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The contact system in liver injury

Chandini Rangaswamy1 & Reiner K. Mailer1 & Hanna Englert1 & Sandra Konrath1
& Thomas Renné1

Received: 15 February 2021 /Accepted: 27 May 2021
# The Author(s) 2021

Abstract
Coagulation is controlled by a delicate balance of prothrombotic and antithrombotic mechanisms, to prevent both excessive
blood loss from injured vessels and pathologic thrombosis. The liver plays a pivotal role in hemostasis through the synthesis of
plasma coagulation factors and their inhibitors that, in addition to thrombosis and hemostasis, orchestrates an array of inflam-
matory responses. As a result, impaired liver function has been linked with both hypercoagulability and bleeding disorders due to
a pathologic balance of pro- and anticoagulant plasma factors. At sites of vascular injury, thrombus propagation that finally may
occlude the blood vessel depends on negatively charged biopolymers, such as polyphosphates and extracellular DNA, that
provide a physiological surface for contact activation of coagulation factor XII (FXII). FXII initiates the contact system that
drives both the intrinsic pathway of coagulation, and formation of the inflammatory mediator bradykinin by the kallikrein–kinin
system. Moreover, FXII facilitates receptor-mediated signalling, thereby promoting mitogenic activities, angiogenesis, and
neutrophil stimulation with implications for liver diseases. Here, we summarize current knowledge on the FXII-driven contact
system in liver diseases and review therapeutic approaches to target its activities during impaired liver function.
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Introduction

Blood coagulation not only is a physiological process required
to prevent blood loss following vessel injury, but also contrib-
utes to the formation of thrombi that occlude vessels causing
thromboembolic diseases, such as stroke and myocardial in-
farction [1]. The coagulation system depends on sequential
proteolytic activation of plasma-borne coagulation factors.
Hepatocytes express and secrete most coagulation factors;
therefore, bleeding and thrombotic diseases are common risks
for liver disease patients. Factor XII (FXII) is a plasma prote-
ase that initiates the contact system, that in turn drives the
proinflammatory kallikrein–kinin system and the so-called in-
trinsic pathway of coagulation. In addition to initiating throm-
bus formation and inflammation, FXII also triggers growth

factor-like cell signalling [2]. Together, FXII contributes to
vascular permeability, immune cell function, and proliferation
with implications for liver inflammation and regeneration, and
carcinogenesis. Here, we provide an overview of the FXII-
driven contact system in liver inflammation and present cur-
rent therapeutic approaches to prevent thrombo-inflammation.

Factor XII-driven contact system

Coagulopathy in liver disease is linked to unbalanced expression
of plasma proteins that regulate FXII-driven intrinsic coagula-
tion. The intrinsic pathway of coagulation is a proteolytic cas-
cade of plasma serine proteases initiated by contact activation of
zymogen FXII. FXII binds to negatively charged surfaces that
induce conformational changes leading to autocatalytic cleavage
and formation of an active serine protease, activated FXII
(FXIIa) [3]. FXIIa-driven sequential activation of factor XI
(FXI), factor IX (FIX), and factor X (FX) leads to the conversion
of prothrombin to thrombin (assisted by a thrombin feed-
forward activation of factor V (FV), factor VIII (FVIII) and
FXI). Finally, thrombin mediates the cleavage of fibrinogen to
fibrin, which aggregates to fibers and forms blot clots (Fig. 1). In
contrast to intrinsic coagulation, mediated by FXIIa, the
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extrinsic pathway of coagulation is initiated through exposure of
tissue factor (TF). TF binds and activates FVII to FVIIa, leading
to a TF:FVIIa complex that activates FIX and FX and is
inhibited by TF pathway inhibitor, which is primarily expressed
by endothelial cells and platelets. Especially, Ca2+-dependent
FVII, FIX, FX, and prothrombin require vitamin K-dependent
carboxylation of glutamic acid residues by hepatic gamma-
glutamyl-carboxylase. FV, FVIII, FXI, FXII, and FXIII, fibrin-
ogen aswell as the anticoagulant factors antithrombin III (ATIII)
and proteins C and S are synthesized and released by the liver
[4]. In contrast to all other coagulation factors listed above, FXII
deficiency impairs thrombus formation in vivo [5], but is not
associated with hemostatic abnormalities in mammals [6, 7].
Consistently, pharmacological inhibition of FXIIa provides
thromboprotection without an increase in therapy-associated
bleeding [8–10]. In addition to coagulation, FXIIa is a physio-
logical activator of the kallikrein–kinin system that culminates in
the generation of the proinflammatory mediator bradykinin
(BK, a peptide hormone). FXIIa proteolytically cleaves plasma
prekallikrein (PK), the precursor of the serine protease plasma
kallikrein (PKa), and PKa then liberates BK from high molecu-
lar weight kininogen (HK). Furthermore, PKa and FXIIa engage
in a feedbackmechanism amplifying their proteolytic activation.

