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Background: Sickle cell anemia may be associated with cognitive dysfunction, and some complications of sickle
cell anemiamight affect thosewith sickle cell trait (SCT), sowe hypothesized that SCT is a risk factor for cognitive
impairment.
Methods: The Reasons for Geographic and Racial Differences in Stroke (REGARDS) study enrolled a national co-
hort of 30,239white and black Americans from 2003 to 7, who are followed every 6months. Baseline and annual
global cognitive function testing used the Six-Item Screener (SIS), a validated instrument (scores range 0–6; ≤4
indicates cognitive impairment). Participants with baseline cognitive impairment andwhites were excluded. Lo-
gistic regressionwas used to calculate the association of SCTwith incident cognitive impairment, adjusted for risk
factors. Linear mixed models assessed multivariable-adjusted change in test scores on a biennially administered
3-test battery measuring learning, memory, and semantic and phonemic fluency.
Findings: Among 7743 participants followed for a median of 7·1 years, 85 of 583 participants with SCT (14·6%)
developed incident cognitive impairment compared to 902 of 7160 (12·6%) without SCT. In univariate analysis,
the odds ratio (OR) of incident cognitive impairment was 1·18 (95% CI: 0·93, 1·51) for those with SCT vs. those
without. Adjustment did not impact the OR. There was no difference in change on 3-test battery scores by SCT
status (all p N 0·11).
Interpretation: In this prospective cohort study of blackAmericans, SCTwasnot associatedwith incident cognitive
impairment or decline in test scores of learning, memory and executive function.
Funding: National Institutes of Health, American Society of Hematology.
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1. Introduction

Vascular risk factors are also risk factors for cognitive decline and im-
pairment, mediated partly by small, subclinical strokes [1–4]. Patients
with sickle cell anemia (SCA) may develop impaired cognitive function.
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Specifically, children [5] and adults [6] with SCA score lower on cognitive
test scores than controls and children with SCA are at risk for lower aca-
demic attainment [7]. Silent cerebral infarction is common in children
and adults with SCA [8], and white matter hyperintensities, a measure
of silent cerebral infarction, correlate with poorer neurocognitive out-
comes in these children [9]. SCA has also been linked with cognitive pro-
cessing speed independent of silent infarcts, but related to MRI-defined
whitematter integrity [10]. In a study of adults with SCA cortical and sub-
cortical brain volumeswere lower than controls, and these lower volumes
correlated with lower cognitive performance [11].
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Patients with sickle cell disease can develop impaired cogni-
tive function. We are not aware of prior evidence on the associa-
tion of sickle cell trait, the carrier state of sickle cell disease, with
risk of cognitive impairment in older adults, the group at greatest
risk of cognitive impairment.

Added value of this study

Findings showed no relationship of sickle cell trait with ad-
verse changes in several measures of cognitive function over
7·1 years follow up among 7743 African-Americans age 45 and
over. This new data is reassuring that unlike some disorders at-
tributed to sickle cell trait, including kidney disease and venous
thrombosis, cognitive decline is not.

Implications of the available evidence

It is not likely that patients aged 45 and older with sickle cell
trait develop pathological changes in the brain that lead to cogni-
tive impairment.
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Taken together, these findings suggest a hypothesis that SCA is a risk
factor for cognitive impairment viamultiple potentialmechanisms such
as sickling in small vessels causing occlusion, subclinical or clinical
stroke, or other metabolic abnormalities like increased inflammation
[12], coagulation activation [13] or hypoxemia [14,15]. Carriers of SCA,
i.e. those with sickle cell trait (SCT), have increased risk of kidney dis-
ease [16,17], venous thromboembolism [18,19] and perhaps stroke
[20–23]. Proposed mechanisms for these associations include sickling
in small vessels under conditions of hypoxia, and inflammation, hyper-
coagulability or other biochemical effects of subclinical sickling [13,24,
25].

