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Abstract: Cold stress limits plant geographical distribution and influences plant growth, develop-
ment, and yields. Plants as sessile organisms have evolved complex biochemical and physiological
mechanisms to adapt to cold stress. These mechanisms are regulated by a series of transcription
factors and proteins for efficient cold stress acclimation. It has been established that the ICE-CBF-COR
signaling pathway in plants regulates how plants acclimatize to cold stress. Cold stress is perceived
by receptor proteins, triggering signal transduction, and Inducer of CBF Expression (ICE) genes are
activated and regulated, consequently upregulating the transcription and expression of the C-repeat
Binding Factor (CBF) genes. The CBF protein binds to the C-repeat/Dehydration Responsive Element
(CRT/DRE), a homeopathic element of the Cold Regulated genes (COR gene) promoter, activating
their transcription. Transcriptional regulations and post-translational modifications regulate and
modify these entities at different response levels by altering their expression or activities in the
signaling cascade. These activities then lead to efficient cold stress tolerance. This paper contains a
concise summary of the ICE-CBF-COR pathway elucidating on the cross interconnections with other
repressors, inhibitors, and activators to induce cold stress acclimation in plants.

Keywords: cold stress; Inducer of CBF Expression; C-repeat Binding Factor; cold response genes; tran-
scription factors; plant

1. Introduction

Cold stress diminishes plant growth, development, yield, and the geographical dis-
tribution of crops, liable for ~40% harvest reduction of crops in temperate regions [1]. It
is estimated that extreme cold stress causes between 51–82% of annual crop yield losses
globally [2]. Cold stress has been categorized into chilling stress (0–15 ◦C) and freezing
stress (<0 ◦C) depending on plant effects [3] Cold receptors localized in the plant plasma
membrane perceive cold stress stimulus. Instantly, a progression of cell reactions and
sub-atomic system adjustments are triggered, remodeling plant physiological, biochem-
ical, and molecular mechanisms for cold stress tolerance through the regulatory actions
of numerous transcription factors [4–6]. The three main cold-responsive genes in plants
are Inducer of CBF Expression (ICE), C-repeat Binding Factors (CBFs), and the Cold-Regulated
genes (CORs) [7]. These three forenamed key players, ICE, CBF, and COR genes, model an
imperative signaling pathway, the ICE-CBF-COR cascade, a cold response pathway that
alleviates cold stress in plants [8–12]. Usually, plant cold stress tolerance is characterized by
a decrease in plant water losses, reduced plant growth, decreased photoperiod, and other
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physiological changes [13]. To date, several plant species genomes have been characterized
and the ICE-CBF-COR cascade has been identified in rice [14], wheat [10,15], and tea [16].

The ICE acts upstream to induce and regulate the expression of the C-repeat Binding
Factor (CBF) [8–11]. Consequently, the CBFs otherwise known as the DREB1 genes, regu-
late cold stress by binding to the cold and dehydration regulatory elements (CRT/DRE) in the
promoter regions of COR genes to induce their expression; for instance, COR15A [17,18]
and RD29A [19] in Arabidopsis. Thus, CBFs trigger and regulate the expression of COR
genes under cold stress. Amongst these three aforementioned genes, perhaps CBF genes
are the most vital cold response factors in plants, other researchers have also published
diverse roles and responses in different plant species played by the C-repeat Binding
Factor/dehydration-responsive element-binding 1 (CBF/DREB1) genes [10,12]. It is es-
tablished that CBFs (CBF1, CBF2, and CBF3) have different roles under cold stress due
to their several modifications in their individual protein sequences, although they have
similar sequence structures and binding properties [1,10,20]. Two homologs of ICE genes
(ICE1 and ICE2) have been characterized in many plant species and their cold tolerance
roles were deduced [21]. The activity of the ICE1 is mainly regulated at the protein level
by post-transcriptional and/or post-translational modifications (PTMs). Recent research
has shown the importance of PTMs in regulating the ICE-CBF cascade pathway during
cold stress [22–24]. Several PTMs have been shown to increase the stability and binding
efficiency of ICE genes to downstream genes for instance: phosphorylation, ubiquitina-
tion, and SUMOylation [25]. Phosphorylation is one of the most vital post-translational
modifications of ICE genes, regulating the cold stress tolerance through the actions of the
OPEN STOMATA 1 (OST1) and other various transcription factors. The OST1 mediates the
ICEs and CBFs in various ways. OST1 has been demonstrated to phosphorylate the ICE1 in
Arabidopsis and rice for stability, by binding to the HIGH EXPRESION OF OSMOTICALLY
RESPONSIVE GENE 1 (HOS1) to prevent the degradation of ICE1 by HOS1. Furthermore,
the OST1 regulates CBF gene expression by phosphorylating BASIC TRANSCRIPTION
FACTOR 3 (BTF3), a binding substrate to CBF genes [24]. Moreover, kinases within the
MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade play an essential role in the
phosphorylation of ICE genes; ICE1 is phosphorylated at the Ser403 for stability and CBF
regulation activation in the MAPK cascade [26]. In potatoes, SaMMK2, a constitutive ki-
nase, was recently shown to positively promote the expression of SaCBF under cold stress,
leading to cold stress tolerance through expression activation of COR genes [27].

Ubiquitination-regulated turnover of the ICE-CBF proteins improves cold stress tol-
erances in plants [28]. Little has been shown recently on the ubiquitination mechanism
regulating the ICE-CBF-COR cascade. However, a PUTATIVE U-BOX type E3 ligase gene in
grapevine, VpPUB25/26, was shown to promote the accumulation of VpICE1 and suppress
the expression of VpHOS1 [29]. PUB25/26 was demonstrated to degrade the MYB15, an
inhibitor of the ICE-CBF pathway during cold stress, thereby increasing the expression of
ICE1 [30]. Additionally, SINA, a ubiquitin ligase in bananas was also reported to increase
the stability of MaICE1 and to improve transcriptional activation of the CBF regulon [31].

