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Abstract  
The hippocampus is a brain region responsible for learning and memory functions. The purpose of 

this study was to investigate the effects of low-intensity exercise and bright light exposure on 

neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male 

Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups 

(n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per 

week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per 

week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were 

subjected to treadmill exercise in combination with bright light exposure, and the control group rats 

remained sedentary over a 4-week period. Compared with the control group, there was a significant 

increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and 

exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat 

hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in 

the control group. Interestingly, there was no significant difference in brain-derived neurotrophic 

factor expression between the control group and exercise + light group. These results indicate that 

low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed 

of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces 

positive biochemical changes in the brain. In view of these findings, we propose that moderate 

exercise or exposure to sunlight during childhood can be beneficial for neural development. 
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Research Highlights 

(1) This study was designed to reveal whether neurogenesis occurs in the hippocampus throughout 

the lifespan.  

(2) The results indicate that low-intensity exercise or exposure to bright light increases 

neurogenesis in the hippocampal dentate gyrus of adult rats and the combined treatment does not 

have an additive effect.  

(3) Low-intensity exercise or exposure to bright light increases hippocampal brain-derived 

neurotrophic factor expression and the combined treatment does not have an additive effect.  

(4) The results suggest that children and elderly individuals should be continuously encouraged to 

perform appropriate outdoor exercise during the daytime to promote neural development and 

improve learning and memory abilities. 
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INTRODUCTION 

    

The mammalian brain produces neuronal precursor cells 

throughout development
[1-3]

. Neurogenesis occurs in the 

hippocampus during both periods of neuron generation 

and after active growth, and the hippocampus is critically 

involved in learning and the formation of memories
[4-5]

. 

 

Neurogenesis occurs in the subgranular zone of 

hippocampal dentate gyrus where the hippocampus 

induces cellular responses to external stimulation, and 

repeated responses plays an important role in learning 

and narrative and spatial memory
[6-9]

. Newly generated 

neurons provide the foundation for structural plasticity in 

the hippocampus by forming new synapses in the 

existing hippocampal neuronal circuit through generation 

of axons and neurites
[10]

. Thus, the generation and 

reduction of neurons is closely related to hippocampal 

functions, and it is causally associated with exercise 

physiology. Indeed, effects of exercise on neurogenesis 

have been studied extensively
[11-16]

. 

 

Exercise is known to efficiently enhance neurogenesis 

through induction of neural stem cell proliferation in the 

hippocampus
[17-18]

. In a previous study, van Praag et al
 [18]

 

showed that voluntary wheel running in experimental 

mice promotes cellular proliferation and survival. 

Consistent with this finding, Trejo et al 
[17]

 reported that 

forced treadmill running stimulates cell proliferation in the 

hippocampal dentate gyrus of rats. Another study 

revealed that appropriate aerobic exercise increases 

human recognition and memory
[19]

, whereas Blumenthal 

et al 
[20]

 reported that exercise induces physiological 

stability. These studies collectively indicate that exercise 

improves hippocampal functions via induction of 

neurogenesis, and neurogenesis in the hippocampal 

dentate gyrus is strongly related to learning and memory. 

 

At present, children and adolescents often lack sufficient 

physical activity, and exposure to sunlight is limited by 

reduced outdoor activities. In addition, some students 

tend to prefer indoor activities to outdoor activities 

because they fear skin aging or dark skin colorations 

induced by exposure to sunlight. Sunlight deficiency 

triggers numerous diseases, including depression, 

insomnia, and vitamin D deficiency syndrome
[21-25]

. Light 

stimulates the retina, and is delivered to and recognized 

by the pineal gland through the retino-hypothalamic tract, 

which in turn controls the secretion of melatonin and 

serotonin. In this process, light enters the brain through 

the eyes and corrects abnormal symptoms by controlling 

the biochemical actions and physiology of the brain
[26]

, 

subsequently influencing emotional and behavioral 

functions through effects on neurotransmitters that 

participate in biochemical activity. Since light exposure 

can influence brain functions, many studies have been 

conducted on bright light therapy as an intervention for 

excited behavior and somnipathy in aged people 

suffering from dementia
[27-29]

. 