BK binding to G protein-coupled B1 and B2 bradykinin recep-
tors (B1R and B2R) mediates various proinflammatory effects
such as vasodilation, pain sensation, and leukocyte adhesion and
chemotaxis [2, 3, 11]. Impaired regulation of the kallikrein–
kinin system leads to swelling disorders as seen in hereditary
angioedema (HAE), a rare life-threatening diseasewith recurrent
swelling episodes. HAE type I and type II are characterized by
deficiency and dysfunctionality, respectively, of C1 esterase in-
hibitor (C1INH), the major inhibitor of both FXIIa and PKa. As
a consequence, PK and HK levels decrease during acute swell-
ing attacks, which instigated the development of B2R inhibitors
to attenuate BK-mediated vascular permeability in HAE (see
below). Notably, FXII mutations that increase susceptibility
for autoactivation or prevent its inhibition through C1INH were
identified as causative for HAE type III that has normal C1INH
levels [12, 13].

FXII signalling

Intrahepatic inflammation and tissue repair are crucial pro-
cesses for the clinical outcome after liver injury. Liver fibrosis
and cirrhosis depend on immune cell recruitment and signal

Fig. 1 Overview of the plasmatic coagulation cascade. Negatively
charged surfaces activate factor XII (FXII) to FXIIa, triggering
proteolytic pathways of inflammation and coagulation. FXIIa cleaves
plasma prekallikrein (PK) to plasma kallikrein (PKa), that in turn
activates more FXII and liberates bradykinin (BK) from high molecular
weight kininogen (HK). FXIIa and PKa are inhibited by C1 esterase
inhibitor (C1INH). In addition, FXIIa activates factor XI (FXI) to FXIa
that cleaves factor IX (FIX) to FIXa; FIXa then activates factor X (FX) in
the intrinsic coagulation pathway. The extrinsic pathway starts with tissue
factor (TF) that activates factor VII (FVII) to FVIIa, which leads then to

FX activation. FXa generated by either pathway cleaves prothrombin to
thrombin that eventually activates fibrinogen to fibrin and also FXI in a
feed forward mechanism. In addition, factor VIII (FVIII) and factor V
(FV) are cleaved by thrombin, thereby facilitating the activation of FX
and prothrombin. The hemostatic balance is regulated by anticoagulant
proteins that inhibit activated coagulation factors, such as activated
protein C (APC) that blocks FVIIIa and FVa, antithrombin III (ATIII)
that blocks primarily FXa and thrombin, and tissue factor pathway
inhibitor (TFPI) that blocks the TF:FVIIa complex and FVa
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transduction pathways that promote hepatic fibrogenesis, such
as urokinase plasminogen activator receptor (uPAR) signal-
ling [14, 15]. In addition to FXIIa enzymatic activities, zymo-
gen FXII has biological activity and mediates signalling
through interaction of its two epidermal growth factor
(EGF)-homologous domains in the N-terminal region with
uPAR [16] (Fig. 2). FXII and HK compete for uPAR binding,
whereby FXII mediates and HK prevents uPAR signalling
[17]. FXII/uPAR interaction depends on Zn2+ ions that are
released locally from both activated platelets and neutrophils
[18]. Furthermore, β1-integrin and EGF receptor engage in
FXII/uPAR signalling that mediates extracellular signal-
related kinase 1/2 (ERK1/2) and AKT phosphorylation.
Through these pathways, FXII zymogen exerts mitogenic ac-
tivities in endothelial, alveolar, smooth muscle cells, and rat
fetal hepatocytes [19, 20]. Due to its proliferative activity,
FXII signalling promotes angiogenesis and it has been report-
ed that FXII-deficient mice have fewer skin vessels [17].
Several studies found that FXII signalling induces proinflam-
matory cytokine production in alveolar cells [21], monocytes
[22], macrophages [23], and dendritic cells [24]. The data
suggest that FXII signalling plays a role in multiple inflam-
matory disease settings. Furthermore, recent findings showed
that neutrophils express FXII, which promotes their activation
in an autocrine manner. FXII deficiency in neutrophils