In addition to PTMS, the ICE-CBF is also regulated by the hormonal responses of
jasmonates (JA), ethylene, brassinosteroids (BR) [32], gibberellin (GA) [33], auxin, and
salicylic acid (SA). Numerous auxin-related genes have been thoroughly discussed which
include auxin biosynthetic genes (CYP79B3 and CYP83B1) and auxin carrier genes (LAX1/2),
and their down-regulatory effect in CBF expression [34]. Interestingly, exogenous treatment
of several hormones on plants during cold stress has also been demonstrated to relieve
the cold stress in plants. For instance, in the GA-CBF crosstalk, exogenous application
of GA has been shown to regulate the over-expression of CBFs in dwarf plants, while
underlying mechanisms still require more research. Other phytohormones are discussed in
detail below.

Accumulating evidence has shown that most of the cold stress tolerances are due to
the targets of CBFs, the COR genes. In Arabidopsis, more than 200 COR genes are either
activated or repressed by the actions of the CBF1/2/3 [11]. A myriad of COR genes has
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been identified and demonstrated to increase cold stress tolerance directly or indirectly
in plants. These include the plant Dehydrins (Dhns), late-embryogenesis-abundant (LEA)
proteins, low-temperature induced proteins (LTIs) and their products: anti-freeze proteins [35]
osmo-regulators [36], chaperones, functional proteins, and kinases [17,18].

This review paper sums up recent studies and findings on the ICE-CBF-COR cold sig-
naling pathway, discussing how plants continue to evolve for cold stress acclimation. These
insights will enrich the plant stress response knowledge base, providing vital information
on how to ameliorate plant losses due to cold stress in the wake of global climate change.

2. Conserved Motifs and Their Functionality in CBF, ICE, and COR Genes
2.1. C-Repeat Binding Factor/Dehydration-Responsive Elements Binding 1 (CBF/DREB1)

CBF transcription factors are involved in the cold signaling pathway in plants [24,37].
They were first discovered by Jofuku et al. [37] in Arabidopsis thaliana as plant-specific
transcription factor types triggered by cold stress and/or the ICE [38]. CBFs belong to the
superfamily of APETALA2/Ethylene Responsive (AP2/ERF) transcription factors, composed of
c. 60 amino acid residues, and conferring a three-dimensional (3D) conformation arranged
into a layer of three antiparallel β-sheets followed by a parallel α-helix sheet [39]. The 3D
structure protein prediction analysis (Figure 1A) exposed Arg- and Try- residues within
the β-sheet that link nucleotides of the binding site in the key groove of the DNA. More-
over, these key residues are well conserved in the AP2/ERF family [40]. The Dehydration
Responsive Binding Factor/C-repeat Binding Factor (DREB1/CBF) family is distinguished by
PKK/KPAGRxKFxETRHP, DSAWR sequence signatures, and an LSWY motif, schematically
shown in Figure 1C. Medina et al. [41] first sequenced the CBF gene structure in Arabidopsis
and revealed that CBF1/2/3 genes are clustered on chromosome IV, with CBF2 and CBF3
located 3 and 7 kb downstream of CBF1, respectively [41]. In addition, they showed the pres-
ence of several regulatory sequences: the core CANNTG-consensus motif, the CACGTC-,
and TACGTG-related sequences in their promoter regions [42]. CBFs (CBF1/DREB1B,
CBF2/DREB1C, and CBF3/DREB1A) are known to bind to the C-repeat/Dehydration Respon-
sive Element (CRT/DRE) sequence (TACCGCAT) in the promoters of COR genes for their
transcription activation. Gene ontology (GO) analysis (Figure 1B) of CBFs revealed that
their main molecular function is in the binding to cold-responsive genes for cold stress
tolerance, through the CRT/DRE binding domains [43]. Recent reports have exhibited sev-
eral CBF amino acid sequences from other plant species with a higher homology, carrying
similarly conserved motifs (Figure 1D) [10,44,45]. Additionally, Novillo et al. [46] paraded
a negative feedback mechanism of the CBF/DREB1 transcription factors, that CBF2/DREBIC
negatively regulates the expression of CBF1/DREB1B and CBF3/DREB1A in Arabidopsis.
Likewise, overexpressed CBF1/DREB1B inhibits the accumulation of CBF3/DREB1A tran-
scripts. However, mutational changes in CBF2 (cbf2) enhance the collection of CBF1/DREB1B
and CBF3/DREB1B transcripts leading to cold stress tolerance through the expression of
COR genes. However, this negative feedback is essential for the accurate expression of cold
regulatory genes in response to cold stress.
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Figure 1. Structure, GO analysis, and sequence alignment of CBF in plants. (A) 3D prediction
of AtCBF1 secondary structure showing different domains denoted by different colors. (B) Gene
ontology (GO) analysis of CBF1 in Arabidopsis. (C) The schematic presentation of the AP2 structure,
shows PKK/KPAGRxKFxETRHP, DSAWR, and LWSY motifs located upstream and downstream
respectively, from the AP2 domain. These sequences contribute to the DNA binding specificity of
CBFs to COR genes. (D) Multiple alignments of the amino acid sequences of CBF/DREB1 proteins
from different plant species. Different color schemes in the background show conserved amino
acid sequences within the conserved AP2 DNA-binding domains, PKKR/PAGR, DASW, and LWSY,
motifs. Characterized sequences include AtCBF (Arabidopsis thaliana), OsCBF (Oryza sativa), LcCBF
(Liriodendron chinense), and PtCBF (Populus trichocarpa).

Further Hannah et al. [47] demonstrated that there is an inherited relationship between
the total number and expression levels of CBFs and cold stress tolerance [48,49] and that
some CBFs are specific to dicots, while others are specific to monocots and exhibit different
response patterns during cold stress [50]. Therefore, there is a shred of cumulative evidence
on the functional roles of the CBFs in plants. Furthermore, CBFs have been expressed
in several transgenic plants, and their effect revealed. Table 1 summarizes some of the
CBFs that augmented cold stress in transgenic plants. Moreover, previous studies have
demonstrated the functional roles of CBF1/2/3 in Arabidopsis to bind to the promoters of
target COR genes (COR15A, COR47, COR78, KIN1, and LTI78), inducing their expression for
cold stress regulation. They all concurred that CBFs are induced by MYC-like bHLH and
AtICE2, via the AtCAMTA3 promoter [51,52]. A recent study in Longan (Dimocarpus longan)
has identified three novel CBF genes, DlCBF1/2/3, that bind the CRT/DRE cis-elements,
inducing the expression of AtRD29A, AtCOR15A, AtCOR47, and AtKIN1 consequentially
in plant cold acclimation [53].
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Table 1. Transgenic plants developed by the overexpression of CBF genes.

