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ABSTRACT

The importance of balanced dietary habits, which include appropriate amounts of antioxidants to maintain the immune system, has become
increasingly relevant during the current SARS-CoV-2/COVID-19 pandemic, because viral infections are characterized by high oxidative stress.
Furthermore, the measures taken by governments to control the pandemic have led to increased anxiety, stress, and depression, which affect
physical and mental health, all of which are influenced by nutritional status, diet, and lifestyle. The Mediterranean diet (MD), Atlantic diet (AD),
and the Dietary Guidelines for Americans all provide the essential vitamins, minerals, and phenolic compounds needed to activate enzymatic and
nonenzymatic antioxidant responses. However, viral pandemics such as the current COVID-19 crisis entail high oxidative damage caused by both the
infection and the resultant social stresses within populations, which increases the probability and severity of infection. Balanced dietary patterns
such as the MD and the AD are characterized by the consumption of fruit, vegetables, legumes, olive oil, and whole grains with low intakes of
processed foods and red meat. For a healthy lifestyle in young adults, the MD in particular provides the required amount of antioxidants per day for
vitamins D (0.3–3.8 μg), E (17.0 mg), C (137.2–269.8 mg), A (1273.3 μg), B-12 (1.5–2.0 μg), and folate (455.1–561.3 μg), the minerals Se (120.0 μg),
Zn (11.0 mg), Fe (15.0–18.8 mg), and Mn (5.2–12.5 mg), and polyphenols (1171.00 mg) needed to maintain an active immune response. However,
all of these diets are deficient in the recommended amount of vitamin D (20 μg/d). Therefore, vulnerable populations such as elders and obese
individuals could benefit from antioxidant supplementation to improve their antioxidant response. Although evidence remains scarce, there is some
indication that a healthy diet, along with supplemental antioxidant intake, is beneficial to COVID-19 patients. Adv Nutr 2021;12:670–681.
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Introduction
Recommended, balanced dietary patterns are meant to
provide vital antioxidants for the proper maintenance of the
human organism. The Mediterranean diet (MD) and Atlantic
diet (AD), as well as the American dietary guidelines—
considered in this work as the Dietary Guidelines for
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Americans [American diet (AmD)]—are popular, Western
dietary patterns that provide all of the required macro and
micronutrients needed to keep an organism in optimal
balance and counteract oxidative damage (1–3). Moreover,
the antioxidant intake needed to combat oxidative stress is
meant to be achieved by following these dietary patterns
(4). During a pandemic, these diets can also act to diminish
the negative effects of a viral infection (5). There is growing
evidence suggesting that for certain antioxidants, including
selenium, zinc, and vitamins D and E, their consumption
above the currently recommended levels can improve im-
mune functioning and resistance to infection (6–9).

Throughout history, humans have been subject to pan-
demics caused by pathogenic viruses that were, ultimately,
contained by the immune response; however, a number of
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viral outbreaks such as coxsackievirus, Zika, HIV, Chikun-
gunya, and influenza remain threats. Respiratory infections,
including the 1918 Spanish influenza (H1N1), the swine flu
of 2009, and the current SARS-CoV-2 (COVID-19) (10–12)
illnesses, serve to remind us of our vulnerability to viral
pandemics. As part of reducing these threats, the proper
intake of antioxidants through food plays a fundamental role
in maintaining our immune system in an optimal antioxidant
state (12–14).

High oxidative stress characterizes viral pandemics and
affects the antioxidant response. One characteristic of viral
infections is the tremendous production of reactive oxygen
species (ROS) in both infected and healthy people during
a health crisis (12, 15). Individuals who become ill due to
viral pathogenesis are in constant oxidative stress, which
decreases their likelihood of overcoming the infection (12,
16, 17). Furthermore, the oxidative environments caused
by the socio-psychological stresses to which the individual
is subjected to decreases the antioxidant response in both
healthy and ill people (18). Accordingly, a primary goal
during viral pandemics is to maintain both an oxidative
balance (16) and the protective antioxidant defense system
to reduce the risk of contagion or overcome the infection
(12, 19).

Whether the regular intake of vitamins, minerals, and
phytochemicals such as phenolic compounds that are sup-
plied by a balanced diet is adequate during special oxidative
stress situations such as pandemics remains unclear (20, 21).
Moreover, antioxidant requirements vary according to age,
health status, and stress condition (22–24). Consequently, the
objectives of this review are to discuss the roles of the leading
Western, balanced dietary patterns (MD, AD, and AmD)
and to provide information regarding antioxidant intake and
its suitability given the age group and physical/mental state
of the population. We also discuss the role of antioxidant
supplementation in confronting viral pandemics based on
scientific evidence.