interferes with migration and because the transfer of wild-
type bone marrow restores this phenotype, it was shown that
FXII from neutrophils, but not plasma, has a role in
neutrophil-mediated wound healing [18]. FXII expression
has also been found in lung fibroblasts in response to
transforming growth factor-β (TGF-β) [25] and can be in-
duced through steroid hormone binding to the F12 promoter
via estrogen-responsive elements [26]. Collectively, FXII sig-
nalling regulates cell activation in different tissues and pro-
motes inflammatory responses.

The FXII/uPAR-mediated pathway in hepatocytes sug-
gests that FXII autocrine signalling may participate in the
complex regulation of hepatocyte proliferation and liver re-
generation upon injury. Notably, liver disease has been asso-
ciated with increased expression of TGF-β [27, 28], which
was found to induce FXII in human lung fibroblasts [25]. At
least for pulmonary fibrosis, FXII signalling has been shown
to activate fibroblasts and might therefore also contribute to
the fibrous obstruction and parenchymal loss in late-stage cir-
rhosis [29]. FXIIa drives proteolytic cleavage of pro-
hepatocyte growth factor in vitro [30]. To what extent FXII
signalling or FXIIa-mediated activation of hepatocyte growth
factor contributes to liver regeneration in vivo remains to be
addressed in future research as few studies have investigated
the impact of contact system proteins on liver homeostasis so

Fig. 2 FXII signalling increases
mitogenic activity, angiogenesis,
and immune cell reactivity. Factor
XII (FXII) binds to domain 2 (D2)
of urokinase plasminogen
activator receptor (uPAR). Signal
transduction is facilitated by β1-
integrin and epithelial growth
factor (EGF), whereas high
molecular weight kininogen (HK)
competes with FXII for uPAR
binding. FXII signalling results in
(i) phosphorylation of
extracellular signal-related kinase
1/2 (ERK1/2), leading to cell
proliferation and angiogenesis
and (ii) phosphorylation of Akt2,
promoting neutrophil trafficking
and neutrophil extracellular traps
formation (NETosis). Modified
from LaRusch et al. [17]
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far. However, a recent study by Henderson et al. shows that
deficiency in HK, but not FXII, FXI, or PK, protects from
acetaminophen-induced liver injury [31]. HK cleavage exac-
erbates drug-mediated hepatotoxicity and promotes neutrophil
recruitment and proinflammatory cytokine expression inde-
pendently from B1R and B2R signalling. Thus, apart from
FXII signalling, other contact system proteins may have a role
in liver homeostasis.