Gene Species Transgenic Technique Transgenic Plant Effect References

DlCBF1-3 D. longan Agrobacterium-mediated transfer A. thaliana cold stress tolerance [53]
PpyCBF1-3 P. pyrifolia Agrobacterium-mediated transfer A. thaliana cold tolerance [54]

IbCBF3 Sweet potato Agrobacterium-mediated transfer S. tuberosum cold tolerance [55]
AtCBF3 A. thaliana Agrobacterium-mediated transfer S. melongena L. cold stress tolerance [56]
EgCBF3 E. guineensi Agrobacterium-mediated transfer L. esculenta freezing tolerance [57]
PpCBF3 P. pratensis L. Agrobacterium-mediated transfer A. thaliana freezing tolerance [58]

GmDREB1B G. max Agrobacterium-mediated transfer G. max cold tolerance [59]
DaCBF7 D. antarctica Agrobacterium-mediated transfer O. sativa cold tolerance [60]

PpCBF1V P. pratensis L. Agrobacterium-mediated transfer M. domestica cold tolerance [61]

AtCBF1 A. thaliana Agrobacterium-mediated transfer S. lycopersicum freezing tolerance
cold tolerance [62]

OsDREB1B O. sativa Agrobacterium-mediated transfer N. tabacum cold tolerance [63]
HvCBF4 H. vulgare Agrobacterium-mediated transfer O. sativa Regulates cold stress [64]
TaDREB2 T. aestivum Agrobacterium-mediated transfer Hordeum vulgare freezing tolerance [65]

BnCBF5/17 B. napus Agrobacterium-mediated transfer Brassica napus freezing tolerance [66]

A few reports have stated the equal importance of CBF1/2/3 in Arabidopsis for cold
tolerance, while other researchers have proposed that only AtCBF2/3 play significant roles
in cold stress tolerance [56–58]. Salvo et al. [67] also revealed the importance of CBF1 in
cold induced (CI) citrus cultivars, participating in natural cold stress tolerance by triggering
the expression of downstream COR genes. They concluded that CBF1 is essential for cold
tolerance in citrus fruits. A recent study in Asian pears (Pyrus pyrifolia) has shown the
functional roles of PpyCBF3 for cold tolerance. They showed that expressed PpyCBF2/3 were
linked to the expression of PpyCOR genes (PpyCOR47, PpyCOR15, PpyRD29A, and PpyKIN).
They expressed PpyCBF 2/3 genes in transgenic Arabidopsis and augmented cold tolerance
through the lowering of ROS species, and antioxidant gene activities, suggesting that
PpyCBF2 and PpyCBF3 were responsible for the expression of COR genes [54]. Nevertheless,
it can be inferred that the importance of CBF proteins depends on the plant species and all
CBFs are vital and unique in function for cold tolerance.

2.2. Inducer of CBF Expression (ICE)

The ICE is a forerunner in the cold acclimation process that acts upstream of the
cold response cascade [68,69]. It belongs to the basic Helix-Loop-Helix (bHLH) family. The
bHLH transcription factors regulate the expression of cold regulatory genes; they contain
conserved bHLH binding domains at C-terminals, as shown in Figure 2C, for specific
interactions with downstream cold regulatory genes. The ICE was reported to carry the
bHLH binding domain, and its amino acid sequence in the basic region is highly similar to
other bHLH proteins. The ICE proteins bind to the canonical MYC cis-elements (CANNTG)
in the CBF3/DREB1A promoter, leading to the induction of CBF/DREB1 regulon [70,71].
Two isoforms of the ICE protein have been identified in Arabidopsis, ICE1, and ICE2,
consisting of 494 and 450 amino acids, respectively. Distinguished by the presence of an
additional amino acid box in ICE2, towards the end of Box II (Figure 2C,D), modifying
the conserved LPPT sequence, and also the absence of Box I in the ICE1 genes [72]. The
Glu- and Leu-rich regions of the ICE2 localized in the exon part, form additional alpha-
helices in the secondary structure (Figure 2A). Additionally, the structure of ICE2 has more
phosphorylation sites than ICE1, otherwise, their secondary structures are similar, and they
both include four exons and three introns [73]. Gene ontology (GO) enrichment analysis of
AtICE1 (Figure 2B) showed that the ICE1 binding sites are enriched in several categories
including nucleic acid binding (GO:0001071), an organic cyclic compound binding site (GO:
0097159), and heterocyclic compound binding (GO: 1901363) [71]. Thus, its main molecular
function is for binding downstream of CBF genes.



Int. J. Mol. Sci. 2022, 23, 1549 6 of 20

Figure 2. Structure, GO analysis, and sequence alignment of ICE genes in plants. (A) 3D prediction
of AtICE1 secondary structure, showing different domains denoted by different colors. (B) Gene
ontology (GO) analysis of ICE1 in Arabidopsis. (C) A schematic presentation of AtICE1, depicting
conserved binding domains and motifs. (D) Multiple alignments of ICE amino acid. Different
color schemes in the background show conserved amino acid sequences within the conserved DNA-
binding domains, the S-rich region, bHLH domain, the ZIP region, and the SUMO-conjugated motif
in the ICE1 proteins. Shown sequences have been characterized from AtICE1 (A. thaliana), SlICE1
(S. lycopersicum), PtICE1 (P. trifoliata), PmICE1 (P. mume), VvICE1 (V. vinera), and CsICE1 (C. sinensis).