 

Brain-derived neurotrophic factor, the most abundant 

neurotrophic factor present in diverse areas of the brain, 

is critical for the growth and development of neurons as 

well as for neuroplasticity
[30]

. It improves neuronal 

survival by increasing resistance to nerve damage. 

Notably, brain-derived neurotrophic factor manifested in 

the hippocampus is known to control the generation and 

survival of neurons
[31]

. It would therefore be of interest to 

establish whether brain-derived neurotrophic factor is 

regulated by exercise or light exposure and plays a role 

in hippocampal neurogenesis. 

 

The theory that exercise or light exposure improves brain 

function is well accepted. However, the majority of 

research to date has analyzed the effects of exercise and 

light therapy separately, and few studies have attempted 

to determine the effects of a combination of exercise and 

light exposure. However, some previous studies have 

shown positive effects of a combination of exercise and 

light exposure
[32-35]

. Therefore, we believe that exercise 

under sunlight may improve brain functions in childhood. 

Accordingly, in this study, we examined the effects of 

low-intensity treadmill exercise and bright light exposure 

over a 4-week period on neurogenesis and brain-derived 

neurotrophic factor expression in the brains of male 

Sprague-Dawley rats.   

 

 

RESULTS 

 

Quantitative analysis of experimental animals 

Thirty-six rats were randomly divided into control, 

exercise, light, and exercise + light groups (n = 9 per 

group). The rats in the exercise group were subjected to 

treadmill exercise (5 days per week, 30 minutes per day, 

over a 4-week period), the light group rats were 

subjected to bright light exposure (5 days per week, 30 

minutes per day, 10 000 lx, over a 4-week period), the 

exercise + light group rats were subjected to treadmill 

exercise in combination with bright light exposure, and 

the control group rats remained sedentary over a 4-week 

period. Four rats per group were sacrificed for 

immunohistochemistry and five rats per group were 
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sacrificed for immunoblotting. 

 

Neurogenesis in the hippocampal dentate gyrus 

Immunohistochemistry was performed to detect 

5-bromo-2’-deoxyuridine (BrdU)-positive cells in the 

hippocampal dentate gyrus. Typical BrdU-positive cells in 

each group are shown in Figure 1A. One-way analysis of 

variance and t-tests showed that neurogenesis in the 

hippocampal dentate gyrus was significantly higher in the 

exercise, light, and exercise + light groups compared 

with the control group (P < 0.001; Table 1). However, 

one-way analysis of variance showed no significant 

differences among the exercise, light, and exercise + 

light groups (Figure 1B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain-derived neurotrophic factor expression in the 

hippocampus 

Brain-derived neurotrophic factor protein expression in 

the hippocampus of rats from each group was 

assessed using western blot analysis (Figure 2A). 

Table 2 shows the results of one-way analysis of 

variance and t-tests. One-way analysis of variance 

showed significant differences only between the control 

and light groups (P < 0.01). However, t-tests showed 

that brain-derived neurotrophic factor expression in the 

hippocampus was significantly higher in the exercise 

group and light group compared with the control group 

(P < 0.01, P < 0.05). Interestingly, there were no 

significant differences in brain-derived neurotrophic 

factor expression between the control and exercise + 

light groups (Figure 2B). 

 

 

DISCUSSION 

 

The effects of exercise on the generation and pruning 

of neurons in the brain are well accepted
[4, 36-41]

. In 

addition, exercise has been shown to upregulate 

brain-derived neurotrophic factor protein and mRNA 

expression in hippocampal tissue
[13, 42-46]

. It has been 

also reported that neurogenesis in the hippocampal 

dentate gyrus is affected by diverse factors, including 

exercise, learning, and enriched environments
[18, 47-49]

. 