Current Status of Knowledge
Balanced dietary patterns and health
According to the WHO (25), global life expectancy is 72 y,
lower for men (69.8 y) than women (74.2 y). As the body ages,
its nutritional requirements change. This is primarily due
to a decrease in the absorption of both macronutrients and
micronutrients (vitamins, minerals, antioxidants). Antioxi-
dants, in particular, are crucial for producing coenzymes,
enzymes, and catalysts in oxidation-reduction reactions. The
WHO has promoted the concept of a “healthy lifespan”
with the aim to increase health throughout the lifespan
(26), and age-related oxidative stress can be related to age-
related health conditions such as cardiovascular disease,
diabetes, and cancer (27). To address these health problems,
nutritional experts have taken a closer look at different
dietary models such as the AD and MD that have been shown
to improve healthy lifespans. The MD has historically been
associated with health benefits for diseases such as diabetes

and cancer and is based on the traditional cuisine of the
countries of the Mediterranean coastline. It is abundant in
vegetables, fruits, whole grains, legumes, nuts and seeds,
and olive oil. The AD is very similar to the MD and
includes seasonal, local, fresh, and minimally processed
foods (1, 3, 28, 29). Other health organizations such as the
AHA have also established guidelines to promote a healthy,
balanced diet, especially for the American population (2).
One study has suggested that a reduction of 10–50% of total
calorie intake, without causing malnutrition, could modulate
mitochondrial activity and lower ROS production and hence
slow the aging rate and extend lifespan (27).

The MD is abundant in vegetables, fruits, cereals, min-
imally processed legumes, and cold-pressed olive oil as a
primary source of fat, along with seasonal products, honey
consumed several times a week, dairy products, poultry,
fish in moderate amounts, red meat in small quantities, and
moderate wine consumption (28, 29). According to Davis et
al. (29), the MD provides 203.5 ± 66.3 mg/d vitamin C and
∼344.9 mg/d flavonoids, thereby providing a good source of
antioxidants.

The AmD is similar to the MD recommendations; how-
ever, there is a difference in the servings and frequency, which
can be important regarding the quantity of antioxidants
provided by the diet, as shown in Figure 1A, C. Alcohol
recommendation from the AHA is moderate, even for red
wine, and they state that there is no research demonstrating
a cause-effect link between wine and better health, though
some researchers indicate the contrary (2, 30). Currently,
it is unclear whether the associated beneficial effects of red
wine are more a matter of a healthy lifestyle, which includes
physical activity, a large consumption of fruit and vegetables,
and wine in moderation (2, 31).

The AD is closely related to the MD. It encompasses
different regions, lifestyles, climate, and geography and
is principally found among the countries located along
the Atlantic and Mediterranean coasts of Europe (3). As
illustrated in Figure 1A, B, the amount and frequency of
fruits, vegetables, grains, dairy, protein, and fat consumed
is the same for the MD and AD; however, the number
of servings varies in the AD and provides more nutrients.
Another difference concerns a more significant intake of fish
in the AD, and it does not consider wine consumption as part
of the diet (3, 32). The AHA guidelines and dietary patterns
of the AD and MD diets discourage the use of ultraprocessed
foods, refined sugars, and saturated fats, and promote
the consumption of whole grains (rich in dietary fiber)
(2, 3, 28, 29).

Vitamins, minerals, and phytochemicals provided by a
balanced dietary pattern
The adage “let your food be your medicine” describes the
ability of some foods to cure or prevent illnesses. At the end of
the first quarter of the 20th century, these health properties
were associated with vitamins, although the importance of
some minerals for health was already known (33). During the
final decades of the 20th century, the “biological antioxidant
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FIGURE 1 Food pyramids for the Mediterranean diet (A), Atlantic
diet (B), and the Dietary Guidelines for Americans (C). Tsp:
teaspoon. Panels A–C adapted with permission from references 28,
30, and 2, respectively.

theory” claimed that some vitamins (E, D, C, and others)
and minerals (selenium, zinc, and iron) protected the cell
from oxidative damage triggered by infections (34). The
association between oxidative stress, the consumption of
foods rich in phenolic compounds, and the prevention of
some nontransmissible diseases also emerged (35). Aside
from antioxidant properties, the antimicrobial activity of
polyphenols has also been highlighted (36). Currently,
the scientific community has recommended the intake of
vitamins, minerals, and natural compounds from a balanced
diet to design effective antioxidant therapies for COVID-19
patients (15, 37); however, the dietary requirements among
populations can vary.

