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Chemical and cellular oxidant 
production induced by naphthalene 
secondary organic aerosol (SOA): 
effect of redox-active metals and 
photochemical aging
Wing Y. Tuet1, Yunle Chen2, Shierly Fok1, Dong Gao3, Rodney J. Weber4, Julie A. Champion1 & 
Nga L. Ng1,4

Exposure to air pollution is a leading global health risk. Secondary organic aerosol (SOA) constitute a 
large portion of ambient particulate matter (PM). In this study, the water-soluble oxidative potential 
(OP) determined by dithiothreitol (DTT) consumption and intracellular reactive oxygen and nitrogen 
species (ROS/RNS) production was measured for SOA generated from the photooxidation of 
naphthalene in the presence of iron sulfate and ammonium sulfate seed particles. The measured 
intrinsic OP varied for aerosol formed using different initial naphthalene concentrations, however, no 
trends were observed between OP and bulk aerosol composition or seed type. For all experiments, 
aerosol generated in the presence of iron-containing seed induced higher ROS/RNS production 
compared to that formed in the presence of inorganic seed. This effect was primarily attributed to 
differences in aerosol carbon oxidation state ( )OSc . In the presence of iron, radical concentrations are 
elevated via iron redox cycling, resulting in more oxidized species. An exponential trend was also 
observed between ROS/RNS and ( )OSc  for all naphthalene SOA, regardless of seed type or aerosol 
formation condition. This may have important implications as aerosol have an atmospheric lifetime of a 
week, over which ( )OSc  increases due to continued photochemical aging, potentially resulting in more 
toxic aerosol.

Air pollution exposure ranks among the top ten global human health risks1 with multiple epidemiological stud-
ies reporting associations between various cardiopulmonary health effects, elevated particulate matter (PM) 
concentrations1–8, and particle oxidative potential (OP)9–12. Toxicological studies suggest PM-induced oxidant 
production as a possible mechanism linking PM exposure and observed health effects13–16. Multiple chemical 
and cellular assays have been developed and utilized to measure PM-induced oxidant production. For instance, 
cell-free chemical assays that utilize an antioxidant to simulate biologically relevant redox reactions and ulti-
mately measure the redox potential of PM17,18 and cellular assays that employ a probe capable of reacting with 
reactive oxygen and nitrogen species (ROS/RNS) produced as a result of PM exposure19,20 have been developed. 
Both types of assay have been used in prior studies to elucidate chemical species associated with oxidant produc-
tion9,20–31. Despite these efforts, the specific constituents responsible for the overall health effects induced by PM 
exposure remain unclear as ambient mixtures are complex.

Organic aerosol constitute a significant portion of ambient PM32,33, and multiple field studies have repeat-
edly shown that secondary organic aerosol (SOA, formed from the oxidation of volatile organic compounds in 
the atmosphere) often dominate over aerosol of primary origin (e.g., aerosol emitted directly from combustion 
engines), even in urban centers33–35. While there have been several recent studies regarding the health effects of 
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SOA36–45, there are still important gaps in knowledge that have not been addressed. For instance, organic aerosol 
have a lifetime of approximately one week46; continued photochemical aging can alter the chemical and physical 
properties of aerosol, which may have implications on resulting health effects. These potential effects have not 
been fully explored as the majority of current studies have focused on freshly formed SOA36,45,47–49. In addition, 
the presence of redox-active metals on SOA health effects have not been considered even though laboratory 
studies have shown that the presence of metal-containing seeds influences SOA formation and chemical compo-
sition50–53, and these metals are readily emitted via various processes (e.g., traffic, mechanical processes, combus-
tion)22,54. Furthermore, redox-active metals such as iron may participate in redox cycling, as well as Fenton-like 
reactions55,56. These reactions produce radicals capable of enhancing the degree of oxidation of organic aerosol 
when internally mixed with organic aerosol, resulting in stronger oxidizing agents that may induce more ROS/
RNS production upon cellular exposure49. Depending on the source, iron may exist in either coarse or fine mode, 
with a majority in the coarse mode and a small fraction in the fine mode57–59. As such, there exists some overlap 
between the size distributions of iron and submicron organic aerosol, which is sufficient for iron to serve as a 
catalyst in Fenton-like reactions in some fraction of the organic aerosol.