We hypothesized that, given the known vascular contribution to
cognitive dysfunction (including small vessel disease of the brain), asso-
ciations of SCA with cognitive impairment and structural brain abnor-
malities, and the emerging evidence of associations of SCT with other
types of organ dysfunction, that adults aged 45 years and older with
SCT and normal cognitive function will be more likely to develop cogni-
tive impairment over several years follow-up than similar SCT-free indi-
viduals. Four longitudinally-administered cognitive performance tests
were evaluated.
Fig. 1. Flow diagram of participant inclusion.
2. Methods

2.1. Study participants and data collection

The REGARDS study is a longitudinal observational study investigat-
ing racial and geographic variation in incidence of stroke and acquired
cognitive impairment in the contiguous United States. Details of the
study design were published elsewhere [26]. Cohort participants were
randomly selected by mail and enrolled by telephone followed by an
in-home visit between 2003 and 7. The aim was to enroll 50% non-
Hispanic black and 50% non-Hispanic white participants aged 45 and
older, with 50% residing in the southeast. Exclusion criteria included in-
dividuals who indicated race other than black or white, cognitive im-
pairment precluding ability to complete a telephone interview, active
cancer within 1 year or undergoing treatment for cancer, amedical con-
dition preventing long term follow-up, residing in orwaiting for nursing
home residence, or inability to communicate in English [26]. Enrollment
results yielded a cohortwith 51% female and 42% black participants [26].

Baseline participant characteristics were obtained via a computer-
assisted telephone interview followed by in-home examination using
a standard protocol that included phlebotomy and shipment of blood
and urine samples to a central laboratory for storage and measurement
of glucose, lipid profile and kidney function [27]. SCT was determined
via genotyping using a TaqMan SNP Genotyping Assay (Applied
Biosystems/ThermoFisher Scientific) [16]. Among a subset of partici-
pants with available genomic data, ten principal components of ances-
try were determined using EIGENSTRAT to control for population
stratification [17,28].

The study methods were approved by the institutional review
boards at all participating institutions and all participants provided in-
formed consent. Boards included the University of Alabama at Birming-
ham Institutional Review Board for Human Use, the University of
Vermont Research Protections Office, the University of Cincinnati
Human Research Protection Program, the Wake Forest University Insti-
tutional Review Board, and the Columbia University Human Research
Protection Office,
2.2. Covariate measurements

Race was determined by participant self-report as black or white.
Age, sex, education, household income level, and region of residence
were determined by self-report. Education was categorized as less
than high school, high school graduate, some college, or college gradu-
ate and above. Income was categorized as $20,000/yr, $20,000 to
$34,999/yr, $35,000 to $74,999/yr, or N$75,000/yr. Current cigarette
smoking, alcohol use, exercise frequency, and use of medications were
determined by interview. Hypertensionwas defined as baseline systolic
blood pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg or
self-reported use of antihypertensive medications. Hyperlipidaemia
was defined as low-density lipoprotein N 130 mg/dl, or self-reported
use of a cholesterol-lowering medication. Diabetes was defined by a
fasting glucose N 126 mg/dl, nonfasting glucose N 200 mg/dl, or self-
reported use of antidiabetes medications. Coronary heart disease was
determined by self-reported myocardial infarction (MI), coronary ar-
tery bypass graft, angioplasty or stenting, or evidence of MI from base-
line electrocardiogram. Atrial fibrillation was defined as self-reported
or via electrocardiogram evidence. Left ventricular hypertrophy (LVH)
was defined by electrocardiogram. Estimated glomerular filtration rate
(eGFR) was calculated from serum creatinine using the Chronic Kidney
Disease Epidemiology Collaboration equation [29].
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2.3. Cognitive function assessments

Cognitive outcomes were studied in all participants in two ways,
considered here as co-primary outcomes: incident cognitive impair-
ment on a test of global cognitive function and longitudinal change of
cognitive domain test scores reflecting learning, memory and executive
function.

The study conducted global cognitive function testing using the Six-
item Screener (SIS), a validated telephone-administered instrument for
global cognitive function that assesses 3-item recall and orientation to
year, month, and day of the week, yielding a score from 0 to 6 correctly
answered questions [30,31]. A score ≤ 4 is considered positive for cogni-
tive impairment. The SIS was administered at baseline and then annu-
ally to all participants. The outcome of incident cognitive impairment
Table 1
Baseline characteristics by sickle cell trait status.