Vitamins, minerals, and phenolic antioxidants activate the
enzymatic and nonenzymatic antioxidant response. Vitamin
C is perhaps the most water-soluble antioxidant that acts
as a reducing agent and is significantly present in nature,
though synthetic forms are available (38). Vitamin E, a
potent liposoluble antioxidant in the form of α-tocopherol
and tocotrienols, is considered one of the most active
micronutrients that modulates the immune function and
acts directly in protecting cell integrity (39). Vitamin A
and related retinols modify the immune system through the
expression of essential antibodies that eliminate viruses (40).
Specifically, vitamin A has been related to improving lower
respiratory tract infections in children; thus, in developing
countries, its addition to some foods is mandatory (41).
Liposoluble vitamin D also exhibits potent activity against
respiratory diseases. This vitamin can be obtained from
food products such as fish oil and can be synthesized
under exposure to short periods of sunlight (6). Vitamin
D is also involved in the synthesis of the antimicrobial
peptides defensin and cathelicidin, which provide natural
defenses against potential microbiological pathogens (42).
Deficiencies of liposoluble vitamins are a concern because
their absence in the diet can increase the risk of chronic
diseases, autoimmune disorders, and infections (43). Other
vitamins, such as those from the B complex, have also been
suggested to positively affect the immune system, particularly
vitamin B-9 (folate) and vitamin B-12 (cobalamin). Their
deficiency dramatically inhibits the production of nucleic
acids, proteins, and the activity of immune cells and other
metabolic processes responsible for immunity (44, 45).

The enzymatic antioxidant response requires specific met-
als to act as cofactors to initiate protective activity. Superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxi-
dase (GPx) are the key enzymes responsible for the innate
antioxidant response in aerobic organisms (38). Due to the
presence of metals, these enzymes catalyze the breakdown of
ROS and, in most cases, yield water and oxygen, which results
in cell detoxification (46). Zinc, manganese, and copper
modulate the activity of SOD, which converts the superoxide
radical (O2

−•) into hydrogen peroxide (H2O2) and molecular
oxygen (O2) (16). Zinc activates antimicrobial mechanisms
such as polymorphonuclear cells, macrophages, and natural
killer cells (9). To reduce peroxides to water and molecular
oxygen, CAT requires manganese as a cofactor (38). Likewise,
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selenium is crucial for the action of GPx, which breaks down
lipid peroxides into alcohol and peroxides into water (47).

Phenolic compounds form part of the nonenzymatic
antioxidant response. Polyphenols are a broad group of
biologically active molecules present in plants (especially
fruits and vegetables) with health-promoting benefits (48).
The elemental phenolic composition consists of ≥1 aro-
matic ring and a hydroxyl group (OH). However, they
can vary from single molecules to highly hydroxylated and
complex polymers (49). Typically, polyphenols are divided
into flavonoids and nonflavonoids, the former displaying
interesting bioactive effects that rely on the structure-activity
relation (50, 51). Thus, the hydroxylation pattern, that is,
the number and position of OH and CH2 groups and
their conjugation with other phenolic compounds such as
phenolic acids and sugars, influences their antioxidant and
antimicrobial activity (50–53). The reduction of free radicals
by proton donation, the scavenging capacity of ROS, and the
chelating activity of pro-oxidant metals are the antioxidant
mechanisms underlying phenolic compounds and have been
widely documented in previous studies. In addition, national
institutions such as the FDA and Department of Agriculture
in the United States and eBasis in the European Union
have contributed to creating a database of the phenolic
constituents in food and their effects on human well-being
(49).

Viral Pandemics Associated with
Respiratory-like Illnesses
Respiratory-related viral infections have affected the global
population at different times. The oldest documented viral
pandemic associated with a respiratory tract illness killed
>30 million people in ∼6 mo (during 1918 and 1919)
(24). Likewise, from 2009 to late 2010, another outbreak
claimed over 18,449 lives (54). In both instances, influenza
A H1N1, an RNA virus belonging to the Orthomyxoviridae
family, was the underlying cause. Symptoms of these viral
infections varied from fever, gastrointestinal problems, and
cough to severe complications including pneumonia and
acute respiratory distress syndrome leading to organ failure,
encephalopathy, and death (55). In February 2020, the
WHO announced a new threat that was rapidly spreading
across the globe (56, 57). This global emergency was
caused by SARS-CoV-2, an RNA virus belonging to the
Coronaviridae family (56). Previously, viruses from this same
family, namely severe acute respiratory syndrome (SARS)-
CoV and the Middle East respiratory syndrome (MERS)-
CoV, which occurred in 2002 and 2012, respectively, caused
deadly pneumonia outbreaks (56, 58). As with influenza,
SARS-CoV-2 is highly contagious and primarily transmitted
through human-to-human contact. Some of its symptoms
are difficult to distinguish from regular influenza, which
might have contributed to its rapid spread in many countries
(57, 58). To combat this threat, therapeutic drugs, vaccines,
and the development of collective, acquired immunity are
considered as possible solutions (16); however, for all of these
scenarios, their implementation is a race against time (10).