In the present study, naphthalene photooxidation SOA were generated in the presence of metal-containing 
(iron (II) sulfate, FS) and inorganic (ammonium sulfate, AS) seed. For both seed types, a series of laboratory 
chamber experiments with different initial naphthalene concentrations was conducted to produce aerosol of 
various degrees of oxidation. Multiple samples were also collected from a single experiment to obtain aero-
sol of different photochemical age. Oxidant production was measured using chemical and cellular assays (i.e., 
water-soluble OP as determined by dithiothreitol (DTT) consumption21 and intracellular ROS/RNS production 
as detected using carboxy-H2DCFDA20). Tuet et al.45,49 recently investigated the water-soluble oxidative potential 
and cellular ROS/RNS production for SOA formed from common biogenic and anthropogenic precursors. Here, 
we choose to focus on naphthalene SOA as it was shown to have the highest response among different SOA sys-
tems previously studied in Tuet et al.45,49.

Results and Discussion
Laboratory-generated aerosol.  Experiments were conducted in the Georgia Tech Environmental 
Chamber (GTEC) facility. Typical time series for NO, NO2, O3, gas-phase naphthalene concentrations, and aero-
sol mass concentrations are shown in Fig. S1 for the two seed particles investigated. In both cases, NO decreased 
due to reaction with peroxy radicals (RO2), which are important radical intermediates formed from hydrocarbon 
oxidation, and whose fates affect the oxidation products and SOA formation60,61. Aerosol growth was observed 
shortly following the initiation of photooxidation (i.e., turning on the lights). Most of the hydrocarbon was con-
sumed in two hours and peak aerosol mass was reached. In general, FS seeded experiments (Fig. S1B) yielded less 
aerosol mass compared to AS seeded experiments (Fig. S1A). Previous studies exploring the effect of iron sulfate 
seed on aerosol formation (e.g., α-pinene and toluene photooxidation SOA in the presence and absence of iron 
sulfate seed) have also reported on the decreasing effect of iron sulfate seed on SOA yield, that is less aerosol mass 
was formed in the presence of iron sulfate seed50,51.

Aerosol chemical composition was monitored using a high resolution time-of-flight aerosol mass spectrome-
ter (HR-ToF-AMS, Aerodyne; henceforth referred to as the AMS) for all chamber experiments. The average, 
normalized AMS mass spectra (Fig. S2) are consistent with those reported in previous studies62,63. A fragmenta-
tion pattern characterized by distinct ions at m/z 77, 91, 105, 119, 133, 147, and 160, was observed, which is likely 
representative of phenylalkyl fragments64. Differences in AMS mass spectra between aerosol formed in the pres-
ence of AS and FS seed were observed as well (Figs S3 and S4). Elemental ratios (O:C, H:C, and N:C) of SOA were 
also determined using the AMS, and average aerosol carbon oxidation states (OSc = 2 O:C–H:C)65 of SOA were 
calculated. O:C ratios and OSc were higher for all FS seeded SOA compared to AS seeded SOA (Table S1). This is 
consistent with previous laboratory studies, where the presence of iron sulfate seed resulted in the generation of 
more oxidized aerosol (higher O:C and OSc) due to Fenton-type reactions53. Additionally, for both AS and FS 
seeded SOA, OSc followed a decreasing trend with the mass of organic aerosol formed (ΔMo), which is consistent 
with semi-volatile partitioning66,67 (Fig. S5). Specifically, more SOA was formed in experiments with a higher 
initial naphthalene concentration. With a higher aerosol mass loading, more volatile species (with a lower O:C 
and OSc) will also partition into the particle phase, thus lowering the overall OSc of the aerosol.

