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College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China

Glioblastoma (GBM) is characterized by rapid and lethal infiltration of brain tissue, which
is the primary cause of treatment failure and deaths for GBM. Therefore, understanding
the molecular mechanisms of tumor cell invasion is crucial for the treatment of GBM.
In this study, we dissected the single-cell RNA-seq data of 3345 cells from four
patients and identified dysregulated genes including long non-coding RNAs (lncRNAs),
which were involved in the development and progression of GBM. Based on co-
expression network analysis, we identified a module (M1) that significantly overlapped
with the largest number of dysregulated genes and was confirmed to be associated
with GBM invasion by integrating EMT signature, experiment-validated invasive marker
and pseudotime trajectory analysis. Further, we denoted invasion-associated lncRNAs
which showed significant correlations with M1 and revealed their gradually increased
expression levels along the tumor cell invasion trajectory, such as VIM-AS1, WWTR1-
AS1, and NEAT1. We also observed the contribution of higher expression of these
lncRNAs to poorer survival of GBM patients. These results were mostly recaptured in
another validation data of 7930 single cells from 28 GBM patients. Our findings identified
lncRNAs that played critical roles in regulating or controlling cell invasion and migration
of GBM and provided new insights into the molecular mechanisms underlying GBM
invasion as well as potential targets for the treatment of GBM.

Keywords: single-cell RNA sequencing, glioblastoma, invasion, long non-coding RNA, survival

INTRODUCTION

Glioblastoma (GBM) is the most common primary malignant brain tumor, comprising 16% of all
primary brain and central nervous system neoplasms (Thakkar et al., 2014), with the average age-
adjusted incidence rate of 3.2 per 100,000 population (Ostrom et al., 2015). Due to fast and invasive
growth of the tumor, the current therapeutic option shows many limitations in its efficacy and
almost all patients present the progression of the disease with a mean progression-free survival of
7–10 months (Stupp et al., 2005) and a 5-year survival rate of less than 10% (Yang et al., 2019).
Though great endeavors have been performed in the past few decades, survival has not improved
significantly (Wolf et al., 2019). Therefore, determining the factors which are associated with the
invasion of glioblastoma is of great significance.
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Apart from protein-coding genes (PCGs), long non-coding
RNAs (lncRNAs), as one kind of important regulators in
biological development and disease progression (Batista and
Chang, 2013), were frequently reported to control the invasion
and metastasis of diverse cancer types, including glioblastoma.
For example, epigenetic silencing of LINC00632 could result
in the CDR1as depletion, which promoted invasion in vitro
and metastasis in vivo through a miR-7-independent, IGF2BP3-
mediated mechanism in melanoma (Hanniford et al., 2020).
The lncRNA-ATB was upregulated in hepatocellular carcinoma
and further promoted the upregulation of ZEB1 and ZEB2
by competitively binding the miR-200 family, which finally
induced epithelial-mesenchymal transition (EMT) and invasion
(Yuan et al., 2014). The gain-of-function or loss-of-function
experiments also validated the association of lncRNAs SChLAP1
and Zbtb7a with invasive prostate cancer (Prensner et al., 2013;
Wang et al., 2013). Although these studies contributed to the
understanding of tumor invasion, they mostly focused on few
lncRNAs. Besides, utilizing traditional experiment techniques
including bulk RNA sequencing also has limitations in revealing
the molecular mechanisms underlying GBM invasion.

Instead, single-cell RNA sequencing (scRNA-seq) generates
gene expression profiles at single-cell resolution (Tang et al.,
2009), which has emerged as a powerful tool to comprehensively
determine cellular states in healthy and diseased tissues
(Hovestadt et al., 2019). It has been applied to subtly characterize
the heterogeneity of diverse cancers and identify rare cell
populations as well as key factors associated with tumorigenesis
and progression (Chung et al., 2017; Li et al., 2017), which
also provides an unprecedented chance to capture the important
lncRNAs that participate in GBM invasion and precisely delineate
their roles during GBM progression.

In the current study, we took advantage of scRNA-seq
data to identify modules that showed significant overlap with
differentially expressed genes (DEGs). We integrated multiple
resources including EMT signatures, invasive markers and
pseudotime analysis to determine the GBM invasion-associated
lncRNAs and further validated our findings in an extra scRNA-
seq data set. Finally, our results of the present study could provide
new insights into pathological mechanism research and new
therapeutic target of GBM invasion.