Therefore, one decisive measure that can be taken now is to
stimulate the antioxidant response to reduce risk.

Social oxidative stress during viral pandemics
Stress is an inevitable part of human life and is a biological
and psychological response to specific situations. However,
exposure to prolonged periods of stress can provoke an
adverse effect on mental health and decrease the antioxidant
response (59). Stressful stimuli combined with a weak nutri-
tional profile (e.g., a high fat intake and low antioxidants) can
cause an oxidative imbalance, which manifests as an increase
in the generation of ROS, provoking a burst of oxidative
stress. This oxidative stress can cause oxidative damage to
lipids, proteins, and DNA (17) and lead to alterations that
can affect brain functioning. The brain, in particular, is highly
sensitive to oxidative damage due to its consumption of large
amounts of oxygen and the production of free radicals, which
can raise the risk of mental disorders such as depression,
anxiety, schizophrenia, bipolar disorder, or psychosis (60).
Moreover, Filipović et al. (61) have suggested that stress
can disrupt the redox homeostasis of the organism, thus
diminishing immunity.

As the COVID-19 pandemic advances, governments have
taken restrictive measures such as quarantines and social
distancing to slow the viral spread. However, in managing
a pandemic, one should not ignore the emotional toll that
can produce severe mental health effects. Social isolation can
lead to increased anxiety, boredom, stress, and depression
due to negative emotions such as fear, anger, irritability,
frustration, insomnia, mood disorders, and loneliness (62,
63). Episodes of anxiety and depression can be intensified by
other factors such as fear of being infected, social exclusion,
or stigmatization for having the virus, uncertainty about
employment, and anguish over being separated from family
and friends. For the latter, social networks have played a vital
role and are an invaluable tool that have allowed people to
maintain communication with others. However, studies have
also shown that these social networks can influence people’s
behavior and create a climate of global nervousness due to
rumors and misinformation—something that also occurred
during the Zika and Ebola epidemics (64, 65). Furthermore,
having greater access to news can become overwhelming and,
in some instances, can consist of inaccurate content or fake
news, which can increase negative feelings such as despair,
sadness, and anxiety (64).

Public health specialists have suggested that the COVID-
19 pandemic will generate unparalleled psychological dis-
tress in the global population (66). This idea is supported by
studies on the psychological effects of previous pandemics,
which have not shown encouraging results. The reviews
by Brooks et al. (67) and Shah et al. (68) indicated that
psychological responses to other pandemics and epidemics,
including SARS, H1N1 influenza, MERS, equine influenza,
and Ebola, were associated with a high prevalence of
depressive and posttraumatic stress symptoms. Although
these symptoms can decrease after an outbreak, in some cases
they had effects lasting ≤3 y after the health emergency. In
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the specific case of SARS, there are reports that nearly 18%
of the population in Hong Kong reported symptoms related
to posttraumatic stress, anxiety, and depression (69). Slightly
higher rates have been reported for Toronto, where ∼30%
of individuals had symptoms of posttraumatic stress and de-
pression (70). Regarding the COVID-19 pandemic, current
reports thus far indicate a 7% prevalence of posttraumatic
stress symptoms within the affected population in China
(71).

Therefore, it is essential to emphasize the mental well-
being of a population through the promotion of healthy
lifestyles. One focus could be on the consumption of healthier
foods, because studies have associated psychological disor-
ders with poor nutritional status due to inadequate nutrient
intake (67, 68). There is a connection between the brain and
the gastrointestinal tract, indicating that the composition of
the gut microbiota can positively influence the brain (72).
Moreover, the gastrointestinal microbiota appears to play
an essential role in immune functioning and responding
to stress episodes (73). Gubert et al. (74) have suggested
that diets rich in bioactive compounds such as polyphenols,
vitamins C, E, B-12, and B-9 (folate), carotenoids, and ω-3
fatty acids can modulate the detrimental effects of oxidative
stress. They also suggested that healthy dietary patterns can
increase the availability of macro and micronutrients in the
gut due to changes in the composition and functionality of
gut microbiota, which could reduce the risk of having mental
health issues.

The Impact of a Balanced Diet During the
COVID-19 Pandemic
COVID-19 principally affects the lower respiratory tract and,
compared with SARS and MERS, is less virulent, with the
latest reports indicating that ∼81% of cases present with mild
symptoms and 1.2% are asymptomatic (75). The mortality
rate is also lower compared with MERS (56). However, the
principal concern is the high transmissibility (56). Although
SARS-CoV-2 does not discriminate between populations,
children and young adults (aged 18–30 y) are unlikely to
suffer severe symptoms. In contrast, adult males (average
age 47 y) display a high incidence of serious symptoms.
For the elderly (aged >60 y) and patients with pre-existing
conditions, infection has been shown to be quite severe, with
a high mortality rate (76).