Effect of iron seed on cellular ROS/RNS production.  To investigate whether the presence of 
metal-containing seed particles affected SOA toxicity, chemical and cellular oxidant production was measured 
for naphthalene SOA formed in the presence of iron-containing seed vs. inorganic seed (denoted OPseed+SOA or 
ROS/RNSseed+SOA, where seed = FS or AS, where applicable). ROS/RNS production, expressed as the area under 
the dose-response curve (AUC) per mass of SOA (µg) in the filter extract, is shown in Fig. 1, colored by seed type. 
AUC was used as previous drug and aerosol studies have shown that it is the most robust dose-response metric, 
whose informativeness does not rely on the presence of a baseline or maximum response20,68. It should be noted 
that for all experiments, FS seeded SOA exposure resulted in higher ROS/RNS levels compared to AS seeded 
SOA. This observed difference can potentially be attributed to both the seed itself (FS vs. AS) and organic aerosol 
formed in the presence of difference seeds.

The seed effect was explored by exposing cells to pure iron sulfate seed. Exposure to both aerosolized (injected 
into the chamber, collected onto a filter, and extracted into media; see methods section and SI for details on filter 
collection and extraction) and aqueous (seed solution diluted in media) iron sulfate resulted in ROS/RNS levels 
that fall along the same dose-response curve (Fig. S6). This suggests that the aerosolization, collection, and extrac-
tion process does not alter the iron sulfate in a way which changes its ROS/RNS inducing ability. We then use this 
dose-response curve to estimate the ROS/RNS response attributable to the presence of iron sulfate alone (ROS/
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RNSFS) in SOA experiments. For each FS seeded SOA experiment, the seed mass collected onto the filter was 
approximated by fitting a double exponential69 to the seed concentration time series (in the absence of chemical 
reactions, prior to aerosol formation) and integrating the fitted function over the filter collection period (Fig. S7). 
The corresponding ROS/RNSFS response as a result of exposure to this seed mass was then calculated using the 
iron sulfate dose-response curve (Fig. S6). These calculations were only performed for FS seeded SOA as exposure 
to ammonium sulfate seed has previously been shown to induce negligible ROS/RNS response at similar seed 
mass concentrations49. The ROS/RNSFS response based on the determined iron sulfate seed mass accounted for 
about 2–12% of the measured ROS/RNSFS+SOA response. It should be noted that these estimated contributions are 
only simple approximations to provide perspective as concentration addition may not apply for cellular responses. 
Nevertheless, these results are interesting as pure iron sulfate seed induced relatively low ROS/RNS production 
compared to that induced by the collected samples (i.e., ROS/RNSFS  ROS/RNSFS+SOA). This suggests that the 
measured ROS/RNSFS+SOA response may be predominantly attributed to organic components. These results con-
firm the importance of organic species to aerosol health effects, and previous studies on ROS/RNS produced as a 
result of aerosol exposure have also found significant correlations between the concentration of water soluble 
organic carbon (WSOC) and ROS/RNS response27,70–72.

The degree of oxidation is a parameter of interest for organic aerosol, as atmospheric photochemical aging 
occurs over an aerosol’s lifetime, yielding more oxidized species and aerosol with a higher OSc

65. The observed 
difference in ROS/RNS levels between AS and FS seeded SOA is likely an effect of the degree of oxidation, where 
the presence of iron serves to increase the oxidation of species via Fenton-like reactions (Table S1)51,52. In fact, a 
positive exponentially decreasing trend was observed between ROS/RNS levels and OSc of aerosol for all experi-
ments (Fig. 2). These results are consistent with our previous study on the ROS/RNS levels of SOA generated from 
various precursors, where a significant positive correlation was observed between ROS/RNS and OSc

49. Results 
from this study therefore further support the idea that more oxidized products are likely better oxidizing agents 
which can induce higher levels of ROS/RNS. In addition, the observed trend suggests that different seed types do 
not affect the ROS/RNS response as both AS and FS seeded SOA fall on the same ROS/RNS vs OSc curve.

It is also interesting to note that the ROS/RNS levels for filter samples collected over the course of a single 
experiment (Expt. 5) roughly follow the time series for aromatic phenyl and benzyl ions measured by the AMS 
(m/z 77 and 91, respectively, Fig. 3). Previous studies comparing cellular inflammantory responses from naph-
thalene and m-xylene SOA have suggested that aromatic-retaining products may have significant health impli-
cations45,49. While results from this study are not sufficient to conclude causation, these observations along with 
findings from previous studies on the importance of humic-like substances (HULIS)28,30,31 should inspire future 
studies to focus on assessing the health implications of aromatic SOA and determine whether the presence of 
aromaticity directly induces adverse outcomes.