MATERIALS AND METHODS

Quantification and Quality Control
The raw data for most of the analyses in this study were
downloaded from the GEO database (GSE84465). This data was
published by Darmanis et al. (2017) and included 3589 cells
from four primary GBM patients (BT_S1, BT_S2, BT_S4, and
BT_S6). The labels of malignant cells and normal cells were
provided by the authors. Raw reads were mapped to the human
genome (hg19) by Bowtie (version 1.1.1) (Langmead et al., 2009),
and the gene expression levels were quantified as transcripts
per million (TPM) using RSEM (version 1.2.28) (Li and Dewey,
2011) with the option estimate-rspd and default parameters. Log2
transformed TPM values with an offset of 1 were used to denote

expression levels. We excluded low-quality cells with less than
100,000 aligned reads or with less than 2000 detected genes. We
further discarded genes with the number of expressed cells less
than 50. As a result, we retained 998 GBM cells and 2347 normal
cells with 11520 PCGs and 1877 lncRNAs.

The processed data (GSE131928) for validation was
downloaded from the GEO database, which contains 6863
GBM cells and 1067 normal cells from 28 patients. This data was
published by Neftel et al. (2019). We excluded PCGs with less
than 50 expressed cells or lncRNAs with less than 5 expressed
cells. Finally, we retained 11441 PCGs and 585 lncRNAs.

Differential Expression Analysis and
Functional Annotation
We used the MAST software package (version 1.14.0) (Finak
et al., 2015) to identify genes that were differentially expressed
in malignant cells compared with normal cells. Briefly, this
probabilistic method takes log-transformed TPM values as input
and uses the shrinkage variance estimate obtained by the
empirical Bayes method. The genes with an absolute logFC > 1
and FDR < 0.05 were considered as significantly DEGs.

Then, the functional annotation and pathway enrichment
analysis of genes were implemented by ClueGO (Bindea et al.,
2009) with the threshold of FDR < 0.05.

WGCNA Analysis
The co-expression network analysis was performed using
Weighted Gene Co-Expression Network Analysis (WGCNA,
version 1.69) (Langfelder and Horvath, 2008). The TPM values
of PCGs were used as input for module detection. First, the soft
threshold for network construction was selected, which was 6
here. The soft threshold made the adjacency matrix to be the
continuous value between 1 and 20, so that the constructed
network was conformed to be the power-law distribution and
was closer to the real biological network state. Second, the scale-
free network was constructed using blockwiseModules function,
followed by the module partition analysis to identify gene co-
expression modules, which could group genes with similar
patterns of expression. The modules were defined by cutting
the clustering tree into branches using a dynamic tree-cutting
algorithm and assigned to different colors for visualization.
Finally, we obtained three modules containing less than 1000
member genes. The co-expression network of each module was
exported using exportNetworkToCytoscape function and further
visualized by Cytoscape (version 3.6.0) (Shannon et al., 2003).

The Effects of LncRNAs on Clinical
Outcomes of GBM Patients
The expression profiles of 165 GBM samples from TCGA
were downloaded from https://osf.io/gqrz9/ (Tatlow and Piccolo,
2016), with the clinical information for survival analysis obtained
from the public cBio Cancer Genomics Portal1 (Cerami et al.,
2012; Gao et al., 2013). The overall survival and disease-free
survival were used as the end points. The Kaplan–Meier method

1http://www.cbioportal.org
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was used for the visualization purposes and the differences
between survival curves were calculated by log-rank test. The
P values less than 0.05 were considered to be statistically
significant. All of these statistical analyses were performed using
R software2, version 3.4.4.