Currently, measures such as social distancing, isolation,
and vigilant hygiene are recommended by the WHO (77).
However, what is the required amount of antioxidants in
a balanced diet to combat oxidative stress in COVID-
19 patients is a question that has yet to be answered.
Currently, antioxidant therapy in noncritical patients consists
primarily of doses of vitamin C, D, and E that exceed
normal intake levels (14, 78, 79). Furthermore, exploratory
recommendations regarding nutritional interventions have
been made that include the use of plant biomolecules such
as polyphenols that were used during past viral epidemics
(11, 15, 37, 80). However, if we consider the oxidative stress
caused by the infection (even if it is asymptomatic) and

the social stresses surrounding the pandemic, one must
consider the following questions: Are traditional balanced
diets adequate? Is our antioxidant status prepared to manage
the stress? How can diets be improved based on age group
and nutritional status?

As shown in Table 1, not all diets provide the recom-
mended amount of vitamin D (20 μg/d). Only the MD
appears to supply nearly all of the antioxidant requirements.
Although it is important to consider that vitamin D can be
synthesized following exposure to the sun, in the context of
COVID-19, sun exposure can be affected by confinement
measures. For the vitamins mentioned above, additional
consumption should be considered. For vitamin C, the diets
are all within the recommended ranges of 100 to 200 mg/d
(103 mg/d for the AmD, 137.2–269.8 mg/d for the MD, and
84–175 mg/d for the AD). For minerals, the 3 diets have a
selenium consumption that exceeds the recommendation of
55 μg/d (81), whereas for zinc, iron, and manganese, the
diets meet the recommended requirements. In the case of
polyphenols, all 3 diets exceed recommendations, although
the AmD delivers the lowest amount of the 3: it contributes
498–662 mg/d (82), whereas the MD and AD have values of
1171 mg/d and 1011–1284 mg/d, respectively (71, 74).

A randomized pilot study with HIV patients was con-
ducted to evaluate the feasibility of the MD to reduce
dyslipidemia and, hence, cardiovascular risk. Findings from
the HIV population could help us better understand the
adequacy of this diet for the broader community (83).
The results indicated that the phytochemicals and nutri-
ents provided by the MD greatly improved systolic blood
pressure compared with the low-calorie diet. Another study
established the relation between microbial agents, including
cytomegalovirus, herpes simplex, hepatitis C virus, and
transmissible spongiform encephalopathies, and obesity. In
that study, the researchers discovered that these viruses
can alter host metabolism, which could then translate into
obesity. The MD was shown to be useful in reducing the risk
of obesity and infection (82).

Although studies have reported the benefits of the MD,
there are no conclusive data on the need to supplement
a balanced diet for either healthy individuals or those at
risk, such as elders, during a complicated episode such as
the current pandemic. Thus far, there have been no reports
regarding the influence of balanced dietary patterns on
COVID-19 patients.

However, there are studies that indicate changes in the
eating habits of different populations during the COVID-19
pandemic. Among these changes there has been an increase
in the consumption of legumes, vegetables, and fruit (84–
86); the WHO recommends consumption of these foods
during quarantine as an important part of a healthy diet.
In particular, studies have reported that the populations of
northern and central Spain and Italy have adhered to the MD
specifically because of its capacity to strengthen the immune
system given the high contributions of micronutrients and
antioxidants the diet provides (85, 86). Similarly, another
important factor observed in these studies is that families
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TABLE 1 Daily antioxidant intakes provided by the Mediterranean, Atlantic, and American (Dietary Guidelines for Americans) diets1

Provided by the balanced diet

Antioxidant Recommended MD AD AmD

Vitamins
D,2 μg/d 20.00 (42) 0.30–3.80 (1) 0.80–3.40 (87) 3.75–7.50 (31)
E, mg/d 15 (88) 17.00 (89) 3.50–11.25 (87) 5.80–7.80 (90)
C, mg/d 100–200 (91) 137.20–269.81 (29) 84–175 (87) 103.00 (31)
A,3 μg/d 300–1300 (92) 1273.3 (93) 1404 (94) 600–770 (95)
B-12, μg/d 0.9–2.8 (92) 1.50–2.00 (96) 2.30–3.70 (87) 1.80–2.80 (97)
Folate, μg/d 150–600 (92) 455.10–561.30 (31) 157–259 (87) 190.00 (98)

Minerals
Se, μg/d 55 (81) 120.00 (4) 26.40–59.80 (30) 93–134 (99)
Zn, mg/d 8–11 (97) 11.00 (89) 7.98–13.30 (87) 9.60 (31, 100)
Fe, mg/d 8–18 (97) 15.00–18.00 (89) 10.30–14.90 (87) 15.30–15.50 (101)
Mn, mg/d 1.60–2.30 (97) 5.21–12.48 (102) 3.00 (103) 2.80 (31)