Covariate (N missing) All participants (N = 7743)

Age, years (0) 63·1 (8·9)
eGFR, ml/min/1·73 m2 (48) 90 (22)
Systolic Blood Pressure, mm Hg (21) 130 (17)
Log(ACR), mg/g (282) 2·4 (1·)
Sex (0)

Female 4898 (63·0%)
Male 2845 (37·0%)

Education (5)
bHigh School 1225 (15·8%)
High School graduate 2110 (27·3%)
Some College 2165 (28·0%)
College graduate 2238 (28·9%)

Income (0)
b$20 k 1814 (23·4%)
$20 k-$34 k 2018 (26·1%)
$35 k-$74 k 2213 (28·6%)
N$75 k 833 (10·8%)
Refused 865 (11·2%)

Region (0)
Belt 2565 (33·1%)
Buckle 1359 (17·6%)
NonBelt 3819 (49·3%)

Alcohol use (199)
Heavy 189 (2·5%)
Moderate 2047 (27·1%)
None 5308 (70·4%)

Smoking status (36)
Current 1283 (16·6%)
Past 2833 (36·8%)
Never 3591 (46·6%)

Exercise (93)
1–3 Times/Week 2934 (38·4%)
4+ Times/Week 2018 (26·4%)
None 2698 (35·3%)

Coronary heart disease (135)
No 6616 (87·0%)
Yes 992 (13·0%)

Left ventricular hypertrophy (131)
No 6582 (86·3%)
Yes 1, 044 (13·7%)

Diabetes (78)
No 5563 (72·6%)
Yes 2102 (27·4%)

Atrial fibrillation (192)
No 7001 (92·7%)
Yes 550 (7·3%)

Hyperlipidaemia (73)
No 5366 (70·0%)
Yes 2304 (30·0%)

Statin Use (25)
No 5576 (72·2%)
Yes 2142 (27·8%)

Hypertension (289)
No 2700 (36%)
Yes 4754 (64%)
was defined at the most recent assessment as of April 1, 2015, when
our analysis data set was closed.

Participants also completed a 3-test battery every two years that
evaluated measures of learning, memory and executive function [27].
Validated instruments were telephone-administered, including the
Consortium to Establish a Registry for Alzheimer's Disease (CERAD) bat-
tery to assessword list learning (WLL), delayed recall byword list recall
(WLR), semantic fluency by the Animal Fluency Test (AFT) score, and
phonemic fluency by the Letter F test [32–34]. WLL is the sum of
words learned over 3 trials, where participants are tested on immediate
recall of 10 words, with scores ranging from 0 to 30. WLR is the sum of
the same words recalled after a delay filled with intervening questions,
with a range of 0–10words. The AFT score is determined by the number
of animals a participant can name within 1-min. The Letter F score is
SCT
(N = 583)

No SCT (N = 7160) p-Value

62·9 (9·0) 63·1 (8·9) 0·48
86 (24) 90 (22) b0·0001
131 (17) 130 (17) 0·33
2·7 (1·4) 2·4 (1·3) b0·0001

388 (66·6%) 4510 (63·0%) 0·09
195 (33·4%) 2650 (37·0%)

90 (15·4%) 1135 (15·9%) 0·98
158 (27·3%) 1952 (27·3%)
167 (28·6%) 1998 (27·9%)
168 (28·8%) 2070 (28·9%)

153 (26·2%) 1661 (23·2%) 0·26
145 (24·9%) 1873 (26·2%)
150 (25·7%) 2063 (28·8%)
62 (10·6%) 771 (10·8%)
73 (12·5%) 792 (11·1%)

198 (34·0%) 2367 (33·1%) 0·58
109 (18·7%) 1250 (17·5%)
276 (47·3%) 3543 (49·5%)

23 (4·0%) 166 (2·4%) 0·01
133 (23·3%) 1914 (27·4%)
414 (72·6%) 4894 (70·2)

91 (15·7%) 1192 (16·7%) 0·03
189 (32·5%) 2644 (37·1%)
301 (51·8%) 3290 (46·2%)

221 (38·2%) 2713 (38·4%) 0·81
159 (27·5%) 1859 (26·3%)
199 (34·4%) 2499 (35·3%)

495 (86·7%) 6121 (87·0%) 0·84
76 (13·3%) 916 (13·0%)

484 (84·6%) 6098 (86·5%) 0·22
88 (15·4%) 956 (13·5%)

409 (71·1%) 5154 (72·7%) 0·42
166 (28·9%) 1936 (27·3%)