Badawi et al. [15] demonstrated that the ICE1 is specific to monocots and ICE2 is
specific to eudicots. However, other ICE1-like proteins are also present in dicots and they
show high homology in the C-terminus region [69]. Many different types of ICE-like
genes with homologous conserved domains have been recently revealed and expressed
in various transgenic plants for tolerance investigation to cold stress (Table 2). Recently,
Kashyap et al. [73] showed an ICE homolog, BjICE53, to be involved in the cold signaling
pathway in Brassica juncea. They revealed conserved domains and motifs that bind to the
CRT/DRE motifs of BjCBF for the expression of downstream cold-regulatory genes [74–76].
Another study in Chrysanthemum morifolium, “Jinba”, demonstrated that overexpression of
CmICE2 in transgenic Arabidopsis induces the expression of downstream cold regulatory
genes (AtCBF1/2, AtCOR6.6a/414, and AtKIN1), leading to cold stress tolerance through
increased proline contents, superoxide dismutase (SOD) activities, and elevating catalase
(CAT) levels [77]. Zuo et al. [78] also revealed the biological roles of ICE1 in Zoysia japonica
(ZjICE1) to positively regulate the cold response signaling pathway. They disclosed that
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the overexpression of ZjICE1 triggers the expression of cold regulatory genes (ZjCBF1-3
and ZjCOR47A).

Table 2. The response of transgenic plants developed by overexpression of ICE homologous.

Gene Species Transgenic Technique Transgenic Plant Effect References

SiICE1/2 S. involucrata Agrobacterium-mediated transfer Arabidopsis cold tolerance [75]
AtICE1 A. thaliana Agrobacterium-mediated transfer Indica rice cold regulation [21]
CmICE2 C. morifolium Agrobacterium-mediated transfer Arabidopsis cold tolerance [77]

BjICE46/53 B. juncea Agrobacterium-mediated transfer Arabidopsis cold tolerance [73]
HbICE1/2 H. brasiliens Agrobacterium-mediated transfer Arabidopsis cold tolerance [79]

ZjICE2 Z. japonica Agrobacterium-mediated transfer Arabidopsis cold tolerance [78]
RsICE1 R. sativus Agrobacterium-mediated transfer Rice cold tolerance [80]

OsICE1/2 O. sativa Agrobacterium-mediated transfer Arabidopsis cold tolerance [81]
ZmmICE1 Z. mays Agrobacterium-mediated transfer Arabidopsis freezing tolerance [82]
SlICE1a S. lycopersicum Agrobacterium-mediated transfer Tobacco cold tolerance [83]

TaICE41/87 T. aestivum Agrobacterium-mediated transfer Arabidopsis freezing tolerance [20]

2.3. Cold Regulated (COR) Genes

Several reports have shown that cold-inducible genes designated as Cold-responsive
or Cold Regulated Genes (COR genes), ABA-inducible protein-coding (KIN1 and KIN2) [84],
Responsive to Desiccation (RD), and Low-Temperature-Induced (LTI) genes carry the CRT/DRE
cis-acting element augmenting cold stress tolerance through the CBF-dependent path-
way [11]. CBFs bind to the C-repeat (CRT/DRE) cis-elements located in the promoters of
COR genes denoted by a CCGAC sequence, further activating their transcription [85].
About 10–20% of the total COR genes in Arabidopsis are estimated to be directly regulated
by CBFs [86]. Most studied COR gene structures are flanked by exons (protein-coding
regions) localized both in the 5′UTR and 3′UTR with a central intron, schematically shown
in Figure 3C. However, different COR gene families are distinguished by specific motifs,
but all share a conserved CRT/DRE binding site that binds upstream of CBF genes for their
expression [87]. Several COR genes in the cold signaling pathway have been characterized
and some of their amino acid sequences are shown in Figure 3D, showing several conserved
domains within the COR genes. Therefore, plants respond to cold stress in three discrete
phases depending on the temperature range, that is, pre-hardening, hardening, and plant
recovery [88]. Specific COR genes act to stabilize both membrane phospholipids, proteins,
and cytoplasmic proteins, maintaining hydrophobic interactions, ion homeostasis, and
scavenging ROS, depending on the temperature range [89,90].

Previously, different targets of the CBF genes were discussed fully. We will partially
discuss a few COR gene families in this section. The COR413 family has two distinct
groups, COR413-plasma membrane (COR413pm), COR413-inner membrane 1 (COR413im1),
and COR413-thylakoid membrane (COR413tm) [91]. It is known that low temperature in-
fluences the structure of the plasma membrane by reducing the fluidity and increasing
rigidity, with these changes leading to the expression of COR413pm genes. Recent studies
have revealed that cold-induced PsCOR413Pm2 [92] and AtCOR413pm [93] carry similarly
conserved binding domains in their promoter regions. The COR413pm genes regulate cold
stress through enhancing the Ca2+ influx and the expression of stress-related COR genes
(COR6.6, KIN2, COR15A, COR15B, COR47, and COR78/RD29) and CBF (CBF2 and CBF3)
genes in Arabidopsis. These results suggest the interconnection with the cold-responsive
genes, concurring with the ICE-CBF-COR cascade. While the COR413im localized in the
inner-membrane was shown to activate the cold-expression of COR15A and COR15B in
Arabidopsis, their expression mechanism still remains a mystery to be unrevealed [92].
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Figure 3. Structure, GO analysis, and sequence alignment of COR genes in plants. (A) 3D prediction
of AtCOR15A secondary structure, showing different domains denoted by different colors and helices
formed by different interactions of domains. (B) Gene ontology (GO) analysis of AtCOR15A. (C) The
schematic presentation of plant COR genes with two flanking exons in the 5′UTR and the 3′UTR and
a central intron. (D) Multiple amino acid sequence alignments of different COR genes. Different color
schemes in the background show conserved amino acid sequences in different COR genes. Aligned
sequences include: AetCOR1, AeuCOR1, AtCRO15A/B, BrCOR15, and TaCOR1/2.