Polyphenols, mg/d 396–593 (104)4 1171.00 (82) 1011–1284 (105) 498–662 (106)

1Numbers in parentheses denote references. AD, Atlantic diet; AmD, American diet; MD, Mediterranean diet.
2As cholecalciferol, 1 μg cholecalciferol = 40 IU vitamin D, assuming minimal sunlight exposure (107).
3RAE (retinol activity equivalents) = 1 μg retinol, 12 μg β-carotene, 24 μg α-carotene, or 24 μg β-cryptoxanthin. The RAE for dietary provitamin A carotenoid is 2-fold greater
than retinol equivalents (REs), whereas the RAE for preformed vitamin A is the same as RE (107).
4Recommendation to favor the immune system through gut microbiota.

have had more time to cook, which might have improved
diets in general (108). However, a study in Spain showed an
increase of 539 kcal more than the recommended amount
during confinement (109). This increase was related to a
higher intake of snacks such as chips or cookies (110),
sugary drinks (84), fried foods (111), and sweets (86). This
increased consumption of unhealthy, comfort foods has
likely helped to reduce stress and boredom caused by the
pandemic (108).

Oxidative Stress in Viral Infections and the Role
of Dietary Antioxidants
The enzymatic and nonenzymatic actors acting against
oxidative stress boost the immune response during viral
infections. The imbalance between oxidant production and
antioxidant defenses determines the oxidative damage, in-
cluding lipid peroxidation and DNA oxidation, leading to
ROS production and inflammation via IL-6 production,
that occurs during viral infections, such as COVID-19 (17,
112). In this sense, the respiratory viral infections have
been associated with inhibition of the master redox-sensitive
transcription factor nuclear factor erythroid 2–related factor
2 (NRF2) which is an emergent regulator of cellular resistance
to oxidants. In fact, patients with COVID-19 have revealed
high neutrophil infiltration in pulmonary capillaries that can
result in exacerbated ROS release, and in the worst scenarios
lead to RBC dysfunction, thrombosis, and alveolar damage
(Figure 2) (113, 114) The deregulation of redox balance can
have a more pronounced impact on vulnerable populations,
namely those with a poor diet, obesity, or noncommunicable
diseases (diabetes, cardiovascular diseases) (115). Thus,
Laforge et al. (113) recently suggested the increment of
free radical scavengers as a beneficial strategy against the
aforementioned pathological responses.

The promising free radical scavengers are the dietary
antioxidants, and several studies in vitro and in vivo, and
epidemiological evidence have suggested the importance
of nutritional status in viral infections. Deficiencies in
selenium and vitamin E in the diet have been shown to
increase virulence in viral infections, which has led to
increased severity (12, 13). Similarly, studies performed
under controlled conditions using mouse models have eval-
uated coxsackievirus infection that induced myocarditis in
2 mouse groups: 1 that was deficient in selenium and vitamin
E and 1 that received the recommended amounts. The
results demonstrated that the subsequent pathologies were
significantly higher in the undernourished mice. Overall, it
was shown that virulence could be dramatically increased
if antioxidant intake was inadequate. Similarly, there is
in vitro evidence indicating that selenium and vitamin E
are more effective in protecting Jurkat cell cultures than
other antioxidants such as vitamin C, phenolics, glutathione,
and N-acetylcysteine against ROS and lipid peroxidation
by assisting in performance of detoxifying enzymes (47).
Moreover, recently a combination of antioxidants has been
purposed as a therapeutic to be used to target neutrophils
in patients with severe COVID-19 (112, 113). In addition,
Sgarbanti et al. (16) reported that ROS oxidized vitamin
E, decreasing its activity. Thus, combining vitamin E with
other antioxidants, namely vitamin C, protects vitamin
activity. Moreover, epidemiological reviews discussing the
importance of vitamins in viral respiratory diseases have
highlighted the relevance of micronutrients in overcoming
viral infections and other health conditions (41, 42, 116).