Contact activation

Proinflammatory and prothrombotic effects of the contact sys-
tem promote endothelial dysfunction and hypercoagulability
which has clinical relevance for liver disease patients. FXIIa
initiates these pathways; thus, targeting contact activation that
prevents the autocatalytic cleavage of FXII through contact
with negatively charged surfaces appears as a promising ther-
apeutic approach in liver disease. FXII and other contact sys-
tem proteins have been found to assemble on membranes of
endothelial cells [16], neutrophils [32], and platelets [33].
Activation of the latter cell types releases negatively charged
mediators that trigger FXII contact activation and initiate the
downstream proteolytic cascade. Fibrin formation triggered
by FXII contact activation is the mechanistic basis of activated
partial thromboplastin time (aPTT) clotting assays. For this,
non-physiological polyanionic substrates (e.g., the white clay
material kaolin, silica or ellagic acid) are used as FXII activa-
tors. Consistently, negatively charged biomolecules such as
inorganic polyphosphate (polyP), polysaccharides, and DNA
have been identified as surfaces for FXII contact activation
in vivo [6, 34, 35]. The biopolymer polyP consists of linear
chains of orthophosphates connected by energy-rich
phosphoanhydride bonds. We recently found that polyP in
platelets and megakaryocytes is regulated by the phosphate
transporter xenotropic and polytropic retrovirus receptor 1
(XPR1) and that platelet-specific XPR1 deficiency causes
polyP accumulation and hypercoagulability, and promotes ve-
nous and arterial thrombus formation [36]. Procoagulant
polyP release has been shown for activated platelets, mast
cells, and basophils [37].

In addition to polyP, exposure of another polyanion, extra-
cellular DNA, has been identified to trigger FXII activation
in vivo [38]. Several sources for extracellular DNA in circu-
lation have been identified, including leukocytes, mast cells,
disintegrating bacteria and viruses, and liver tumor cells
[39–42]. Various pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns
(DAMPs) stimulate neutrophils to cast out their DNA into
the extracellular space, forming neutrophil extracellular traps
(NETs). Notably, FXII signalling contributes to the release of
NETs, but is only facilitated after uPAR translocates to the
plasma membrane upon neutrophil activation [18]. Similar to

polyP, an array of studies showed that NETs have implica-
tions for thrombotic and inflammatory reactions in vivo [35,
43–45]. Soluble DNA, as well as NETs induced by glucose
oxide or interleukin (IL)-8 stimulation of purified neutrophils,
can bind and activate FXII in vitro [46]. Confocal microscopy
of NETs induced by platelet-activated neutrophils showed that
the DNA backbone of NETs associates with FXII [35, 46].
However, whether NETs directly trigger FXII contact activa-
tion or merely act as a scaffold for the assembly of FXII
activators is still unknown [47]. Thrombin generation in the
presence of NETs is reduced in FXII- and FXI-deficient plas-
ma, indicating that the FXII–FXI axis mediates the
procoagulant activity of NETs, at least in vitro [48]. In addi-
tion, we showed that NETs alone are sufficient for vascular
occlusions during chronic inflammation in the absence of host
enzymes DNase1 and DNase1L3 in vivo [49]. Underlining
the importance of NETs for liver inflammation, DNase treat-
ment or inhibition of NETs via genetic ablation of peptidyl
arginine deaminase type IV reduces monocyte infiltration and
cytokine production in an experimental steatohepatitis model
[50]. Thus, cumulative evidence suggests that both platelet
polyP release and NET formation provide a surface for FXII
contact activation and are involved in pathophysiological liver
processes [51, 52].