In mice administered BrdU, van Praag et al 
[18]

 

reported a survival rate of newly generated neurons in 

animals subjected to 4 weeks of running exercise 

twice that of animals in a non-exercise group. Also, it 

has been reported that the survival rate of proliferated 

cells in animals allowed to exercise is higher than that 

in a control group
[50]

. In the current study, compared 

with the control group, the number of BrdU-positive 

cells and neurogenesis were higher in the exercise, 

light, and exercise + light groups compared with the 

control group. The number of BrdU-positive cells was 

1.5 times higher in the exercise, light, and exercise + 

light groups, which is consistent with a previous 

study
[51]

. In combination with findings that 

neurogenesis can be significantly increased by 

exercise in both healthy adults and the aged
[51]

, our 

results clearly demonstrate that exercise is an 

important factor in neurogenesis. However, although 

exercise and/or light exposure clearly induce 

neurogenesis in the hippocampal dentate gyrus, 

combined treatment does not appear to have an 

additive effect. Although exercise is a potent stimulator 

of hippocampal neurogenesis
[16, 52]

, that is only true 

with voluntary exercise. Also, bright light may be less 

effective in nocturnal than diurnal animals. Therefore, 

additive effects of combined treatment may depend on 

the species or precise procedures used. 

Figure 1  Effects of low-intensity treadmill exercise or 
bright light exposure on neurogenesis in the hippocampal 
dentate gyrus (immunohistochemistry).  

(A) Photomicrographs of 5-bromo-2’-deoxyuridine 
(BrdU)-positive cells in the hippocampal dentate gyrus 
(3,3'-diaminobenzidine stained with anti-BrdU). 

Arrowheads show BrdU-positive cells in the hippocampal 
dentate gyrus. Scale bars: 200 μm for upper panel 
photomicrographs, and 100 μm for the lower panel 

photomicrographs. Upper panel photomicrographs were 
taken at 10 ×, and lower panel photomicrographs at 40 ×.  

(B) Analysis of BrdU-positive cells in the hippocampal 
dentate gyrus(/mm2). Four weeks of low-intensity treadmill 

exercise and bright light exposure induced hippocampal 
neurogenesis. The data are presented as mean ± SEM 
with four rats in each group. aP < 0.001, vs. control group 

(CG)(one-way analysis of variance followed by t-tests). 
However, one-way analysis of variance showed no 
significant differences among the exercise group (EG), 

light group (LG), and exercise + light group (ELG). Multiple 
comparisons were performed with Scheffe’s method. 

a 

a 
a 

A 

B 
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Griesbach and colleagues
[53]

 reported that voluntary 

wheel exercise after brain damage alleviates impaired 

recognition abilities through upregulation of hippocampal 

brain-derived neurotrophic factor protein expression. 

Many other studies have shown that exercise improves 

brain functions such as learning, memory, and 

recognition abilities and increases neurogenesis and 

expression of neuron growth factor
[54-57]

. We found that 

brain-derived neurotrophic factor expression was 

significantly increased by exercise and light, as observed 

on a western blot analysis. However, there was no 

significant effect of a combination of exercise + light. 

Bright light exposure therapy has been shown to 

effectively reduce depression and anxiety in humans. In 

fact, infrared light may be as effective as anti-depressant 

or anti-anxiety drugs
[58]

. It has been suggested that 

infrared light is involved in hippocampal neurogenesis. 

However, we did not find any additive effects of 

combined treatment with exercise and bright light on 

neurogenesis and brain-derived neurotrophic factor 

expression. Follow-up studies are thus necessary to 

determine whether the effects of high-intensity light 

exposure offset those of exercise in rats, which are 

nocturnal animals. Rats in the light group were allowed to 

rest during the light exposure whereas those in the 

exercise + light group were forced to exercise. Therefore, 

the use of forced exercise may have attenuated the 

effects of the light exposure, and diurnal exercise under 

natural light may have been more effective. 

 

In summary, low-intensity exercise and bright light 

separately affect neurogenesis in the hippocampus, but 

their combination has no additive effects on neuron 

generation. Moreover, both exercise and bright light 

induce positive biochemical changes in the brain. 

Accordingly, we suggest that children should be 

continuously encouraged to perform appropriate 

exercise and exposed to natural light by avoiding 

enclosed and dimly lit spaces, with the expectation that 

this will improve their learning and memory abilities. 