Dehydrins (DHNs) are a subgroup of the Late-Embryogenesis-Abundant (LEA) proteins in
angiosperms. They are characterized by high hydrophilicity and a diverse combination of
typical domains. Most notably, the K-segment (EKKGIMDKIKEKLPG) sequence near the C-
terminus. They accumulate in plants in response to cold stress, particularly, the SKn type,
which protects the membrane from freeze desiccation by potential dehydration-induced
demixing of membrane lipids, acting as molecular chaperones or ion sequestration [94].
For instance, the AtCOR15A with its secondary structure (Figure 3A), is suited for binding
to other proteins and acts as a chaperone protecting the membrane from freeze desiccation.
GO analysis of COR15A (Figure 3B) has provided supporting evidence on the molecular
binding function of AtCOR15A to lipids, carbohydrates, heterocyclic compounds, and other
small molecules [95]. Previous research evidenced dehydrins (OsDhn1, lip5, and lip9) to
regulate cold stress through the CBF pathway in rice, and their homologs Wcor410 and
AtCOR47, which are both known to be regulated by CBF1/DREB1B. Apart from these
aforementioned dehydrins, several DHN proteins have been shown to regulate cold stress
through the CBF pathway including, Wcs120, COR47, and RD17. Recently, research has
evidenced that CBF1 identifies the consensus sequence (CCGAC) of the CRT/DRE elements
from Dehydrins in Vitis vinera and Triticeae species [96].
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Low-Temperature Induced proteins (LTIs) enable plants to acclimate during low but
non-freezing temperatures. Two LTIs have been shown, LTI78 and LTI 65 in Arabidopsis, to
regulate cold stress and carry a 9 bp conserved sequence (TACCGACAT) in their promoter
regions, termed the dehydration-responsive element (DRE) (Figure 3D) [35]. COR genes
have also been demonstrated to act as regulators of other cold regulatory genes. Recently,
the COR27/28 genes were reported to regulate the COP1-HY5 regulatory hub influencing
the freezing tolerance and the circadian clock. These genes interact directly with HY5 pro-
moters and regulate negatively the transcription of other COR genes promoting hypocotyl
elongation in Arabidopsis [97]. Several COR genes have been expressed in different trans-
genic plants and their regulatory effect revealed. Table 3 below summarizes reports of
different COR genes that were expressed in other transgenic plants.

Table 3. The transgenic plants developed by overexpression of COR genes.

Gene Species Transgenic Technique Transgenic Plant Effect References

LeCOR413PM2 L. esculanta A. tumefaciens Tomato cold tolerance [97]
AtCOR27/28 A. thaliana A. tumefaciens Arabidopsis freezing tolerance [11]

MfLEA3 M. falcata A. tumefaciens Tobacco cold tolerance [98]
SikCOR413PM1 S. involucrate A. tumefaciens Tobacco cold tolerance [99]

SiDHN S. involucrata A. tumefaciens Tomato cold tolerance [100]
PsCOR413PM2 P. subulate A. tumefaciens Arabidopsis cold tolerance [91]

RcDhn5 R. catawbiense A. tumefaciens Arabidopsis freezing tolerance [101]

3. Mitogen-Activated Protein Kinase (MAPK) Cascade and Hormonal Responses
Regulating the ICE-CBF-COR

Putative sensors embedded in the plasma membrane such as the OsCGNC14/16 in
rice [102] and AtNN1 in Arabidopsis [103] trigger Ca2+ influx in the cytosol and other
cell organelles through Ca2+ channels as a secondary response to cold stress. Secondary
messengers, Ca2+-dependent proteins, retort to cold stress, playing an imperative role in
intracellular signal transduction [104]. They bind to several proteins (TFs, protein kinases,
ion channels, and other enzymes) including calmodulins to execute their regulatory func-
tions. Therefore, Ca2+/CaM-dependent proteins have been reported in various plants
including: Vitis vinifera [105], Zea mays L [106], soybean [107], Brassica napus [108], Populus
trichocarpa [109], citrus trees [110], and other Gossypium species [111]. Kinases and their
profile expressions under cold stress have been recently reported in Brassica napus [112],
Jatropha curcas [113], and Common vetch [114]. The Mitogen-Activated Protein Kinase (MAPK)
cascade regulates cold stress through the binding roles of Calcium/Calmodulin-Regulated
Receptors Kinase-Like 1 (CRKL1) [115]. Research on the MAPK cascade in Arabidopsis has
demonstrated that CRLK1/2 interacts with the MEKK1, a MAPK module responding to
lower temperatures [116]. Then, the MEKK1 sequentially phosphorylates the MKK2, in
turn activating MPK4/6 [117], formulating a pathway upstream, CRLK1-MEKK1-MKK2-
MPK4-MPK3/6, that enhances the expression of CBF genes [118]. Previous studies reported
on an MPK3/6-CBF enhancing substrate, the calmodium-binding transcriptional activator 3
(CAMTA3), a putative MPK3/6 substrate with five phosphopeptides and MAPK phosphory-
lation sites, that activates MAPKs in the MPK3/6-CAMTA3 module. The CAMTA3 binds
to the CBF2 promoters to induce the expression of COR genes in Arabidopsis [119]. Put
together, these entities model a series of phosphorylation reactions after the Ca2+ influx, the
Ca2+/CaM-CRLK1/2-MEKK1-MKK2-MKK2-MPK3/6-CAMTA3-CBF2, to enhance the expres-
sion of CBF2 and consequent downstream COR genes (Figure 4). Early research showed that
the overexpression of CAMTA3 induces the expression of RD29A and COR6.6 through CBF
regulations [120]. Likewise, a comprehensive set of experiments has shown the importance
of this pathway in the induction of the AtCBF2, by proving that mutants of mpk3, mpk5, and
camta3 are freezing sensitive [121]. Meanwhile, another pathway, the CRLK1/2-MKK4/5-
MPK3/6, negatively regulates cold stress tolerance by reducing CBF expression through
inhibiting the ICE transcription (Figure 4). The MPK3 binds to the promoters of ICE1, pro-
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moting its degradation and consequently reducing the transcription of the CBFs [122,123].
Nonetheless, both mpk3 and mpk6 mutants have been shown to increase CBF expression
leading to cold stress resistance in plants [84]. Wholly, these two regulatory pathways may
be viewed as a single negative feedback mechanism that regulates the expression of cold
regulatory genes. In Arabidopsis, phosphorylated MPK6 mediates the negative expression
of CBF3 by activating a negative regulator, MYB15 [122]. On the contrary, MPK4/6 activates
CBF expression by inhibiting the MKK4/5-MPK3/6 pathway [112]