The ROS/RNS levels induced by naphthalene SOA generated under different formation conditions (e.g., RH, 
peroxy radical fate, OH source) have been measured in our previous study49 and are also shown in Fig. 1 for com-
parison. In both the previous and this study, the same cellular assay and analysis method was utilized. However, 
comparing ROS/RNS levels directly between these two studies may not be applicable as there are several differ-
ences between SOA formation condition (e.g., different initial naphthalene concentrations, different relative 
humidities, and different OH radical precursors)49. It is interesting to note that the exponential relationship 
between ROS/RNS and OSc holds for all naphthalene SOA generated under different formation conditions 
(Fig. 2).

Figure 1.  ROS/RNS produced as a result of naphthalene SOA exposure and corresponding ROS/RNS response 
from pure iron sulfate seed. ROS/RNS are expressed as the area under the dose-response curve (AUC). SOA 
were generated from the photooxidation of naphthalene in the presence of different seed particles (ammonium 
sulfate or iron sulfate), OH radical precursor (H2O2), and NO. Data from previous studies, where SOA were 
generated in the presence of ammonium sulfate seed, were included for comparison. Initial hydrocarbon 
concentrations for other experiments are as follows: dry, RO2 + HO2 (178 ppb); humid, RO2 + HO2 (431 ppb); 
and dry, RO2 + NO (146 ppb)45.
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Effect of iron seed on OP.  Intrinsic OP values (per µg) for naphthalene SOA (OPseed+SOA) and pure iron sul-
fate seed (OPFS) are shown in Fig. 4, colored by seed type. For each FS seeded SOA experiment, the contribution 
of seed alone to the overall OPFS+SOA level is relatively low (<20%), which parallels that observed for the ROS/
RNS response. It should be noted that DTT does not respond significantly to iron, and the low OPFS is consistent 
with previous studies, where a low DTT reactivity by iron was observed54. Previous studies have shown that AS 
alone is not redox active, that is OPAS is equivalent to the response of a blank filter within experimental error45. It 
is therefore also interesting to note that OPFS+SOA is not always higher than OPAS+SOA, suggesting that the presence 
of iron seed does not always induce an additive effect. Further studies should explore various effect models for 
OP to investigate additivity.

Overall, there are no apparent trends for the OP values obtained for SOA generated using different initial 
naphthalene concentrations (hence different organic aerosol mass loadings and OSc) or in the presence of differ-
ent seed types. Furthermore, there was no observable relationship between OP and OSc (Fig. S8). While these 
results are in contrast to trends observed for ROS/RNS levels, they are consistent with previous studies on the 
DTT activities of different SOA systems and various ambient PM subtypes23,45,73,74. Tuet et al.45 previously meas-
ured the intrinsic OP of different SOA systems (including naphthalene SOA) and found that while different SOA 
precursors and formation conditions produced SOA of differing OSc, there was no apparent relation between OP 
and OSc. The study also showed that for both laboratory-generated SOA and different organic aerosol sub-

Figure 2.  Exponential trend between ROS/RNS levels and average carbon oxidation state (OSc) for naphthalene 
photooxidation SOA generated in the presence of different seed particles (ammonium sulfate or iron sulfate), 
OH radical precursor (H2O2), and NO. ROS/RNS production are expressed as the area under the dose-response 
curve (AUC). Error bars were determined using the methodolgy outlined in Tuet et al.20. Data from previous 
studies were included for comparison45. OSc ranges for less oxidized oxygenated organic aerosol (LO-OOA) and 
more oxidized OOA (MO-OOA) are shaded for context65.