518 (91·4%) 6483 (92·8%) 0·20
49 (8·6%) 501 (7·2%)

398 (68·6%) 4968 (70·1) 0·46
182 (31·4%) 2122 (29·9%)

411 (70·5%) 5165 (72·4%) 0·33
172 (29·5%) 1970 (27·6%)

214 (38·7%) 2486 (36·0%) 0·21
339 (61·3%) 4415 (64·0%)
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determined by the number of words beginning with the letter F that a
participant can say within 1-min.
2.4. Inclusion/Exclusion criteria for analysis

We included black participants who had available data on baseline
and at least one follow up SIS, and with SCT genotyping. Participants
with hemoglobin SS or SC genotype, baseline cognitive impairment
(SIS ≤ 4), or who developed incident stroke were excluded from all
analyses.
Table 2
Baseline characteristics by incident cognitive impairment on the six-item screener.

Covariate (N missing) All participants
(N = 7743)

Incident
impairment
(N = 987)

No incident
impairment
(N = 6756)

Age, years (0) 63·1 (8·9) 68·6 (9·2) 62·3 (8·6)
eGFR, ml/min/1·73 m2 (48) 90 (22) 82 (23) 91 (22)
Systolic Blood Pressure,
mm Hg (21)

130 (17) 133 (18) 130 (17)

Log(ACR), mg/g (282) 2·40 (1·3) 2·64 (1·5) 2·34 (1·3)
Sex (0)

Female 4898 (63·0%) 541 (54·8%) 4357 (64·5%)
Male 2845 (37·0%) 446 (45·2%) 2399 (35·5%)

Education (5)
bHigh School 1225 (15·8%) 271 (27·5%) 954 (14·1%)
High School graduate 2110 (27·3%) 288 (29·2%) 1822 (27·0)
Some College 2165 (28·0%) 236 (24·0%) 1929 (28·6%)
College graduate 2238 (28·9%) 190 (19·3%) 2048 (30·3%)

Income (0)
b$20 k 1814 (23·4%) 335 (33·9%) 1479 (21·9)
$20 k-$34 k 2018 (26·1%) 283 (28·7%) 1735 (25·7%)
$35 k-$74 k 2213 (28·6%) 179 (18·1%) 2034 (30·1%)
N$75 k 833 (10·8%) 49 (5·0%) 784 (11·6%)
Refused 865 (11·2%) 141 (14·3%) 724 (10·7%)

Region (0)
Belt 2565 (33·1%) 323 (32·7%) 2242 (33·2%)
Buckle 1359 (17·6%) 163 (16·5%) 1196 (17·7%)
NonBelt 3819 (49·3%) 501 (50·8%) 3318 (49·1%)

Alcohol use group (199)
Heavy 189 (2·5%) 26 (2·7%) 163 (2·5%)
Moderate 2047 (27·1%) 213 (22·2%) 1834 (27·9%)
None 5308 (70·4%) 721 (75·1%) 4587 (69·7%)

Smoking status (36)
Current 1283 (16·6%) 157 (16·0%) 1126 (16·7%)
Past 2833 (36·8%) 370 (37·7%) 2463 (36·6%)
Never 3591 (46·6%) 455 (46·3%) 3136 (46·6%)

Exercise (93)
1–3 Times/Week 2934 (38·4%) 346 (35·6%) 2588 (38·7%)
4+ Times/Week 2018 (26·4%) 259 (26·7%) 1759 (26·3%)
None 2698 (35·3%) 367 (37·8%) 2331 (34·9%)

Coronary heart disease (135)
No 6616 (87·0%) 785 (80·8%) 5831 (87·9%)
Yes 992 (13·0%) 187 (19·2%) 805 (12·1%)

Left ventricular hypertrophy (131)
No 6582 (86·3%) 810 (83·3%) 5772 (86·8%)
Yes 1, 044 (13·7%) 163 (16·8%) 881 (13·2%)

Diabetes (78)
No 5563 (72·6%) 661 (67·4%) 4902 (73·3%)
Yes 2102 (27·4%) 320 (32·6%) 1782 (26·7%)

Atrial fibrillation (192)
No 7001 (92·7%) 885 (92·4%) 6116 (92·8%)
Yes 550 (7·3%) 73 (7·6%) 477 (7·2%)