Figure 4. The ICE-CBF-COR response pathway to cold stress initiates at the plasma membrane
to plant cold tolerance. Cold sensors localized in the plasma membrane sense cold stress and an
influx of Ca2+ ions trigger the calcium downstream effector, CRLKs in the calcium response channel.
Consecutively, triggering the MAPK cascade, through the activities of MPK3/6, and directly inhibiting
the ICE2 and/or activating the CBF genes through the CAMTA3. Resulting in enhanced expression of
COR genes and cold tolerance. Another receptor, RLK phosphorylates the 14-3-3, stabilizing it for
translocation into the nucleus, and inhibiting the CBF transcripts expression. Hormonal responses in
the ethylene, BR, and JA hormones directly enhance the expression of CBFs through triggering various
TFs. The ICE genes are further phosphorylated through several PTMs to regulate the expression of
CBFs, sequentially regulating the expression of COR genes and cold stress response.

Likewise, the hormonal response controls vital biochemical regulatory processes in
the ICE-CBF-COR cascade during plant cold stress. Important plant hormones in the cold
signaling pathway are brassinosteroids (BR), jasmonates (JA), ethylene (Eth), and Abscisic
acid (ABA) (which will not be discussed in this review). Jasmonate including its deriva-
tives, methyl jasmonate (MeJA) and jasmonic acid are called jasmonates (JA). Cold stress in
plants has been established to elevate endogenous jasmonates (JAs) biosynthesis. In the
same manner, JAs also increase cold stress tolerance by interfering in the inhibitory effect
of JASMONATE ZIM-DOMAIN 1/2 (JAZ 1/2) proteins on the transcriptional activity of
CBFs [124]. Recently, An et al. [125] demonstrated the role of MdBBX37, that is its binding
effect to the MdCBF promoters activating the expression of MdCBF in the BBX37-ICE1-CBF
module. Further analysis of this pathway in the rubber tree also exhibited that exogenous
treatment with methyl jasmonate (MeJA) weaken the inhibition of JAZ1/2 on the HbICE2
transcriptional hub, resulting in the upregulation of HbCBF1, HbCBF2, and HbCOR47.
These findings suggest that the relieved and expressed HbICE2 prompt the expression
of HbCBF1 and consequently HbCOR47. In the rubber tree, JAZ1/2 proteins bind to the
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F-box protein receptor (COI1), a ubiquitin ligase of the SCF complex, inhibiting the acti-
vation of ICE2 and downstream genes, and in apple trees, MdJAZ1/2 inhibit the binding
of MdBBX37 to MdCBF1/4 reducing CBF expression [79,126]. However, cold-elevated en-
dogenous jasmonic-acid levels in apple plants relieve the repressive effect of JA-repressors
(JAZ1-2) on the MdBBX37. Exogenous application of MeJA and its regulating effect on
cold stress has been demonstrated in several plant species including C. annuum [126],
Musca acuminate [127], and Arabidopsis [124]. Previous studies showed the interaction of
jasmonate with other hormones such as auxins and ethylene to regulate the ICE-CBF-COR
cold signaling pathway [128,129]. For instance, in the JA-auxin crosstalk, IAA29 a type of
auxin interferes with the ICE-CBF-COR pathway by inhibiting the inhibitory action of JAZs
proteins on the ICE2 and CBF1 [124].

Like the jasmonates, cold alters the endogenous levels of ethylene, although the
regulating effect of ethylene on the cold stress is inconsistent with various plant species.
Ethylene has been demonstrated to alleviate cold stress in G. max [130], tomato [131],
and grapevine [132], while in Arabidopsis [133] and M. truncatula [134], ethylene reduces
cold stress tolerance [128]. Additional analyses in the ethylene response signaling path-
way have suggested that ethylene regulates CBF/DREB expression through the action
of EIN3, a transcription factor that binds the consensus sequence ATGYATNY [130,135].
In G. max, EIN3 binds to the promoters of CBFs in the absence of ethylene reducing its
transcriptional activity and expression of downstream COR genes [130]. However, exoge-
nous treatment with an ethylene precursor (1-aminocyclopropane-1-carboxylate) and an
ethylene biosynthesis inhibitor (amino-ethoxy vinyl glycine) were shown to increase and
decrease cold tolerance, respectively. 1-aminocyclopropane-1-carboxylate augments the
expression of MdCBF1 through the mediating roles of ethylene response factors (ERFs) in
the MdERF1B-MdCIgHLH1-MdCBF1 pathway [135]. ERFs are known to bind COR genes
(CORLTRECOREATCOR15 and MYBCORE) cis-elements, enhancing freezing tolerance by
reducing ROS species, and increasing SOD and POD levels [136]