Clustering of GBM Cells in Validation
Data From Neftel et al. (2019)
Clustering cells was performed using Monocle (version 2.6.4)
(Trapnell et al., 2014) with regressing out the patient effect. We
used the reduceDimension function, which actually used the lmFit
function in R package limma (Ritchie et al., 2015) to remove
the patient effect on gene expression. We selected genes with
average expression level more than 0.1 and high dispersion for
clustering, which were marked using setOrderingFilter function.
Then clusterCells function was used to cluster cells in an
unsupervised manner, with parameters rho_threshold = 2 and
delta_threshold = 4. Monocle employs a density-based approach
(Rodriguez and Laio, 2014) to automatically cluster cells based on
each cell’s local density (rho_threshold) and the nearest distance
(delta_threshold) to another cell with higher distance. Certain
cells with local density and distance more than the thresholds are
considered as the density peaks, which are then used to identify
the clusters for all cells. We finally identified 15 cell clusters in
validation data from Neftel et al. (2019)

Estimation of Activity for
Diverse Signatures
The GSVA scores of EMT were calculated using predefined
gene sets (Supplementary Table 1) extracted from the
Molecular Signatures Database (MSigDB) (Liberzon et al.,
2011). For invasive scores and cell type scores, we calculated
the mean expression levels of GBM invasion-associated
genes which were manually extracted from previous studies
(Supplementary Table 1) and brain cell type-specific markers
defined by Darmanis et al. (2015).

RESULTS

The Characterization of the Dysregulated
Transcriptome in GBM
Although previous studies have reported the close relationships
of PCGs and lncRNAs with cancers using bulk RNA sequencing
data (Chen Q. et al., 2018; Tao et al., 2020), few have focused
on the roles of lncRNAs in tumorigenesis and progression of
GBM at single-cell level. To address this issue, we initially
downloaded the single-cell RNA-seq data of 3589 cells from
four GBM patients [published by Darmanis et al. (2017)]. After
preprocessing and quality control (see section “Materials and
Methods”), we retained 998 GBM cells and 2347 normal cells
with 11520 PCGs and 1877 lncRNAs. Compared with PCGs, most
of lncRNAs showed relatively lower expression levels on average
(Figure 1A). However, we also observed a small part of lncRNAs
had comparably high expression levels with PCGs. And lncRNAs
had more variable expression as shown by the high coefficient of
variation (CV) for averaged expression than PCGs (CV = 2.98

for lncRNAs and CV = 2.09 for PCGs), suggesting their potential
functional relevance. This was supported by the observations that
the Spearman rank correlation coefficients calculated between
any two cell pairs for lncRNAs were significantly lower than those
for PCGs in both GBM cells and normal cells (Wilcoxon rank
sum test, P < 0.001, Figure 1B).

To capture the functional molecules during tumorigenesis,
we further utilized MAST (Finak et al., 2015), which was
specifically designed for single-cell RNA-seq data to identify the
DEGs between GBM and normal cells (see section “Materials
and Methods”). We totally identified 2050 upregulated and 385
downregulated PCGs (Figure 1C and Supplementary Table 2),
among which TNC (Nie et al., 2015; Xia et al., 2016), IGFBP2
(Hsieh et al., 2010; Patil et al., 2015), and EGFR (Giannini
et al., 2005; Beck et al., 2011) ranked in the top 10 DEGs
and were all reported to be associated with gliomagenesis and
GBM invasion. Functional enrichment analysis revealed that the
upregulated PCGs were involved in biological processes like
glial cell differentiation, glial cell proliferation and regulation of
neurotransmitter transport and the downregulated PCGs mainly
participated in defense response and regulation of neurons,
such as myeloid leukocyte mediated immunity, regulation of
leukocyte apoptotic process, cytokine production involved in
immune response and negative regulation of neuron apoptotic
process (Supplementary Figure 1). Moreover, we obtained 72
upregulated and 9 downregulated lncRNAs (Figure 1C and
Supplementary Table 2). Besides some well-known cancer-
associated lncRNAs such as LINC01158 (Li Y. et al., 2018),
LINC00461 (Dong et al., 2019), XIST (Yu et al., 2017), and
HOTAIRM1 (Li Q. et al., 2018), we also identified several
potential GBM progression-associated lncRNAs like POLR2J4,
WWTR1-AS1, and VIM-AS1.