Dysregulated coagulation in liver disease

The liver synthesizes and secretes most of the pro- and
anticoagulant factors into the plasma. Both the extrinsic
and intr insic pathways rely on expression, post-
translational modification, and the release of coagulation
factors from hepatocytes. Accordingly, liver disease is as-
sociated with variable degrees of coagulation disorders due
to alterations in the quality and quantity of coagulation fac-
tors [53]. The imbalance in mechanisms regulating coagu-
lation is further enhanced by insufficient hepatic secretion
of thrombopoietin, a hormone that induces megakaryocytes
to form mature platelets [54]. Aside from decreased pro-
and anticoagulant factors, stasis of venous blood flow
through damaged liver tissue increases the risk for portal
vein thrombosis (PVT) [4]. Thus, alterations of the hemo-
static balance are multifactorial and an array of coagulopa-
thies is associated with liver disease. Clinical diagnosis of
the hemostatic state in liver patients is difficult because
abnormal clotting test results often suggest a hemorrhagic
coagulopathy when patients appear rebalanced due to the
concomitant deficiency of both pro- and anticoagulant fac-
tors. Addressing the shortcoming of the prothrombin time
(PT)-based international normalized ratio (INR) in liver pa-
tients, thrombin generation tests have been introduced that
correct for anticoagulant protein C activity by addition of
soluble thrombomodulin [55]. As a result, the perception of
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liver disease as an isolated risk for bleeding changed to a
more complex view of liver disease-related coagulopathies
including hemorrhagic and thrombotic components [56].

Liver disease is associated with a procoagulant state

The severity of liver disease relates to the deficiency of coag-
ulation factors and delayed clotting times. A prolonged PT is
indicative for liver disease, and depletion of factors with a
short half-life, e.g., FV and FVII, is used as a prognostic
marker for acute liver failure (ALF) [53]. In contrast to ALF,
increased PT in chronic liver disease is linked to reduced FVII
expression and commonly assessed in prognostic indices,
such as Child-Pugh and Mayo end-stage liver disease [57].
Further disease progression additionally prolongs aPTT by
insufficient liver synthesis of FXII, FXI, PK, and HK [58].
In mild and moderate cirrhosis, fibrinogen may increase as an
acute phase reactant in plasma [59], whereas patients with
end-stage liver diseases may display decreased or functionally
abnormal fibrinogen [60]. Contrary to clotting test results,
bleeding disorders in liver disease patients are uncommon
(except for spontaneous leakage and rupture of varices), since
synthesis of both pro- and anticoagulant factors is decreased in
cirrhosis. However, the significance of thrombotic diseases in
cirrhotic patients [61, 62] and a hypercoagulable state in pa-
tients with primary biliary cirrhosis and primary sclerosing
cholangitis have been reported [63, 64]. Moreover, local ve-
nous thrombosis has been attributed to increased liver inflam-
mation and fibrosis, thereby promoting disease progression
[65].

Chronic liver inflammation promotes coagulation
disorders

Heterogenic etiologies of chronic liver inflammation entail
distinct alterations of the contact activation pathway. Non-
alcoholic fatty liver disease (NAFLD) is the most common
liver disease in the general population. One study showed
that 46% of NAFLD patients have thrombotic risk factors
that correlate with the extent of hepatic fibrosis [66].
Circulating FVIII, FIX, FXI, and FXII activities were found
to be increased in subjects with NAFLD compared to those
without NAFLD [67], underlining the impact of the coag-
ulation system for liver disease pathogenesis. Moreover,
NAFLD is accompanied by excessive synthesis of choles-
terol and free fatty acids, leading to increased release of
very-low-density lipoprotein (VLDL) particles into the cir-
culation. The lipoprotein component phosphatidylethanol-
amine (PE) has been found to trigger FXII contact activa-
tion in thrombin generation assays [68], suggesting that
elevated phospholipid levels contribute to blood coagula-
tion in dyslipidemia.

In contrast to NAFLD, a direct link between viral hepatitis
and impaired coagulation is less clear [69]. However, as with
other liver diseases, hepatitis is associated with cardiovascular
disease through dysregulated lipoprotein metabolism, which
may facilitate PE-driven FXII contact activation and thrombo-
inflammation [70, 71]. Consistent with aggravated immune
responses, hepatitis is also associated with the occurrence of
antiphospholipid syndrome, an autoimmune disorder that in-
creases thrombosis risk through autoantibodies targeting co-
agulation factors [72]. Besides antiphospholipid syndrome,
systemic lupus erythematosus is often diagnosed in patients
with autoantibodies that interfere with clinical coagulation
tests. Furthermore, case reports in which chronic liver disease
patients develop specifically anti-FXII autoantibodies indicate
that inhibition of the intrinsic coagulation can also occur sec-
ondary to liver inflammation [73]. Thus, inflammatory and
thrombotic mechanisms influence each other mutually in
chronic liver diseases.