Hyperlipidaemia (73)
No 5366 (70·0%) 632 (64·6%) 4734 (70·7%)
Yes 2304 (30·0%) 346 (35·4%) 1958 (29·3)

Statin (25)
No 5576 (72·2%) 677 (68·7%) 4899 (72·8%)
Yes 2142 (27·8%) 308 (31·3%) 1834 (27·2%)

Hypertension (289)
No 2700 (36%) 306 (32·7%) 2394 (36·7%)
Yes 4754 (64%) 629 (67·3%) 4125 (63·3)
2.5. Statistical analysis

Differences in baseline characteristics by SCT and incident cognitive
impairment on the SIS were analyzed by t-tests for continuous mea-
sures and chi-square tests for categorical measures. For incident cogni-
tive impairment based on the SIS, we used logistic regression to
calculate odds ratios (OR)with 95% confidence intervals (CI) by SCT sta-
tus. Statistical significancewas defined as p ≤ 0·05. Linearmixedmodels
were used to study association of SCT with repeated measures of WLL,
WLR and semantic and verbal fluency over time. Similar to prior
REGARDS reports, no random effects accounting for time between
tests were included [35]. For both types of analysis, multivariable
models were fitted to adjust for age, sex, education, income, region of
residence, eGFR, systolic blood pressure, alcohol use, smoking status, ex-
ercise frequency, coronary heart disease, LVH, atrial fibrillation, hyper-
lipidaemia, statin use, diabetes, and hypertension. Models were
repeated following removal of variables that were not significantly as-
sociated with the cognitive outcome. Censoring occurred at death or
withdrawal from the study.

The first sensitivity analysis addressed whether observed associa-
tions might be explained by other genetic factors associated with
African ancestry that are in linkage with SCT. Specifically, this was
done on the subset with available genetic ancestry information by
adding adjustment for African ancestry using thefirst ten principal com-
ponents of ancestry. A second sensitivity analysis for the association of
cognitive impairment by the SIS only, evaluated the cross-sectional as-
sociation of SCT with a SIS ≤ 4 compared to 5 or 6 using analogous re-
gression models to those for incident cognitive impairment in 9549
participants. This analysis involved baseline SIS values, so included par-
ticipants whose baseline impairment or lack of follow up assessments
excluded them from the analysis of of incident impairment.

Interactions between SCT and age (continuous variable), sex, and di-
abetes status were tested for in all analyses. Analysis was performed
with SAS 9.4.
Fig. 2. Sickle cell trait and longitudinal change in Word List Learning (WLL) and Delayed
Recall (WLR). Blue lines represent those with sickle cell trait and black lines those
without sickle cell trait. Models were adjusted for age, sex, education, income, region,
eGFR, systolic blood pressure, diabetes, alcohol use, smoking status, exercise frequency,
coronary heart disease, left ventricular hypertrophy, atrial fibrillation, hyperlipidaemia,
statin use, and hypertension. Note, y axis starts with a score of 5 words for ease of
displaying the data. Numbers below the figure show the sample sizes. Baseline SD of
Scores: WLL (SCT) = 5.0; WLL (No SCT) = 5.0; WLR (SCT) = 2.3; WLR (No SCT) = 2.2.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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2.6. Role of the funding source

The funding source had no role in the study design, collection, anal-
ysis and interpretation of data, authorship or decision to submit for
publication.

2.7. Data statement

There are restrictions to the open publication of a REGARDS dataset
but data may be requested per study policies at www.regardsstudy.org.

3. Results

Fig. 1 shows a flow diagramof participant inclusion in the analysis of
incident cognitive impairment by the SIS. Baseline characteristics by SCT
status are shown in Table 1. Among 7743 participants, 583 had SCT and
4898werewomen. Participantswith SCT had a lower eGFR compared to
those without SCT (86 vs. 90 ml/min/1·73 m2, p b 0·0001). The only
other covariates to differ significantly by SCT were alcohol use and
smoking status.

With median follow up of 7·1 years (range 0.4, 10.3 years), among
the 583 participants with SCT, 85 (14·6%) experienced incident cogni-
tive impairment, compared to 902 (11·7%) of those without SCT.
Table 2 shows baseline characteristics by incident impairment on the
SIS. Many baseline covariates had adverse levels in those with incident
impairment, including age, eGFR, systolic blood pressure, hypertension,
coronary heart disease, LVH, hyperlipidaemia and statin use. Thosewith
incident impairment also had lower education and income at baseline,
and were more likely to be men, than those without incident
impairment.