 

 

 

 

 

 

 

 

 

 

Table 1  Immunohistochemical results of neurogenesis in the hippocampal dentate gyrus using analysis of variance and t-tests  
 

Group Mean±SEM F P Post-hoc t-test t P 

CG 48.50±3.29 24.544 0.000 CG < EG, LG, 

ELG 

CG&EG 

CG&LG 

 CG&ELG 

–6.310 

–9.120 

–6.107 

0.000 

0.000 

0.000 

EG 80.50±3.86 

LG 93.13±3.62 

ELG 83.75±4.74 

 
CG: Control group; EG: exercise group; LG: light group; ELG: exercise + light group. 

Figure 2  Effects of low-intensity treadmill exercise and/or 
bright light on brain-derived neurotrophic factor (BDNF) 
protein levels in the hippocampus.  

(A) BDNF expression was assessed using western blot 

analysis. Western blot analysis was performed using 
sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis.  

(B) All data are presented as mean ± SEM with five rats in 
each group. aP < 0.05, bP < 0.01, vs. control group (CG; 
one-way analysis of variance followed by t-tests). BDNF 
expression was slightly, but not significantly, increased in 

the exercise + light group (ELG) compared with the control 
group (CG). 

EG: Exercise group. 

A 

B 

a 

b 

Group Mean±SEM F P Post-hoc t-tests t P 

CG 48.50±3.29 4.515 0.009 CG < LG CG&EG 

CG&LG 

 CG&ELG 

–3.567 

–2.672 

–1.001 

0.002 

0.023 

0.325 

EG 80.50±3.86 

LG 93.13±3.62 

ELG 83.75±4.74 

 

Table 2  Western blot results of brain-derived neurotrophic factor expression in the hippocampus using one-way analysis of 

variance and t-tests  
 

CG: Control group; EG: exercise group; LG: light group; ELG: exercise + light group. 

BDNF (14 kDa) 

α-tubulin (55 kDa) 
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MATERIALS AND METHODS 

 

Design 

A randomized, controlled animal study. 

 

Time and setting 

This experiment was performed at the Open Animal 

Laboratory, Gyeongsang National University, Republic of 

Korea from June to October in 2011. 

 

Materials 

Male Sprague-Dawley rats, weighing 160  10 g, aged 5 

weeks, were obtained from a commercial breeder 

(KOATECH, Gyeonggi, Republic of Korea). Experimental 

procedures were performed in accordance with the 

animal care guidelines of National Institutes of Health 

(NIH). Animals were housed under controlled 

temperature (22  2C) conditions with an alternating 

12-hour light/dark cycle, and provided food and water ad 

libitum. 

 

Methods 

BrdU injections 

BrdU injections were performed as described previously 

with some modifications
[59-61]

. After 1 week of 

environment adaptation, BrdU (Sigma, St. Louis, MO, 

USA) was intraperitoneally administered to all rats    

(50 mg/kg) once a day over 5 consecutive days each 

week for 4 weeks. The BrdU was administered 60 

minutes before the treadmill exercise, light exposure, or 

their combination. 

 

Treadmill exercise regimen 

Animals from the exercise and exercise + light groups 

were subjected to treadmill (PARK TECH, Daegu, 

Republic of Korea) exercise for 30 minutes once a day 

over 5 consecutive days each week for 4 weeks. The 

exercise load consisted of a running speed of 2 m/min for 

the first 5 minutes, 5 m/min for the next 5 minutes, and  

8 m/min for the last 20 minutes at a 0 inclination. The 

exercise was performed in the morning (between    

10:00 a.m. and 12:00 a.m.). 

 

Bright light exposure  

Light therapy was commonly administered at an intensity 

of 10 000 lx
[62]

. An artificial lamp with 10 000 lx of ray 

illumination was obtained from a commercial company 

(Danbee, Gyeonggi, Republic of Korea), and placed at a 

distance of 80 cm from animals in these experiments. In 

the light cycle, bright light exposure was performed 

during a 30-minute period matched to the period of 

exercise. The combined treadmill exercise and light 

exposure were performed over the same duration. 

 

Tissue preparation 

Experimental animals were sacrificed. For 

immunohistochemical analysis, animals were sacrificed 

24 hours after the end of the 4-week treatments. Rats 

were anesthetized with Zoletil 50 (10 mg/kg, 

intraperitoneal; Virbac, S.A., France), transcardially 

perfused with 0.1 M PBS, and fixed with 4% neutralized 

buffered paraformaldehyde. Brains were removed, 

postfixed in the same fixative for 48 hours, and 

transferred to 20% sucrose solution for cryoprotection. 