Figure 3.  Intrinsic OP and ROS/RNS levels for naphthalene photooxidation SOA collected over the course 
of a single experiment (Expt. 5). Time series for AMS m/z 77 and 91, which are likely phenyl and benzyl 
ions, are also shown. SOA was generated in a humid chamber in the presence of ammonium sulfate, OH 
radical precursor (H2O2), and NO. Error bars represent a 15% coefficient of variation for OP21. ROS/RNS 
levels are expressed as the area under the dose-response curve (AUC) with error bars calculated following the 
methodology described in Tuet et al.20.
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types23,73,74 resolved from ambient data, a higher OSc did not correspond to a higher OP. It should be noted that 
these results may be complicated by mixture effects and/or dependent on the PM subtype, as previous studies 
have found that oxidation of quinones, diesel exhaust, or freshly emitted trash-burning aerosol enhances their 
redox activity28,75,76. Nevertheless, results from this study may further highlight the differences between chemical 
and cellular assays. More specifically, it was suggested in a previous study by Tuet et al. that chemical assays, such 
as DTT, may only be sensitive to larger differences (i.e., different SOA precursors rather than different SOA for-
mation conditions), while cellular assays are sensitive to differences arising from different SOA formation condi-
tions as well as SOA precursor49. The lack of correlation between OP and OSc in this study may therefore be a 
result of the fact that all SOA in this study were generated from the same precursor (i.e., naphthalene) under the 
same formation condition (same RH and OH source). The specific oxidants (exogenous vs. endogenous) meas-
ured by each assay may be another potential explanation for the differences observed. DTT is primarily a measure 
of endogenous oxidant production as it is sensitive to redox-active species capable of interacting with 
anti-oxidants and less sensitive to the oxidants themselves (exogenous oxidants, e.g., H2O2). The cellular ROS/
RNS assay also predominantly measures post-exposure endogenous oxidant production since extracellular ROS/
RNS probe is removed after the probe incubation time20. However, while the cellular assay may not directly meas-
ure exogenous oxidants, these species can interact with cells and induce pathways that may produce ROS/RNS. 
Therefore, the cellular assay may contain contributions from both endogenous and exogenous oxidants, while the 
DTT assay is largely a measure of only endogenous oxidants.

Relationship between photochemical aging of aerosol and oxidant production.  As the labora-
tory experiment progressed, OH exposure of aerosol and OSc increased as a result of increased photochemial 
aging. To investigate whether the effects of photochemical aging are comparable to those observed for SOA of 
different OSc (a proxy for aging), multiple filter samples were collected over the course of a single experiment 
(Table 1, repeat of Expt. 5). It should be noted that this aging experiment is an exact repeat of the previous exper-
iment (Expt. 5), with the exception of a longer experimental time and multiple filter sample collections to explore 
changes in OSc associated with photochemical aging. The ROS/RNS levels and OP for these samples are shown in 
Fig. 3. The OP for these three samples are the same within uncertainty, consistent with the hypothesis that the 
DTT assay may only be sensitive to larger differences (such as precursor identity). On the other hand, the ROS/
RNS response followed the same trend as that of OSc. The ROS/RNS response induced by these samples and the 
OSc calculated for each collection period are also shown in Fig. 2 (opened markers) for comparison. These values 
fall within the exponential trend observed between ROS/RNS and OSc for SOA generated from different initial 
hydrocarbon concentrations. This suggests that the proxy for aging (OSc) investigated in this study may be used 
to understand the potential health implications of aged particles for SOA from a single pure compound.

These observations have significant implications for future health studies as atmospheric aging leads to 
increases in aerosol oxidation33,63, which may affect cellular responses. This is important as aerosol have an atmos-
pheric lifetime of about a week, over which these aging processes can occur. If the observed relationship between 
cellular ROS/RNS response and OSc holds for other SOA systems, as well as ambient mixtures, these results may 
lead to ROS/RNS predictions based on more accessible bulk aerosol properties that are readily measured by the 
AMS. These approximations would not require the additional processing (e.g., filter collection and extraction) 
that actual ROS/RNS measurements entail. As an example, the OSc ranges for various organic aerosol subtypes 
resolved from ambient data world-wide, specifically less-oxidized oxygenated organic aerosol (LO-OOA) and 
more-oxidized OOA (MO-OOA), have been measured previously and are shaded in Fig. 2 to provide 