In the univariate analysis, the OR of incident cognitive impairment
by the SIS for those with versus without SCT was 1·18 (CI: 0·93,
1·51). Controlling for covariates, results were similar (OR 1·21; 95%
CI: 0·92, 1·60). Removal of covariates with p N 0·05 did not change in-
terpretation of the findings (OR 1·24 (95% CI 0·94, 1·64)). With addi-
tional adjustment for principal components of ancestry (available in
5638 participants) the adjusted OR of incident impairment was 1·23
Fig. 3. Sickle cell trait and longitudinal change in semantic fluency (Animal Fluency Test)
and phonemic fluency (Letter F Test). Blue lines represent those with sickle cell trait and
black lines those without sickle cell trait. Models were adjusted for age, sex, education,
income, region, eGFR, systolic blood pressure, diabetes, alcohol use, smoking status,
exercise, coronary heart disease, left ventricular hypertrophy, atrial fibrillation,
hyperlipidaemia, statin use, and hypertension. Note, y axis starts with a score of 5 words
for ease of displaying the data. Numbers below the figure show the sample sizes.
Baseline SD of Scores: Animal Fluency Test (SCT) = 5.3; Animal Fluency Test (No SCT)
= 5.2; Letter F (SCT) = 4.6; Letter F (No SCT) = 4.8. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
(95% CI: 0·88, 1·71). In the cross-sectional sensitivity analysis (done
due to the null findings) the OR of baseline cognitive impairment with
SCT was 0·99 (95% CI: 0·79, 1·25) in an unadjusted model and 1·13
(95% CI: 0·87, 1·46) after adjustment. Interaction p-values for age, sex
and diabetes status in all models were N 0·10.

The baseline characteristics of participants assessed for trajectories
of WLL and WLR, AFT, and the letter F test are shown in e-Tables 1–3.
There were 7078 participants who had at least 1 assessment of WLL
and WLR, of whom 517 had SCT. Those with SCT were more likely
than those without to have lower eGFR (86 vs 90 ml/min/1·73 m2; p
b 0·0001), hypertension (64% vs 60%; p = 0·04), and no alcohol use
(75% vs 70%, p = 0·03) and were similar in other characteristics.
There were 7296 (549 with SCT) participants included in the AFT anal-
ysis and 5946 for Letter F (446with SCT). The smaller numbers for some
outcomes were due to lags in results availability due to timing of results
scoring. Figs. 2 and 3 show that, both without and with multivariable
adjustment, there were no differences in the longitudinal change in
scores on any of these tests by SCT status. Fig. 2 indicates that WLL
andWLR remained relatively stable over time and did not show a differ-
ence in decline by SCT status. Fig. 3 shows that AFT and Letter F perfor-
mance worsened over time similarly in those with andwithout SCT. For
these cognitive domain score outcomes, there were no interactions of
SCT status and age, sex or diabetes status (all p N 0·26).

In the sensitivity analysis adjusting for the principal components of
ancestry, the sample sizes were as follows: WLL and WLR: n = 5192;
AFT: n = 5327; Letter F: n = 4353). The null associations of SCT with
change in cognitive test scores were not impacted by adjustment for
principal components (data not shown).

4. Discussion

In this large contemporary cohort of black Americans, there were no
associations of SCT with incidence of cognitive impairment or with
changes over time in test scores included in a 3-test battery assessing
learning, memory, and semantic and phonemic fluency. These findings
suggest that, unlike findings to date in SCA, biological consequences of
SCT do not appear to cause cognitive dysfunction.

While there is literature suggestive that SCA patients experience
cognitive dysfunction, to our knowledge, no prior studies evaluated
SCT and cognitive impairment [5–9]. It is established that SCT is associ-
ated with hypercoagulability [25] and risk of both venous thromboem-
bolism [19] and kidney disease [16–18,36,37]. In an autopsy series of
128 SCT patients, there appeared to be higher rates of visceral infarcts,
including in the brain, than thosewithout SCT (18% vs. b1%) [22,38]. Ad-
ditionally, SCT has been linked tomild cerebral vasculopathy in children
on imaging [39]. Although specific mechanisms are unclear, and the
findings are still debated, SCT may also be a risk factor for ischemic
stroke, but not in the largest study of older adults to date, which in-
cluded REGARDS participants [20–23]. Despite these findings, our re-
sults suggest that SCT does not lead to clinically significant cognitive
dysfunction in adults aged 45 and older.