Multiple reviews have also focused on the effect of tea
catechins concentrated in green tea and the oxidized tea
flavins from black tea on antiviral and anti-inflammatory
activities (117–119). The mechanism and characteristics
of phenolic compounds to fight viral infections and their
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FIGURE 2 SARS-CoV-2 infection can lead to neutrophilia-induced ROS release. A) In not at-risk individuals, an excess of reactive oxygen
species (ROS) is counterbalanced by an increase in antioxidant defenses. (B) In subjects with impaired redox balance, ROS production is
not properly controlled, leading to RBC membrane peroxidation, which in turn perpetuates neutrophil activation. Excessive oxidative
stress might be responsible for the alveolar damage, thrombosis, and RBC dysregulation seen in COVID-19. Antioxidants and elastase
inhibitors could have therapeutic potential. Reprinted by permission from reference 113.

potential to be used as emerging therapeutic drugs have been
reviewed (120, 121) and compared with commonly used
antivirals (16, 55). Although phenolic compounds trigger the
immune response, either by reducing ROS, activating enzy-
matic responses, or inactivating pathogens, the mechanism of
absorption and the mode of action in human plasma remains
unclear (21). Nonetheless, recent findings have suggested
that phenolics affect immune functioning via microbiota
modulation (122, 123). Polyphenols in the colon undergo
several chemical reactions, including hydrolysis, reduction,
decarboxylation, demethylation, and dehydroxylation, which
modify their structure; hence, their bioactivity and the
microbial composition in the intestine are altered (124).
Furthermore, and in agreement with recent reviews (122,
104), a meta-analysis indicated that immunomodulatory
bacteria, for example, Lactobacillus, Bifidobacterium, and
Clostridium species, were stimulated at levels of phenolic
intake of 396 mg/d, 540 mg/d, and 593 mg/d, respectively
(104). However, phenolic concentrations outside these ranges
did not lead to adverse effects on the microbiota.

Reinforced Balanced Diets, Aging, and Physical
and Mental Status
Supplementation has been shown to improve health status
synergistically with a balanced diet (125). For example, zinc
plays an essetntial role in human health. In the case of
individuals with zinc deficiency, supplementation improves
the antiviral response and, in healthy individuals, helps to

inhibit viral replication or the symptoms it causes (126).
A meta-analysis by Wang et al. (127) found that zinc
supplementation reduced episodes of the common cold by
≤53% in healthy children aged <10 y. This supplementation
can also significantly reduce the duration of illness in
cases of pneumonia (128). Similarly, Shaker et al. (129)
have suggested that zinc or concurrent zinc and vitamin A
therapy assist in fighting acute upper respiratory infections by
improving the immune status in children aged between 2 and
12 y. Single supplementation of zinc improved the respiratory
infections. Kurugöl et al. (130) and Singh et al. (131) have
demonstrated that intake >15 mg/d reduced the duration
of cold symptoms in children and healthy individuals,
respectively. In contrast, Wang et al. (127) indicated that
administering zinc during an infection could create a mi-
croenvironment that is more favorable for pathogen growth,
and excessive zinc intake over prolonged periods could cause
toxicity and diminished copper absorption (132). Regarding
selenium supplementation, Rayman (99) and Broome et al.
(133) have suggested that selenium improves the immune
response to viruses in individuals with deficiencies and has an
antiviral effect. In the Broome et al. study (133), clinical trials
showed a selenium intake between 50 μg/d and 100 μg/d
in adults in the United Kingdom eliminated viruses more
rapidly than in a placebo group. Steinbrenner et al. (134)
also reviewed supplementation with selenium ≤200 μg/d
and found it could be used as an adjuvant therapy in the
treatment of type A influenza virus. Moreover, asthmatic
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adults displayed clinical improvement upon supplementation
with selenium (135). Regarding iron intake, Richard et al.
(136) and Gera and Sachdev (137) clinically investigated and
systematically reviewed the idea that iron supplementation
reduced the risk of respiratory infection in children. The first
authors indicated that in children in Peru aged 0.5–15 y the
combination of iron and zinc provided protection against
malaria. The latter authors systematically reviewed the oral or
parenteral iron supplementation or fortified formula milk or
cereals, and indicated a positive effect in reducing individual
illnesses, including respiratory tract infection, although a
risk of diarrhea was considered. Additionally, a literature
review conducted by Maggini et al. (138) has suggested that
iron can enhance or protect individuals from infection by
bacteria and viruses, with its action depending on the level of
intake.

For phenolic content, especially the catechins from tea, it
has been observed that the equivalent of 10 cups (250 mL)/d
(100 mg epigallocatechin-3-gallate per cup) had a posi-
tive effect in adults with influenza (118, 139). Likewise,
supplementation with encapsulated juices from fruits and
vegetables was shown to reduce the incidence of the common
cold in 20% of adults (140).