As steroid hormones, brassinosteroids (BR) are synthesized from mass sterol campes-
terol through multiple hydroxylations and oxidations, further catalyzed with various
cytochrome P450 enzymes, including DWARF4, CPD, ROT3, and the CYP85A2 BR6ox2
steroid, cumulatively known as BR-biosynthetic genes. BRs induce a multidirectional
response in plants that include the regulation of cold-responsive genes (ICEs, CBFs, and
CORs) and other hormonal cross-talks (ABA and JA) [137]. Nevertheless, cold treatment
downregulates these BR-biosynthetic genes [32]. BRASSINOSTEROID INSENSITIVE 2
(BIN2), a GSK3-like protein kinase form of brassinosteroids, a repressor and regulator in the
BR-signaling is also known to target the bHLH-type proteins including the ICE genes. Ye
et al. [138] recently showed that BIN2 phosphorylates the ICE1, thereby reducing its stability
and transcription of the CBF regulon. Further downstream the BIN2 activities are controlled
by acetylation roles of histone deacetylase 6 (HDA6 discussed below). The phosphorylated
ICE1 interacts with HOS15 at the C-terminus further degrading ICE1 and attenuating CBF
expression. Additional studies evidenced that BIN2 activities are down-regulated in the
early stages of cold stress by HDA6 and later restored as a regulatory measure for CBF
expression and levels [138]. Cold-induced BR also directly participates in the regulation of
basal cold tolerance by increasing the expression levels of CBF1/2/3, COR15A, and COR47-
like transcripts in A. thaliana [139]. Consistent with these findings, studies in tomatoes have
suggested a BR component, brassinazole-resistant 1 (BRZ1), that inducts the expression
of CBFs. They proposed that cold induces BR and BRZ1 abundancies, then BRZ1 binds to
the E-box (CANNTG) and BRRE (CGTGT/CG) motifs in their promoters and increases
the expression of downstream genes through the resultant RBHO1 and hence cold stress
tolerance. Further analysis demonstrated that RBOH1 enhances CBF expression by altering
the cold- and BR-induced accumulation in the redox-dependent system. The significance of
the BR component, BRZ1, in the ICE-CBF-COR signaling pathway has been verified through
the overexpression of mutant brz1, resulting in cold stress reduction and low expression
levels of the CBF transcripts [140,141]. Furthermore, CBF1 has been related to positive relief
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of chilling injury during post-harvest storage of tomato expressing BRI1 and to decrease
chilling injury tolerances in mutant BR synthesis CPD. Cold-induced BR biosynthetic gene
in tomato, SLCTP90B3, has been established to bind the promoters of CBF1 and induce its
expression through the activation of the ICE1 transcription hub [142].

4. Post-Transcriptional Regulations and Post-Translational Modification

Cold stress induces extensive post-transcriptional and post-translational-modifications
(PTM) in several plants, affecting the quality and quantity of the mRNA and ultimately
cold stress tolerance [143]. Thus, post-transcriptional regulations and PTMs regulate the
expression of the entities in the ICE-CBF-COR signaling pathway. Two protein families reg-
ulate the developmental steps of post-transcription, the RNA binding proteins (RBPs) [144]
and the RNA helicases [145]. The RBPs function as molecular chaperones, regulating alter-
native splicing (AS). AS events produce multiple transcripts from a single RNA and they
transpire in specific mRNAs families of genes, affecting their normal gene transcription.
Previously, AS was demonstrated to modulate WDREB2 in wheat [146] and MYB48/59 in
Arabidopsis [147] affecting their binding efficiency to downstream COR genes. A recent
study in tea (Camellia sinensis) has explored the impact of AS events on the ICE-CBF-COR
genes. They reported that AS induces the expression of genes involved in the cold response
signaling and their regulators including CsbHLH1/2, CsMYBs, and other COR genes, allevi-
ating cold stress through the CBF-dependent pathways [148]. Although the mechanism
by which ICE-CBF-COR genes are induced is still unclear. Chromatin remodeling changes
the transcriptional activities of several COR genes during cold stress, rendering it more
or less accessible to the transcriptional machinery [22]. Chromatin modification of histone
deacetylase 6/9 (HDAC 6/9) during cold stress links directly to the transcriptional activities
and negatively regulates COR gene expressions [149–151]. Studies in rice have shown that
O. sativa HADCs functional proteins positively regulate cold stress tolerance by activat-
ing OsDREB1 expression, thereby enhancing cold stress through expression activation of
downstream COR genes by the CBFs [152]. Epigenetic switches from a repressed state in
chromatin models also regulate the expression of COR genes. HOS15, a WD40-repeat pro-
tein degrades histone deacetylation 2C (HD2C), modulating a complex (HOS15-H2DC) that
deacetylases COR gene chromatin to repress gene expression. The HOS15-H2DC complex
binds to the promoters of cold-responsive genes, for instance, COR15 and COR47 [153],
and activates their expression, resulting in cold acclimation through the cold regulatory
roles of these COR genes.

During post-translational modifications (PTMs), several genes and TFs interact with
the ICE, CBF, and COR genes to modify their activity, conformation, localization, and stabil-
ity. Phosphorylation, ubiquitination, and SUMO conjugations are major PTMs in plants
regulating the cold stress response pathway [154]. Phosphorylation plays a significant
role in plant cold acclimatization and is a reversible protein modification, with a high
dependence on kinases and phosphatases. The most common phosphatase, open stomata 1
(OST1) appertain for the SNF1-related protein kinase family and phosphorylates the entities
in the ICE-CBF response pathway. The OST1 interacts with E3-ubiquitin ligase (HOS1),
thereby phosphorylating the ICE1, increasing its stability, and alleviating cold stress through
inducing the activities of CBF genes [155]. Furthermore, variants of the mature polypeptide-
associated complex of OST1 phosphorylate the BASIC TRANSCRIPTION FACTOR 3 (BTF3)
proteins, promoting their interaction with CBF proteins, and consequently increasing the
stability of CBFs for efficient binding to COR genes downstream [123,156]. OST1 has also
been shown to interact with PUB25/26 in the OST1-PUB25/26-MYB15 pathway and to
upregulate the expression of CBFs in Arabidopsis. The two U-box type ubiquitin ligases
(PUB25/26) degrade MYB15, an inhibitor of CBF, thereby increasing the expression of
CBF and COR genes [30]. A plasma membrane-localized receptor-like cytoplasmic kinase,
cold-responsive protein kinase 1 (CRPK1) phosphorylates the 14-3-3 genes, promoting their
significance in the nucleus from the cytosol, coherently interacting with the CBF proteins,
and reducing cold tolerance through destabilizing their binding affinity to COR genes [157].
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Ubiquitination defines the rigorous action of three enzymes, E1 > E2 > E3. The
E3-ubiquitin ligase plays the most vital role by interacting with the target molecule and
providing scaffolding for the ubiquitination reaction. The number of ubiquitin molecules
attached to a target molecule determines its fate, that is polyubiquitin, monoubiquitin, and
ubiquitin [158]. Cold regulatory genes are affected by E3-ubiquitin ligases (polyubiqui-
tination) that regulate their expression and cold stress tolerance. HOS1, a RING-finger
E3 ubiquitin ligase participates in the negative feedback regulation of cold stress by me-
diating ICE1 degradation at the onset of the cold stress response. However, mutant hos1
expression enhances cold tolerance through loss-of-function [159]. CRISPR/cas9-mediated
genomic loss of function studies have also revealed that the hos1 provokes significant
fluctuations in the expression of ICE1 in Arabidopsis [160]. HOS15, a ubiquitin ligase
interacts with CBFs and modulates their binding to the COR gene promoters through
chromatin remodeling [161]. ICE1 in Eucalyptus camaldulnesis interacts with EcaHOS15 in
the ubiquitination-proteasome pathway, increasing its binding affinity to EcaHOS1. How-
ever, substitutional processes of serine (Ser158) by alanine (Ala) inhibit EcaHOS15-EcaICE1
interaction leading to reduced binding efficiency of CBFs to COR genes. When bound to the
ICE1, cold stress tolerance is enhanced through the enhanced expression of the CBFs [162].

