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Proper Authentication of Ancient DNA Is Still Essential
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Santiago-Rodriguez et al. [1] report on the putative gut microbiome and resistome of Inca and
Italian mummies, and find that Italian mummies exhibit higher bacterial diversity compared to the Inca
mummies. However, contaminant taxa in their negative control account for most of the biological signal
observed. In addition, they fail to properly apply field-standard ancient DNA authentication techniques
to their data and self-plagiarize a previously published figure. Poor standards in paleomicrobiological
research are currently plaguing the field, despite numerous warnings [2–4] and reviews [5–8] on
best practice.

DNA contamination from museums, curators, scientists, soil, and even the laboratory can drive
signals present in modern and ancient metagenomics data sets [3,7,9–16]. Therefore, explicit rules
and standards to avoid falsely reporting contaminants in metagenomics datasets have been put
forth [3,4,6–8,17]. These standards typically include sampling and extraction blank controls (e.g., tubes
processed without the addition of biological samples) to monitor contaminant DNA and correctly
attribute its contribution in subsequent analyses. In the study by Santiago-Rodriquez et al. [1],
a non-template or blank control was included in their 16S analysis. However, the authors
failed to explore the contaminant species within this control during their analysis of differences
between Incan and Italian mummies. We explored the taxa present within their blank control
(Supplementary_Dataset_2.txt from their publication) and compared it to those identified within
the mummies. We found that laboratory contaminants present within their blank control are driving
the differences between Incan and Italian mummies (Figure 1). For example, the five most abundant
taxa identified in the Italian mummies (Sphingomonadales, Pseudomonadales, Rhizobiales, Bacillales,
and Clostridiales species) are all found in the blank control. It is also worth noting that these
taxa have previously been identified as common laboratory or reagent contaminants in numerous
studies [3,14,15]. This strongly suggests that the cultural differences reported by the authors are likely
the result of laboratory contamination and calls into question the validity of their subsequent analyses.
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Figure 1. An altered reproduction of Figure 1A from Santiago-Rodriguez et al. [1] where taxa identified 
in the 16S rRNA blank control are identified in the mummy samples by red stars. The highest-abundance 
taxa identified in the 16S rRNA data are also present in the 16S rRNA blank control. 

The authors then attempt to use MapDamage to assess the authenticity of their shotgun 
metagenomic ancient DNA; this tool is widely used within the paleomicrobiological field for detecting 
patterns of cytosine deamination that are characteristic of authentic ancient DNA [18]. Critically, the 
authors did not provide details as to how they ran the analysis; MapDamage calculates the deamination 
rate by comparing a reference genome to the mapped target sequences present in a given biological 
sample (i.e., the reference and target species are typically reported for the analysis). Despite this lack of 
information, the MapDamage plot provided by the authors in their supplementary information (Figure 
2A) is identical to one in a previous publication by the team [4] (Figure 2B), suggesting that the authors 
self-plagiarized this figure and did not in fact run the analysis.  

Figure 1. An altered reproduction of Figure 1A from Santiago-Rodriguez et al. [1] where taxa identified
in the 16S rRNA blank control are identified in the mummy samples by red stars. The highest-abundance
taxa identified in the 16S rRNA data are also present in the 16S rRNA blank control.

The authors then attempt to use MapDamage to assess the authenticity of their shotgun
metagenomic ancient DNA; this tool is widely used within the paleomicrobiological field for detecting
patterns of cytosine deamination that are characteristic of authentic ancient DNA [18]. Critically,
the authors did not provide details as to how they ran the analysis; MapDamage calculates the
deamination rate by comparing a reference genome to the mapped target sequences present in
a given biological sample (i.e., the reference and target species are typically reported for the analysis).
Despite this lack of information, the MapDamage plot provided by the authors in their supplementary
information (Figure 2A) is identical to one in a previous publication by the team [4] (Figure 2B),
suggesting that the authors self-plagiarized this figure and did not in fact run the analysis.
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Figure 2. (A) MapDamage plot provided by the authors in their latest paper [1]. (B) MapDamage plot 
provided by authors in their previous publication [19]. Both plots are identical, and both show the 
absence of damage characteristic of authentic ancient DNA. (C) MapDamage plot obtained by using 
reads aligned from Italian mummy NASD14 from Santiago-Rodriquez et al. [1] against the 
Sphingomonas sp. DC-6 genome (ASM71517v2). (D) Same as (C), except using Vibrio parahaemolyticus 
(ASM19609v1), a taxon not found in the authors’ negative control. The lack of nucleotide 
misincorporation is indicative of modern DNA. 