Figure 4.  Intrinsic OP for SOA generated from the photooxidation of naphthalene under various conditions 
and pure iron sulfate seed. SOA from this study was generated in a humid chamber in the presence of different 
seed particles (ammonium sulfate or iron sulfate), OH radical precursor (H2O2), and NO. Data from previous 
studies, where SOA were generated in the presence of ammonium sulfate seed, were included for comparison. 
Initial hydrocarbon concentrations for other experiments are as follows: dry, RO2 + HO2 (178 ppb); humid, 
RO2 + HO2 (431 ppb); and dry, RO2 + NO (146 ppb)45.
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context65,73,74. ROS/RNS levels measured in this study span the shaded regions, and the observed exponential 
trend suggests that exposure to MO-OOA would likely induce more ROS/RNS production compared to 
LO-OOA. This may have important implications as studies have shown that ambient organic aerosol from differ-
ent sources converge towards MO-OOA as they age33,35, and MO-OOA has widespread contributions to organic 
aerosol in both rural and urban locations across different seasons33,35,73,74. Additional studies are required to estab-
lish whether the ROS/RNS and OSc relationship holds for different aerosol systems as previous studies have 
shown that SOA generated from different precursors induce different cellular inflammatory responses49.

Implications.  The intracellular ROS/RNS production and water-soluble OP were measured for naphthalene 
photooxidation SOA formed under humid conditions in the presence of metal-containing and inorganic seed. 
Experiments were conducted using different initial hydrocarbon concentrations to generate aerosol of differing 
mass loadings and degrees of oxidation. Multiple filters were also collected from a single experiment to obtain 
aerosol of different photochemical age. Cellular assay results show that exposure to FS seeded aerosol resulted in 
higher levels of ROS/RNS production compared to AS seeded aerosol. Furthermore, the ROS/RNS response may 
be largely attributed to the organic components rather than the metals portion. This has important implications 
for future studies as organic aerosol constitute a large fraction of ambient fine PM32,33. However, it should be 
noted that possible synergistic and/or antagonistic metal-organic interactions were not explored and only one 
metal species and volatile organic compound (VOC) were investigated in this study. Further studies are necessary 
to determine how metals and organics interact with each other and in the context of biologically-relevant species 
(e.g. proteins, sugars, and lipids present in the alveolar fluid). These interactions between co-exposed species may 
increase or decrease the overall cellular response77–79, and a thorough understanding of these dynamics are nec-
essary to evaluate the health implications of ambient aerosol. Results from this study also highlight the differences 
between chemical and cellular assays. There were no obvious trends between OP values and aerosol bulk compo-
sition meaured by the AMS, suggesting that the DTT assay may only be sensitive to large differences, such as that 
arising from different SOA precursors. The lack of correlation between OP and OSc is consistent with previous 
DTT studies, where a higher OSc did not correspond to a higher OP23,73,74.

An exponential trend was also observed between ROS/RNS levels and OSc for all naphthalene photooxidation 
SOA, including those formed in the presence of different seed particles (AS and FS), those formed under different 
formation conditions (dry vs. humid, RO2 + HO2 vs. RO2 + NO), and those collected at different times over the 
course of a single experiment (different degrees of photochemical aging). There are several important implica-
tions arising from this trend. For one, the trend implies that there is negligible seed effect with respect to ROS/
RNS produced as a result of SOA exposure. The aerosol formed in all experiments fall on the same ROS/RNS vs. 
OSc curve regardless of whether AS or FS seed was used. Hence, the observed difference between AS and FS 
seeded SOA (where all FS seeded SOA induced more ROS/RNS production) is likely an effect of differences in the 
degree of aerosol oxidation resulting from increased free radical production via Fenton-like reactions. The aerosol 
collected at multiple time points over the course of a single experiment (prolonged aging experiment) yield results 
that fall along this curve as well, which suggests that results obtained using OSc (a proxy for aging) may be gener-
alized for photochemical atmospheric aging for this parent VOC and specific metal. Further studies are still 
required to establish whether the observed relationship between ROS/RNS and OSc holds for other aerosol sys-
tems, as only naphthalene photooxidation SOA was investigated in this study. Ambient aerosol are complex mix-
tures formed from multiple precursors and containing a variety of metallic species. These mixtures have not been 
considered in this study, and results may be different due to synergistic and antagonistic mixture effects that have 
yet to be explored. However, if measures of bulk aerosol oxidation state (i.e OSc) are validated with more aerosol 
systems to be used as a proxy for cellular ROS/RNS produced upon aerosol exposure, then the ability to perform 
more bulk aerosol measurements may lead to ROS/RNS predictions in the absence of cellular measurements.