SUMOylation a similar process to ubiquitination regulates cold stress through the
action of SUMOs [163]. SUMOs are bound to a lysine residue of a target protein in three
steps with three SUMO ligase enzymes (E1 > E2 > E3), provoking their interaction with
target proteins and disturbing their PPIs with other proteins [154]. SIZ1, an E3 SUMO
ligase has been demonstrated to positively increase freezing and cold stress tolerance in
Arabidopsis by inhibiting ICE1 ubiquitination. More specifically, SIZ1 sumolyates the
ICE1 at position K393, and additional results have proven that this sumoylation has no
negative implications on the ICE1 activity, but rather inhibits polyubiquitination of ICE1
by the HOS1, decreasing ICE1 degradation and increasing CBF3 expression. Moreover,
the sumoylated ICE1 negatively regulates the repressive actions of MYB15 on CBF3. The
loss-of-function of SIZ1 has also been shown to reduce cold tolerance and increase ICE1
ubiquitination, concluding that ICE1 levels are determined by the balance of SUMOylation
and ubiquitination processes [164,165].

5. Conclusions and Future Perspectives

The ICE-CBF-COR cascade plays a crucial role in the survival of plants during cold
stress. Cold stress is perceived by plant sensors and other organelles: secondary responses
induce the expressions of downstream cold-responsive genes. Various regulators, inducers,
hormonal responses, post-transcriptional regulations, and/or the post-translational mod-
ifications induce the expressions of ICE1/2, and CBF1/2/3 genes which in turn enhance
the expression of COR genes. In detail, the OST1, HOS15, MYB15, the MAPK cascade
and their direct and/or indirect regulation in the expressions of ICE1 and the CBF1/2/3,
cross-interlink and interact with the key players within the ICE-CBF-COR and regulate
their expression and consequently cold acclimation. The sum of these mechanisms was
discussed in this review, and collected insights concur in the sequential expression of ICEs,
CBFs, and COR genes. Therefore, it can be concluded that the ICE-CBF-COR is the central
pathway to which different transcription factors, regulators, proteins, physiological factors,
and other manipulators interlink to enhance cold stress. Although expression of genes at
different response levels may or may not follow the hierarchal steps in response, such as
the CBF-independent pathway.

Nonetheless, elaborate mechanisms and other additional regulators still require fur-
ther analysis, to fully understand the effect of seasonal changes, hormonal imbalances,
and gene transcriptional/translational on the expression of ICE, CBF, and CORs. This
review summarized cold stress tolerances through the CBF-dependent pathway (Figure 4).
Expression of the CBFs has been discussed fully, demonstrating the upstream enhancer ICE
genes and their roles, and the roles of the CBF in inducing the expression of downstream
COR genes. Nonetheless, cross-links and biochemical interactions within these sequential
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expressions are not facilely comprehended. Further studies on the CBF-dependent pathway
are required to expose all the possible and included response factors. This will be important
in gene engineering the cold response genes, to improve cold stress acclimation in cold
stress-sensitive plants. However, there are few prospects in understanding the cold stress
response in model plants such as Arabidopsis, rice, wheat, and other socio-economic plants.
For instance, the identification of the CHILLING-TOLERANCE DIVERGENCE 1 (COLD1)
receptor and the G-proteins in Japonica rice (not discussed in this review paper). The knowl-
edge of their interaction with the ICE-CBF-COR cascade has improved the understanding
of cold stress signaling in plants. Different transgenic plants have been manipulated to
improve the expression of the ICE, CBF genes, and ultimately cold stress tolerance with the
introduction of the COLD1 receptor and interaction improvements with G-proteins. Further-
more, techniques such as CRISPR have knocked out inhibitors and reducers, reducing the
ICEs, CBFs, and CORs expression, leading to increased plant cold tolerance in plants and
understanding of the importance of certain regulators and enhancers, suggesting the im-
portance and urgency of further identification of other molecular factors and pathways that
directly or indirectly interact with the ICE-CBF-COR pathway. There is still a need to further
the understanding of hormonal responses and their effect on the ICE-CBF-COR, such as
ethylene regulating ICE-CBF-COR in other plants, the MAPK cascade and its regulatory
behavior in the cold signaling pathway, considering the antagonistic roles of the MPK6/3
with MPK4 in Arabidopsis. Other mechanisms such as the PTMs and post-transcriptional
regulations require extensive research to fully understand the impact of alternative splicing,
chromatin modifications, and methylation on the transcription and translation of ICE, CBF,
and COR genes.

Taking into consideration the impact of global climate change on the overall plant
growth and yield, there is still an urgent need for intense research on the ICE-CBF-COR
cascade to answer many questions that remain unanswered in the ICE-CBF-COR pathway
and how it can be improved to ameliorate cold stress and improve plant yield and growth.
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