Coronal sections of 30 μm thickness were prepared 

using a freezing microtome (Leica, Nussloch, Germany).  

 

To extract protein, frozen hippocampal samples of rats 

were transferred to sterile 1.5 mL microcentrifuge tubes 

containing 550 μL of lysis buffer (protease inhibitor 

cocktail: T-buffer = 1:100). Homogenized tissues were 

incubated for 10 minutes on ice and sonicated. Next, 

samples were centrifuged at 12 000 r/min for 30 minutes 

at 4C, and supernatant fractions were collected. Protein 

concentrations were quantified using the bicinchoninic 

acid protein assay (Bio-Rad, Rockford, IL, USA), and 

samples were stored at –80C until use. 

 

BrdU immunohistochemistry 

For detection of neurogenesis in the dentate gyrus, 

5-bromo-2’-deoxyuridine-specific immunohistochemistry 

was performed
[50]

. In brief, free floating 30 μm-thick 

tissue sections were pretreated with 0.3% H2O2 for    

10 minutes. Sections were blocked in 0.1 M PBS 

containing 1.5% normal horse serum and 0.1% Triton 

X-100 for 30 minutes, and incubated with rat monoclonal 

primary antibody against 5-bromo-2’-deoxyuridine (1:100; 

Abcam, Cambridge, England) overnight at 4C, followed 

by three washes with 0.1 M PBS, and subsequent 

incubation for 1 hour at room temperature with a 

biotinylated anti-rat IgG antibody (1:200; Vector 

Laboratories, Burlingame, CA, USA). After three more 

washes with 0.1 M PBS, sections were incubated in an 

avidin-biotin-peroxidase complex solution (ABC kit, 

Vector Laboratories, CA, USA) for 1 hour, and developed 

with 0.03% diaminobenzidine tetrahydrochloride (DAB; 

Sigma) containing 0.003% H2O2 for 3 minutes. Next, 

sections were mounted on gelatin-coated slides, 

heat-dried, dehydrated through a graded alcohol series, 

cleared in xylene, and coverslipped with Permount 

(Sigma). Sections were subsequently visualized under a 

photomicroscope (Olympus, Wendenstrasse, Hamburg, 

Germany), and digital images were captured and 
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documented. BrdU immunoreactive cells were counted 

by stereologic methods using a photomicroscope. 

BrdU-positive cells in the granule cell layer and hilus of 

every 8
th
 and 12

th
 sections (2 sections/animal) were 

counted through the entire dentate gyrus according to a 

previously published method
[7]

. Photomicrographs were 

assessed via densitometry using the Image-Pro plus 

program (Media Cybernetics, Silver Spring, MD, USA) to 

determine staining densities. Total cells within the log 

range of intensity were counted to allow for quantification 

and group comparisons. 

 

Western blot analysis of brain-derived neurotrophic 

factor protein 

For brain-derived neurotrophic factor protein analysis, 

hippocampal lysates (30 μg/lane) were separated using 

12% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis, followed by electrophoretic transfer onto 

a polyvinylidene difluoride membrane (Millipore, Bedford, 

MA, USA). Polyclonal rabbit brain-derived neurotrophic 

factor (1:1 000; Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) and goat anti-rabbit secondary antibody     

(1:10 000; Thermo Scientific, Rockford, IL, USA) were 

used for detection of brain-derived neurotrophic factor 

protein expression on the polyvinylidene difluoride 

membrane (Millipore). The brain-derived neurotrophic 

factor protein expression level was assessed with an 

enhanced chemiluminescence solution (Pierce, Rockford, 

IL, USA) and the LAS-4000 system (Fujifilm, Japan). The 

intensities of brain-derived neurotrophic factor bands 

were normalized to those of α-tubulin (Sigma). 

 

Statistical analysis 

The differences between control and experimental 

groups were determined using the unpaired Student's 

t-tests. One-way analysis of variance was used to 

analyze all group differences. Values are expressed as 

mean ± SEM, with P < 0.05 accepted as significant.  
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