Despite this, the figure provided also does not support the authenticity of ancient DNA, as the 
expected C to T at the 5’ and G to A substitutions at 3’ ends of the DNA fragments are not present. 
The authors defend their lack of authentic ancient DNA signal by stating: “Damage-based ancient 
DNA authentication tools, such as mapDamage, may be incompatible with ancient microbiome 
studies unless a high sequencing coverage is reached”. However, simulations and empirical data 
show that only a few thousand sequences from the genome of interest are required to assess the 
presence of cytosine deamination [6], and MapDamage has been successfully applied in several 
paleomicrobiological studies [20–23]. To investigate if MapDamage could be appropriately applied 
to the Santiago-Rodriquez et al. data set [1], we downloaded the metagenomic reads from a mummy 
present within their study (NASD14) and identified species present in the sample using MALT and 
MEGAN [24,25] against a reference database containing >50-thousand bacterial and archaeal 
genomes obtained from NCBI Assembly. Similar to the authors’ shotgun results, we identified ≈1.2 
million reads assigned to Sphingomonas sp. DC-6 (Sphingomonadales), and 33,730 reads assigned to 
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Figure 2. (A) MapDamage plot provided by the authors in their latest paper [1]. (B) MapDamage
plot provided by authors in their previous publication [19]. Both plots are identical, and both show
the absence of damage characteristic of authentic ancient DNA. (C) MapDamage plot obtained by
using reads aligned from Italian mummy NASD14 from Santiago-Rodriquez et al. [1] against the
Sphingomonas sp. DC-6 genome (ASM71517v2). (D) Same as (C), except using Vibrio parahaemolyticus
(ASM19609v1), a taxon not found in the authors’ negative control. The lack of nucleotide misincorporation
is indicative of modern DNA.

Despite this, the figure provided also does not support the authenticity of ancient DNA, as the
expected C to T at the 5′ and G to A substitutions at 3′ ends of the DNA fragments are not present.
The authors defend their lack of authentic ancient DNA signal by stating: “Damage-based ancient
DNA authentication tools, such as mapDamage, may be incompatible with ancient microbiome
studies unless a high sequencing coverage is reached”. However, simulations and empirical data
show that only a few thousand sequences from the genome of interest are required to assess the
presence of cytosine deamination [6], and MapDamage has been successfully applied in several
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paleomicrobiological studies [20–23]. To investigate if MapDamage could be appropriately applied to
the Santiago-Rodriquez et al. data set [1], we downloaded the metagenomic reads from a mummy
present within their study (NASD14) and identified species present in the sample using MALT
and MEGAN [24,25] against a reference database containing >50-thousand bacterial and archaeal
genomes obtained from NCBI Assembly. Similar to the authors’ shotgun results, we identified
≈1.2 million reads assigned to Sphingomonas sp. DC-6 (Sphingomonadales), and 33,730 reads assigned
to Vibrio parahaemolyticus (Vibrionales). We then mapped the metagenomic reads against these reference
genomes with the BWA-backtrack (ALN) aligner [26]. The outputs were converted into SAM files
then used as input for MapDamage, comparing the “ancient” Sphingomonas and Vibrio species to their
respective reference genome. The resulting plots (Figure 2C,D) clearly illustrate no characteristic
ancient DNA damage and are as expected for modern, likely contaminant, DNA. Given that
Sphingomonas is one of the most abundant taxa in their data and is a known contaminant species,
our reanalysis further strengthens the likelihood that contaminant DNA is driving their findings.

To conclude, a reanalysis of Santiago-Rodriquez et al.’s [1] findings strongly suggest that
the observed signal is due to laboratory contamination of modern bacterial species. The authors
also failed to compare their data to their extraction blanks controls, did not include shotgun
metagenomic extraction blanks, and did not authenticate their ancient DNA using MapDamage.
Paleomicrobiology is a new and rapidly growing field of research, with little room for plagiarized
figures and blatant disregard for best-practice methods. In light of these findings, we suggest either
heavy corrections or retraction of the article to prevent further erosion of the scientific integrity of
paleomicrobiological research.

Author Contributions: R.E. analyzed the data, created the figures, and wrote the manuscript. L.S.W. provided
feedback on the manuscript.
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