Regardless of the null findings here, and lack of differences in associ-
ations by age in this population age 45 and older, wewould advocate for
a detailed study examining cognitive impairment in a younger cohort of
adults or in children. An estimated 11% of individuals with SCA experi-
ence a stroke before the age of 20, with the high risk period occurring
between ages 2–5; approximately 24% experience stroke by age 45
[40,41]. Additionally, there are imaging findings suggestive of silent ce-
rebral infarction, including decreased brain volume [42] and increased
white matter hyperintensities [8,9,11] in pediatric SCA patients. While
there isn't similar data on cognitive function, ameta-analysis on the im-
pact of stroke and silent cerebral infarction on the intelligence quotient
of patients with SCA indicated that those with prior stroke had an intel-
ligence quotient 10 points lower than those with silent cerebral infarc-
tion, while those with silent cerebral infarction had an intelligence
quotient 6 points lower than those without radiographic indications of
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silent cerebral infarction [43]. Given the evidence of early cognitive im-
pairment and silent cerebral infarction in patients with SCA, it is possi-
ble that the childhood brain could be more susceptible to effects of SCT.

Limitations of this study should be considered. Cognitive function as-
sessment ascertainment relied on participant contact by phone and in-
cident casesmay have beenmissed [26]. This issuewas partly mitigated
since we had a very large cohort, continuous decline in test scores could
be examined with high precision and cohort retention was high with
87.3% cumulative retention from enrollment in 2003–7 to January
2011 [44]. Regardless, this type of biaswould be predicted to bias results
toward the null. Although SCT is less commonamongnon-blacks, exclu-
sion of other racial groups means that our findings may not be general-
ized to these groups. In order to minimize the impact of stroke itself on
the associations of SCT with cognitive outcomes, we censored partici-
pants during followup at the time of stroke. This could have contributed
to the null findings we observed under an assumption that stroke is a
mechanismwhereby SCTmight lead to cognitive impairment. However,
this should not have been a factor in our findings since we recently re-
ported no association of SCT with risk of stroke in REGARDS, a finding
corroborated in three other cohorts including 19,000 participants [23].
It is possible that patients with SCT have undetected mild cognitive de-
cline or subtle differences in parameters such as cognitive processing
speed, that might be important to their functioning [10] and insensitive
to the cognitive measures used. It is also possible that there is clinical
relevance to the 20% increased odds of cognitive impairment based on
the six-item screener, although this associationwas not statistically sig-
nificant; the finding could be subject to type II error, but is consistent
with the rest of the null findings. Other risk factors for cognitive impair-
ment in REGARDS using this endpoint have had much higher relative
risk estimates (e.g., 1.6 formale sex, 2.1 for black race and2.2 for low ed-
ucation). Ongoing REGARDS research will classify participants on de-
mentia status and re-analysis of sickle cell trait with this endpoint will
be important. Finally, we did not include participants below age 45 or
oversample very old people, groups where any impact of SCT on cogni-
tive function might be different.

The strengths of this study include the prospective design and large
geographically dispersed cohort of over 8000 black Americanswith rep-
resentation ofmen andwomen. Incident cognitive impairment and lon-
gitudinal cognitive performance were carefully determined through a
variety of measures with robust null results across all of these. We in-
cluded people aged 45 and older, the age group with the highest likeli-
hood of cognitive impairment, allowing us a better possibility to detect
an association if one exists. Indeed, over a median of 7.1 years of follow
upwe had nearly 1000 cases of incident cognitive impairment based on
the SIS.

We present a detailed examination of the association of SCTwith in-
cident cognitive impairment and change in cognitive scores over time in
a large population sample of blacks, showing no important association.
The findings we present are clinically relevant, as they might be
reassuring to patients with SCT who are worried about cognitive func-
tion. The results suggest there is not cause for concern about cognitive
dysfunction for SCT patients in this age group and their primary care
providers. Further research is warranted to confirm our findings, partic-
ularly in younger individuals.
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