In addition to the procoagulant balance, patients with ad-
vanced liver disease show a prevalence for hyperfibrinolysis
with low levels of α2-antiplasmin inhibitor and decreased
hepatic clearance of tissue plasminogen activator [53]; how-
ever, its clinical relevance has been disputed and it is not clear
whether changes are directly induced by liver disease or sec-
ondary to clotting activation [56]. Notably, consumption of
plasminogen increases in ALF and the fibrinolytic protease
plasmin exerts detrimental effects on acetaminophen-
induced ALF through HK cleavage [31, 74], suggesting that
thrombo-inflammatory pathologies in ALF are associated
with extrinsic pathway activation.

Platelet and neutrophil activation in liver disease

In the light of reduced contact system protein synthesis and
procoagulant and proinflammatory imbalance in liver pa-
tients, the presence of polyanions that drive contact activation
has implications for disease progression and hemostatic state.
Chronic liver disease is associated with mild to moderate
thrombocytopenia and platelet counts fall rarely below the
range of 30,000–40,000/mm3 [53]. Altered platelet
activatability in liver disease has remained controversial,
whereas the formation of platelet–leukocyte complexes is
consistently found to be increased [75]. It is currently un-
known to what extent platelet-derived polyP increases con-
tact activation in liver disease; however, a comparative
study provided evidence for increased platelet activation
in cirrhosis through low-grade endotoxemia [76]. On the
other hand, formation of neutrophil extracellular traps
(NETosis) is increased in acute and chronic liver disease
models and aggravates liver injury [77], suggesting that
increased activation (e.g., via platelet-neutrophil com-
plexes) and impaired NET clearance contribute to
procoagulant and proinflammatory functions of the contact
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system in liver disease. Notably, FXII signalling in neutro-
phils stimulates cell adhesion, migration, and NETosis
[18], indicating that FXII facilitates its activation via the
induction of NETosis that may contribute to a FXIIa-
driven procoagulant state in liver disease.

Malignancies and extracellular vesicles promote
thrombotic diseases

Chronic liver damage has been associated with an increased
risk for liver cancer. While some of the mechanisms that affect
the contact system in liver disease may persist in liver cancer
patients, others emerge that additionally play a role for the
hemostatic state in liver cancer patients. Hepatocellular carci-
noma (HCC) is the most common primary liver cancer with an
85–95% prevalence for liver cirrhosis among HCC patients
[78]. HCC is the fourth leading cause of cancer-related deaths
as it is usually diagnosed at a late stage, thereby limiting ther-
apeutic options [79]. HCC patients have an increased risk for
PVT and like other cancers, HCC is also associated with a
higher incidence of systemic venous thromboembolism
(VTE) [80, 81]. Similar to patients with advanced liver dis-
ease, synthesis of coagulation factors and their cognate inhib-
itors are reduced in HCC patients leading to coagulation dis-
orders that may even change during disease progression.
Moreover, endothelial activation and hemodynamic alter-
ations by HCC growth can tip the hemostatic balance towards
hypercoagulability. Furthermore, cancer cells can directly pro-
mote the coagulation cascade through the production of
procoagulant factors, and proinflammatory and proangiogenic
cytokines, and by interaction with endothelial and blood cells
[82]. Early studies indicated that cancer cells have an impact
on contact system activation. FXII, PK, and HK decrease in
plasma of patients with metastatic liver cancer and increased
contact system activation has been found in ascites from can-
cer patients [83, 84].

