
activation-associated events. 

Immediate-early Gene Induction Requires Signal(s) Transduced 
by the COOH Terminus of mlgM. The transient induction 
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Figure 4. Crosslinking of wild-type 
but not I-Aot tail mutant induces Ca 2+ 
mobilization. Comparison of changes 
in intraceUular Ca 2+ levels in M12.4 
parental (.4) cells (2 x 10e/ml) in re- 
sponse to anti-IgM antibody (10 #g), 
M12.4 wild-type (B), and M12.4 I-Ao~ 
tail mutant (C) cells (2 x I06/ml) in 
response to PC-KLH (1 /~g). Similar 
results were obtained when wild-type 
and I-Aot tail mutant cells were induced 
with anti-IgM antibody (10/~g) or pa- 
rental cells were induced with PC-KLH 
(1 ~g) (data not presented). Ca 2§ levels 
were monitored for I re_in before induc- 
tion with ligand (arrow). 
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Figure 6. Induction of Egrol message in CH12-I-Aa tail mutant cells 
by PMA. The cells were incubated with PMA (10 ng/2 x 106/ml) for 
indicated times. Total RNAs were extracted and analyzed (10/~g/lane) 
with Egr-1 and MHC class I H-2d(H-2D4) probes. 

Figure 5. Wild-type but not I-Atx tail mutant crosslinking leads to in- 
duction of immediate early gene expression. Induction of Egr-1, c-fis, and 
Jun in response to stimulation with PC-KLH was measured by Northern 
blot analysis. M12.4 parental cells (A), M12.4 parental cells transfected 
with wild type (A and B), and with I-Ao~ tail mutant (B) were stimulated 
with PC-KLH for the indicated times. Each blot was reprobed with a MHC 
class I probe (H-2D4) to normalize the loads of RNA per lane. To show 
that the induction of immediate early genes was not restricted to M12.4 
cells, a similar analysis was performed on CH12.Lx transfectants (C). 

of immediate-early gene messages occurs rapidly after Ca 2 + 
mobilization (5-7). Therefore, we analyzed the temporal ac- 
cumulation ofEgr-1, c-fos, andJun mRNAs upon crosslinking 
of wild-type and mutant receptors. 

First, antigen specificity was confirmed by showing that 
these messages were not induced in parental cell lines in re- 
sponse to PC-KLH (Fig. 5 A). The steady-state levels of 
mKNAs of these genes increased within 30 min of cross- 
linking of wild-type receptor at PC-KLH concentrations as 

low as 1 #g per 2 x 106 wild-type transfected cells (Fig. 
5, B and C). The increased rate of accumulation of these mes- 
sages was comparable, but their degradation kinetics were 
different. The mKNA of the c-fis gene disappeared rapidly 
by 2 h of induction, whereas Egr-1 andJun mRNAs had slower 
rates. After PC-KLH addition to mutant cell lines, these mes- 
sages did not accumulate above basal expression level. In fact, 
Egr-1 andJun mKNAs could not be detected after 2-6 h of 
induction (Fig. 5, B and C). The mutant cells were fully 
capable of Egr-1 message induction after treatment with the 
protein kinase C activator, PMA (Fig. 6) (34). This rules out 
the possibility that the defect in transient induction in the 
mutant cells results from events downstream of the hybrid 
mlgM receptor. 

Discussion 

The requirement of the COOH terminus of mlgM for 
two immediate antigen-specific activational signals, changes 
in Ca 2 + levels and immediate-early gene induction, was es- 
tablished in antigen-specific, B cell transfectants of # wild- 
type and I-Aol chimeric receptors. In contrast, the indiffer- 
ence of endocytosis to the COOH-terminal sequence of mlgM 
was established. Keeping in mind the limitations of trans- 
formed cell lines, these studies were performed in transfec- 
tants of M12.4 and CH12.Lx that produced similar results. 
Moreover, the amount and the kinetics of PC-KLH and an- 
tiidiotypic antibody internalized by the transfectant cell lines 
were very similar to the rate and amount of antigen endocy- 
tosis by a different antigen-specific cell line and to endocy- 
tosis of anti-Ig by normal BALB/c splenic B lymphocytes (28). 

Endocytosis is the first essential step for mlgM-mediated 
antigen presentation. Our data suggest that this function of 
mIgM does not require (and/or potentiate) Ca 2+ mobiliza- 
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tion. A role for increased Ca 2+ levels in ligand-mlgM en- 
docytosis via dathrin-coated pits was suggested previously 
(35). This was based on the detection of calmodulin in mIgM- 
containing, clathrin-coated vesicles and the sensitivity of the 
endocytosis to the calmodulin-directed drug, stelazine. Muta- 
tional analysis of calmodulin in yeast (36), and ability of 
calmodulin to function in the absence of Ca 2+ in various 
other eukaryotic systems (37, 38), indicate that calmodulin 
can perform its essential function without Ca 2+ binding. 
Thus, our results with the I-A~transfected cell lines suggest 
that either Ca 2 + binding is not a prerequisite for the func- 
tion of calmodulin or it can perform its function in the pres- 
ence of basal or increased levels is of Ca 2+ too low to be de- 
tected by FACS | analysis. Even though the I-Ac~ receptor 
did endocytose antigen, we do not know to which endocytic 
compartment it was delivered. Differences between mutant 
and wild-type exist at this level, as suggested by our observa- 
tion that wild-type, but not mutant, ceils are able to present 
antigen to appropriately MHC-restricted T cells (V.S. Parikh 
et al., manuscript in preparation). Segregation of mIgM func- 
tions is not without precedent. Recently, using a site-directed 
mutagenesis/in vitro transfection approach, Shaw et al. (39) 
showed, that a conserved tyrosine residue in the mIgM trans- 
membranal segment is essential for antigen presentation but 
not for Ca 2+ induction. 

Antigen induction of immediate-early gene messages can 
be detected shortly after Ca 2+ rises. Several laboratories have 
studied induction of c-fis (6), Egr-I (5), and c-myc (7) mes- 
sages both in normal splenic B ceils and established cell lines. 

The most parallel study to this work was antigen induction 
of c-myc in TNP-specific splenic B cells (7). Although induc- 
tion of immediate-early messages and rise in Ca 2+ levels are 
well documented in vivo and in vitro, whether these events 
contribute to the same signaling pathway remains unknown 
(6). Our results, indicating that both events are dependent 
on structural components of the mlgM C O O H  terminus, 
support the idea of linked pathways. The transient induction 
of immediate-early gene mRNAs is achieved by a fine-tuned 
balance between transcriptional activation (40) and trans- 
lational-linked, rapid degradation of transcribed messages (41). 
The signals generated after crosslinking of the mlgM receptor 
may be differentially contributing to both levels of regula- 
tion, depending on the structure of the mlgM tail. This is 
based on the unexpected downregulation of Egr-I and Jun 
mRNA, which is apparently mediated through the mutant 
receptor in the absence of detectable Ca 2+ flux. 

Recently, several laboratories have identified at least two 
glycosylated and disulfide-linked heterodimers associated with 
mlgM (42-44). Yamanashi et al. (45) coimmunoprecipitated 
a tyrosine kinase, lyn, with mlgM. Our results here and 
previous observations from our own (17) and other (39) labora- 
tories implicate the importance of proper association of the 
mlgM C O O H  terminus with the above-mentioned and other 
as yet unidentified accessory polypeptides and kinases in B 
cell activation. Mutant B cell lines expressing chimeric receptors 
such as the I-Ace should be useful in formally establishing 
the details of these interactions and their consequences on 
signal transduction. 
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