Additional factors to consider regarding antioxidant
intake for nutritional interventions during viral pandemics
are age, and physical and psychological variables. Aside
from nutrition, aging is a factor that influences antioxidant
intake and the latter should be increased over time (141).
Immunosenescence is the loss of the capacity of the immune
system to effectively protect the organism and affects the
ability of the elderly to overcome respiratory viral infec-
tions. Accordingly, an increase in antioxidant consumption
has been shown to decrease the morbidity and mortality
of this age group (141). In one study, influenza-infected
mice with increased vitamin E intake (500 mg/kg) were
able to significantly reduce their viral titers in the older
group whereas little change was detected in the younger
group (39). Likewise, in humans, it has been observed that
supplementation with antioxidants positively improves the
reaction against viral infections in the very young and elderly;
however, in young adults no significant results have been
observed (125, 45). A meta-analysis by Martineau et al. (116),
demonstrated that vitamin D supplementation in humans
(from 0 to 93 y of age) in daily doses <800 IU/d, 800–
1999 IU/d, and ≥2000 IU/d resulted in reduced risk of
acute respiratory tract infections, and the authors suggested
that dietary supplementation should be adopted. For vitamin
C, a study conducted in an elderly population found that
consumption of 121 ± 54 mg/d and 118 ± 34 mg/d
for men and women, respectively, decreased the incidence
of influenza (87). In general, vitamin C supplementation
above dietary recommendations decreases the incidence and
negative impact of the symptoms during viral infections in
both animal models and humans (6, 39, 125, 141).

A review has reported that obese (BMI ≥30 kg/m2)
individuals need an antioxidant intake that is 2–3 times
greater than that needed by nonobese individuals (43). If

we consider the obese to be a particularly high-risk group
during the COVID-19 pandemic, it could be due to their
poor antioxidant status (142).

In regard to psychological status, in a study by Godos et
al. (143), foods rich in phenolic compounds from the MD
were provided to depressed adults. They reported that intake
phenolic acids and flavonoids, especially anthocyanins, were
inversely associated with depression.

Despite the lack of information regarding nutritional in-
terventions and dietary supplementation during the COVID-
19 pandemic, some authors have highlighted their impor-
tance. For instance, the recovery and mortality rates of
COVID-19 patients in 2 cities in Wuhan, China—one with
a high selenium intake from diet (3.13 ± 1.91 mg/kg for
females and 2.21 ± 1.14 mg/kg for males) and other with low
rates (0.5 mg/kg)—were investigated. The results indicated
that the recovery rate was higher and the mortality rate lower
(P < 0.0001) in the high selenium–intake city in comparison
to the low selenium–intake city (144). In another study
investigating the efficacy of antioxidant supplementation in
COVID-19 patients, 2840 IU vitamin A, 1.2 mg β-carotene,
205 mg vitamin C, 75 IU vitamin E, 18 μg selenium, and
5.7 mg zinc were administered daily. Results from this study
are expected to be obtained at the end of 2020 (145). Similarly,
Caccialanza et al. (146) provided 25-hydroxyvitamin D
[25(OH)D] to noncritical COVID-19 patients if they were
shown to be deficient. They adjusted the concentration of
vitamin D in the blood with an intake of 50,000 UI/wk if
25(OH)D was <20 ng/mL, and an intake of 25,000 UI/wk
if 25(OH)D was ≥20 and <30 ng/mL.

Others authors have reported similar supplementations
to treat COVID-19 patients, with 24 g vitamin C (78),
200 g zinc (79), and 200,000–300,000 IU vitamin D (57)
per day, which were observed to be effective. In regard
to phenolic compound intake, a systematic review of the
role of flavonoids against COVID-19 (147) found that
these phytochemicals inhibited the viral infective cycle by
deactivating the involved proteins. Thus, they are capable
of synergistically acting with others drugs against COVID-
19. Although this is the first study, to the best of our
knowledge, comparing the antioxidant value of principal
Western dietary patterns, others authors have suggested
nutritional interventions and antioxidant supplementation
during the current COVID-19 crisis, and perhaps for future
pandemics (147–149).

Conclusions
The current SARS-CoV-2/COVID-19 pandemic has caused
severe infections and social disruptions that can result in high
oxidative stress among populations. High ROS production
can lead to decreased immunity in the organism and,
thus, increased vulnerability to viral infections. To fight
this imbalance, obtaining natural antioxidants from food
is crucial. Usually, a traditional, balanced diet is meant to
provide all of the nutritional requirements and antioxidants
needed to maintain well-functioning antioxidant enzymatic
and nonenzymatic responses that support the immune
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system. In particular, the MD has been shown to contain
most of the essential micronutrients and phenolics required
for normal functioning. However, the requirements for
antioxidant intake, especially among high-risk populations,
are different. Evidence suggests that supplementation with
minerals, vitamins, and phenolics has favorable results,
especially in vulnerable adults, the obese, and individuals
with depression. The effects of high oxidative environments
resulting from social distress during a pandemic have been
poorly considered. In general, studies linking dietary patterns
and pandemics are scarce. Consequently, it is essential to
research the effects of a balanced and supplemented diet on
the physiological and psychological well-being of individuals.
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