A relatively small number of studies investigated the con-
tact system in liver cancer. However, several lines of evidence
suggest that HCC exerts FXII signalling and influences con-
tact activation. Firstly, in HCC-derived HepG2 cells, but not
enteroendocrine L cells, FXII and FXIIa promote proliferation
[20], suggesting a specific effect of FXII/FXIIa signalling for
liver cell proliferation. Further research will show whether
FXII/FXIIa regulates HCC growth and liver fibrosis in vivo.
Secondly, consumptive deficiency of contact system proteins
in ascites and plasma from cancer patients suggests that the
tumor microenvironment modulates FXII expression, activity,
and activation [83, 84]. Notably, cancer cell-associated uroki-
nase-type plasminogen activator (uPA) that drives the gener-
ation of plasmin activates FXII and PK in vitro and uPA
expression has been shown to determine HCC tumor recur-
rence [85, 86]. The underlying mechanism remains to be
shown but these results indicate a possible role for FXII in

uPA-driven growth of HCC. Expression of FXII by HepG2
cells is inhibited through the proinflammatory cytokine IL-6,
and it has been suggested that FXII acts as a negative acute
phase protein [87]. Indeed, the reduction of FXII and PK
plasma levels has been reported in a murine sepsis model, in
which depletion of PK, but not FXII, is associated with bac-
terial growth inhibition in Streptococcus pyogenes sepsis [88].
Thus, limiting contact system proteins in response to inflam-
mation may have a beneficial effect on anti-HCC immune
responses as IL-6 inhibits FXII expression and potentially
decreases FXII signalling.

In addition to soluble factors, cancer cells contribute to
contact activation and cancer-associated thrombosis through
extracellular vesicles (commonly referred to as microvesicles
shed by cancer cells as well as endothelial cells, platelets and
leukocytes). Microvesicles are heterogeneous, nano-sized
vesicles that carry a variety of bioactive molecules (e.g., pro-
teins, mRNA, miRNA, DNA, and lipids) and expose
procoagulant factors on their surface [89, 90]. Microvesicles
promote coagulation through several mechanisms. Firstly,
they expose phosphatidylserine (PS) that supports the assem-
bly of coagulation factors. Likewise, FXII binding, and the
consecutive start of the intrinsic coagulation cascade through
PS externalization, is mediated by apoptotic cells that are
more frequent in proliferating tumors [91]. Secondly,
microvesicles express TF on the surface that drives the extrin-
sic pathway of coagulation and thirdly expose polyP that ini-
tiates the contact system [78, 92]. The latter has been shown
for prostasomes (microvesicles secreted by prostate cancer
cells) that are rich in polyP with a chain length of 200–1000
phosphate moieties. Prostasomes increase thrombin formation
in a FXII-dependent manner in prostate cancer patients,
whereas genetic and pharmacological inhibition of FXII and
polyP abrogates prostasome-induced thrombus formation
in vivo [93]. Thus, cancer-associated microvesicles induce a
hypercoagulable state through the extrinsic and intrinsic coag-
ulation systems. In cirrhotic HCC patients, the level of endo-
thelial, platelet, leukocyte, and PS-exposing microvesicles is
increased compared to that in cirrhotic patients [94], suggest-
ing that HCC aggravates hypercoagulability.

Besides microvesicles, other mediators for contact system
activation are abundant in cancer. Tissue necrosis and tumor
apoptosis elevate the level of polyP and extracellular DNA in
the circulation, originating from the tumor, non-tumoral cells
(e.g., neutrophils), and chemotherapy-associated apoptotic
cells [95]. Cancer cell-derived extracellular DNA and cyto-
kines induce neutrophilia and activate NET formation, thereby
contributing to tumor-associated thrombotic diseases [96].
Moreover, in a recent study by van der Windt et al., NETs
have been shown to promote the development of HCC in liver
disease [50]. Thus, NETosis and cancer progression influence
each other with implications for the cancer-associated hyper-
coagulable state (Fig. 3).
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Therapy and anticoagulation in liver diseases