Methods
Naphthalene aerosol generation.  Naphthalene photooxidation SOA (naphthalene + hydroxyl (OH) rad-
ical) was generated under humid conditions in the presence of NO in the Georgia Tech Environmental Chamber 

Experiment Hydrocarbon Seed
Relative humidity [HC]0 [NO]0 [SOA]c

(%) (ppb) (ppb) (µg m−3)
1 naphthalene ASa 51% 32 315 11.7

2 naphthalene FSb 50% 32 303 7.28

3 naphthalene ASa 49% 92 368 66.7

4 naphthalene FSb 48% 84 214 24.0

5d naphthalene ASa 54% 186 344 187

6 naphthalene FSb 52% 182 321 149

7 naphthalene ASa 53% 342 320 348

8 naphthalene FSb 51% 331 295 369

Table 1.  Experimental conditions. aAmmonium sulfate seed (15 mM (NH4)2SO4); bIron sulfate seed (15 mM 
FeSO4); cAverage SOA concentration in the chamber during filter collection; dExperiment was repeated and 
multiple filters were collected over the course of the experiment to investigate the effects of photochemical 
aging.
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(GTEC) facility. Briefly, the facility consists of two 12 m3 TeflonTM chambers suspended inside a temperature-con-
trolled enclosure surrounded by black lights (Sylvania 24922) and natural sunlight fluorescent lamps (Sylvania 
24477)80. Each chamber is equipped with multiple sampling ports for reagent introduction and various gas- and 
aerosol-phase measurements. NO2, NOx, and O3 were monitored using a cavity-attenuated phase shift (CAPS) 
NO2 monitor (Aerodyne), a chemiluminescence NOx monitor (Teledyne 200EU), and an O3 analyzer (Teledyne 
T400), respectively. Hydrocarbon concentration was monitored using a gas chromatography flame ionization 
detector (GC-FID, Agilent 7890 A) and hydroxyl radical concentration was calculated from the hydrocarbon 
decay. Aerosol volume concentrations and size distributions as well as bulk aerosol compositions were measured 
using a scanning mobility particle sizer (SMPS, TSI) and a high resolution time-of-flight aerosol mass spectrom-
eter (HR-ToF-AMS, Aerodyne; henceforth referred to as the AMS), respectively81. AMS data were analyzed using 
data analysis toolkits SQUIRREL (v. 1.57) and PIKA (v. 1.16), while elemental ratios (O:C, H:C, and N:C) were 
determined using the method outlined in Canagaratna et al.82 O:C and H:C ratios were then used to calculate the 
average carbon oxidation state (OSc)65. Finally, temperature and relative humidity (RH) were monitored using a 
hydro-thermometer (Vaisala HMP110).

Experimental conditions, given in Table 1, were designed to probe the effects of metal seed and aerosol chem-
ical composition on OP and intracellular ROS/RNS production. All experiments were performed at ~25 °C 
under humid conditions (RH ~50%). Prior to each experiment, chambers were flushed with pure air and humid-
ified using a bubbler filled with deionized (DI) water. Once the desired humidity was reached, seed aerosol was 
injected by atomizing seed solution (15 mM (NH4)2SO4 for ammonium sulfate (AS) experiments and 15 mM 
FeSO4 for iron sulfate (FS) experiments (Sigma Aldrich)) until the seed concentration inside the chamber was 
approximately 30 µg m−3. Naphthalene was then injected by passing pure air at 5 L min−1 over solid naphthalene 
flakes (99%, Sigma Aldrich)83. NO (500 ppm, Matheson) and OH precursor (H2O2, 50% aqueous solution, Sigma 
Aldrich) were injected afterwards to attain an initial NO concentration of 300 ppb and an H2O2 concentration of 
3 ppm, which yielded OH concentrations on the order of 106–107 molec cm−3. Once all reagent concentrations 
stabilized, UV lights were switched on to initiate photooxidation.