Systemic inflammation, advanced age, immobility, and low
levels of endogenous anticoagulants make patients with liver
disease, especially decompensated cirrhosis, more prone to
VTE, PVT, atrial fibrillation, and other thrombotic complica-
tions [56]. Novel treatment strategies for liver disease-
associated coagulation disorders are needed. Inhibition of
FXII provides a safe target for thromboprotection without in-
creasing bleeding events [11]. Neutralization of FXIIa and
interference with polyP-dependent FXII activation prevent
pulmonary thromboembolism, ferric chloride-induced arterial
thrombosis, and prostate cancer-associated venous thrombosis
in animal models [10, 36, 93]. Moreover, clinical trials are
currently performed with FXIIa-blocking antibodies
CSL312/garadacimab (CSL Behring). Targeting FXIIa might
be beneficial for diseases with aberrant FXIIa activity, e.g., the
kallikrein–kinin system in HAE patients and thrombosis-
related complications in SARS-CoV-2 infections [97].
Especially, the absence of bleeding tendency by FXIIa block-
ade may support its use as a safe antithrombotic treatment in
liver disease because conventional direct oral anticoagulants
that prevent frequently occurring PVT in early-stage disease
will become inapplicable in patients with late-stage chronic
liver disease [98].

Furthermore, regulating BK signalling in liver disease po-
tentially interferes with inflammation, angiogenesis,

proliferation, and tumor autocrine signalling [99].
Consistently, the B2R antagonist icatibant (Firazyr, Takeda)
has been approved for HAE and is in trials for several other
indications, such as heart failure and SARS-CoV-2 infection,
while various other B1R and B2R antagonists are also cur-
rently investigated in cancer [99]. Notably, although anti-
inflammatory drugs may mitigate procoagulant processes,
their use in liver disease patients has not been recommend-
ed because of metabolic complications (e.g., hyperlipid-
emia and hypertriglyceridemia induced by inhibitors of cal-
cineurin and mammalian target of rapamycin) [100]. The
degradation of NETs offers another option to reduce in-
flammation and coagulation via the FXII/NET-axis.
Exogenous DNase is used to degrade the DNA backbone
of NETs in cystic fibrosis [101] and has been shown to
prevent NET clots [49], the progression from liver disease
to HCC [50], and cancer cell activation in mice [102].

Overall, liver diseases still pose a large unmet med-
ical need. Novel treatments that reduce hepatic inflam-
mation and reverse coagulation disorders while retaining
metabolic liver function in patients are required.
Targeting the contact system has the potential to miti-
gate thrombo-inflammation. In particular, inhibition of
FXIIa and NETosis may help early-stage liver disease
patients, as this could ameliorate hypercoagulability and
decelerate cirrhosis progression, without interfering with
hemostasis.

Fig. 3 Contact activation in liver disease. Liver disease is associated with
a hypercoagulable state, with portal vein thrombosis being the most
common thrombotic comorbidity. Polyphosphate (polyP) and
extracellular DNA (exDNA) released from hepatocellular carcinoma
cells and tumor-derived microvesicles trigger contact activation of
factor XII (FXII). Proinflammatory cytokines recruit immune cells,
such as neutrophils that increase exDNA through neutrophil

extracellular trap formation. Chronic liver inflammation leads to
cirrhosis, blood flow alteration, apoptosis, and autoantibodies that
contribute to the procoagulant condition and injury of the hepatic
vasculature. Platelet activation causes polyP release that triggers FXII
activation, leading in turn to thrombus formation via the intrinsic
pathway of coagulation
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Conclusion

The FXII-driven contact system promotes inflammation and
cell signalling; its direct contribution to liver disease however
remains to be elucidated. FXII signalling induces mitogenic
activity and angiogenesis, whereas the proteolytic activity of
FXIIa triggers BK-mediated inflammation and elicits a
prothrombotic state. In liver disease and HCC, coagulation
factor synthesis is impaired and a dysregulated contact system
potentially contributes to disease progression. Targeting me-
diators of contact activation like polyP and extracellular DNA
poses a novel opportunity for thrombosis prevention including
hypercoagulability in liver diseases. Further research is need-
ed to elucidate thrombo-inflammatory mechanisms and to
stratify liver disease patients in relation to their thrombotic
risk.
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