Aerosol collection and extraction.  Aerosol samples were collected at peak growth onto 47 mm TeflonTM 
filters (0.45 µm pore size, Pall Laboratory) for 1.6 hrs at a flow rate of 29 L min−1. The total mass collected on 
each filter was determined by integrating time-dependent SMPS volume concentrations over the filter collec-
tion period and multiplying the integrated value by the total volume of air collected. A density of 1 g cm−3 was 
assumed to facilitate comparison between studies, as SOA density varies with precursor identity and formation 
condition83–88. Background filters containing only seed (AS or FS), OH precursor (H2O2), and NO at experimen-
tal conditions were also collected to account for potential H2O2 uptake onto seed particles since this may affect 
oxidative potential and ROS/RNS measurements. After collection, filters were placed in sterile petri dishes, sealed 
with Parafilm M®, and stored at −20 °C until extraction and analysis21.

Collected filter samples were extracted following the procedure outlined in Fang et al.22 with modifications for 
cellular exposure described in Tuet et al.20. Briefly, filters were submerged in extraction media (DI water for OP 
and cell culture media (RPMI-1640) for ROS/RNS) and sonicated for two 30 min intervals using an Ultrasonic 
Cleanser (VWR International). Post-sonication, sample extracts were filtered using a 0.45 µm polytetrafluoroeth-
ylene (PTFE) syringe filter (Fisherbrand™) to remove insoluble material21 and extracts for cellular exposure were 
supplemented with 10% fetal bovine serum (FBS).

Oxidative potential.  The intrinsic water soluble oxidative potential as measured by DTT (OP) of naph-
thalene aerosol, method blanks, and positive controls (9,10-phenanthraquinone) were determined using 
a semi-automated DTT system, described in detail in Fang et al.21. Briefly, the method consisted of three 
major steps: (1) oxidation of DTT by redox-active species in the extract, (2) reaction of remaining DTT with 
5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) to form 2-nitro-5-mercaptobenzoic acid (TNB), and (3) measure-
ment of TNB at 412 nm.

Intracellular ROS/RNS measurement.  Murine alveolar macrophages (MH-S, ATCC®CRL-2019™) 
were cultured in RPMI-1640 media supplemented with 10% FBS, 1% penicillin-streptomycin, and 50 µM 
β-mercaptoethanol (BME) at 37 °C and 5% CO2. ROS/RNS were detected using the assay described in Tuet 
et al.20. The assay consisted of five steps: pre-treatment of 96-well plates with 10% FBS in phosphate buffered 
saline (PBS), (2) seeding of cells at 2 × 104 cells well−1, (3) incubation of cells with ROS/RNS probe (10 µM, 
carboxy-H2DCFDA, Molecular Probes C-400), (4) exposure of cells to samples and controls for 24 hrs, and (5) 
detection of ROS/RNS using a microplate reader (BioTek Synergy H4, ex: 485 nm, em: 525 nm). Positive controls 
included bacterial cell wall component, lipopolysaccharide (LPS, 1 µg mL−1), H2O2 (100 µM), and reference filter 
extract (10 filter punches mL−1, 1 per filter sample, from various ambient filters collected at the Georgia Tech 
site20; negative controls included blank filter extract and control cells (probe-treated cells exposed to media only, 
no stimulants).

For each filter sample, intracellular ROS/RNS production was measured over ten doses to fully capture 
dose-response relationships (Fig. S9). At each dose, ROS/RNS levels were normalized to basal ROS/RNS pro-
duction89 (i.e. ROS/RNS produced from probe-treated control cells) and corrected for changes in relative cellular 
metabolic activity90 (measured using MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, assay) 
(Biotium) prior to fitting dose-response curves. Area under the dose-response curve (AUC) was then used to rep-
resent ROS/RNS for comparison to chemical oxidative potential as AUC is the most robust metric for comparing 
different PM samples20.
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Cellular metabolic activity.  MTT was used to assess cellular metabolic activity post-exposure. Sample 
extracts were removed after the exposure period (24 hrs), replaced with media containing MTT, and returned to 
the incubator for 4 hrs. Dimethyl sulfoxide was then added to solubilize the insoluble purple salt formed from the 
reduction of the tetrazolium dye and the absorbance at 570 nm was measured using a microplate reader (BioTek 
Synergy H4).

Data availability.  Data are available upon request to the corresponding author (ng@chbe.gatech.edu).
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