Identification of GBM-Associated
Modules at Single-Cell Level
Since genes usually synergistically play important roles in
tumorigenesis, we performed WGCNA (Langfelder and Horvath,
2008) on the PCG expression profiles of GBM cells to identify
highly co-expressed clusters of genes (see section “Materials and
Methods”). We finally obtained three modules (M1, M2, and
M3), which contained 53, 37, and 30 genes, respectively. The
genes in each module were highly connected to form a tight
network structure (Figure 2A), showing strong correlations of
expression levels with each other (Supplementary Figure 2).
To determine the contribution of each module to gliomagenesis
and progression, we performed the functional enrichment
analysis of module genes. M1 genes were mainly involved
in cell-cell adhesion, wound healing and spreading of cells,
cell migration and positive regulation of lipid localization
(Figure 2B). M2 genes were only enriched into one biological
process of smooth muscle cell migration and there were no
functions enriched by M3 genes. The pathway enrichment
analysis on the genes in the three modules revealed that
M1 genes were involved in human complement system,
zinc homeostasis and senescence and autophagy in cancer
(Supplementary Figure 3). M2 genes were only enriched into
p52 signaling pathway while none pathways were enriched by
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FIGURE 1 | Characterization of dysregulated transcriptome in GBM at single cell level. (A) Scatter plots evaluating the average expression levels of PCGs (left) and
lncRNAs (right) with their variations across cells, respectively. (B) Comparison of correlation coefficients between cells which were calculated based on the
expression levels of PCGs, lncRNAs and housekeepers in GBM cells (left) and normal brain cells (right). (C) Heatmaps showing the top 100 upregulated PCGs and
top 100 downregulated PCGs (left) and all differentially expressed lncRNAs (right). Each row represents one PCG or lncRNA and each column represents a cell.
Orange denotes the GBM cells and blue denotes the normal cells.

M3 genes. Moreover, we found that M1 showed a significant
overlap with DEGs (hypergeometric test, P = 8.76 × 10
−21), accounting for 75.5 percentage (40/53) of module genes
(Figure 2C). M2 contained 11 DEGs, which accounted for 29.7
percentage (11/37) of modules, while there was no significant
overlap between M3 genes and DEGs since M3 contained
only one DEG. These results implied the critical roles of
these modules in the tumorigenesis and progression of GBM,
especially for M1.

Determination of GBM
Invasion-Associated Module
Since M1 was the most significant and largest module that
enriched for DEGs, we further assessed its contribution to GBM

progression. Most M1 genes showed relatively high positive
correlations of expression levels with each other, except for
CD99, MTRNR2L1, and MTRNR2L2 (Figure 3A). Notably,
many DEGs in M1 have been reported to be associated with
migration and invasion. For example, EPAS1 was an important
transcription factor (TF) that was validated to promote the
invasive potential of GBM cells by our previous work (Pang
et al., 2019). Many studies revealed that ANX family proteins
(ANXA1 and ANXA2), especially ANXA2, could promote cancer
progression including proliferation, invasion and metastasis
(Chen C.Y. et al., 2018). The S100 proteins such as S100A11
could promote GBM progression through ANXA2-mediated
NF-κB signaling pathway (Tu et al., 2019) and S100A10 could
form heterotetramers with ANXA2 to promote the activation of
matrix metalloproteases (MMPs) to increase the invasive ability
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FIGURE 2 | Co-expressed modules identified by WGCNA. (A) The co-expression network of module M1, M2, and M3, visualized by Cytoscape. (B) Functional
annotations for genes in M1 and M2, which were implemented by ClueGO. There were no functions enriched by M3 genes. (C) Venn diagrams showed the
significant overlaps of genes in each module with differentially expressed genes, except for M3. P values were calculated by hypergeometric test.

of tumor cells (Chen C.Y. et al., 2018). Interestingly, ANXA1,
ANXA2, S100A10, and S100A11 were all contained in M1 and
represented high correlation, especially for ANXA2 and S100A10.
These observations suggested the potential association of M1
with GBM invasion.

To validate the above observations, we combined the results
from our previous work (Pang et al., 2019), in which we identified
12 cell clusters using the same data set. And cluster 3, 4, 7,
and 9 showed relatively higher expression of EMT-associated
genes. Here, we calculated the mean expression levels of M1
genes as the M1 scores in each cell of clusters and found that

cluster 3 displayed the highest M1 scores, followed by cluster
7 and 9 (Figure 3B), which was consistent with our previous
observations. However, we similarly calculated the M2 and M3
scores and found that cluster 5 and 10 showed higher M2 scores
and cluster 4 and 11 showed higher M3 scores (Supplementary
Figure 4). Further, we collected experimentally validated genes
that could contribute to the invasive ability of glioblastoma cells
(such as ZEB1, HNRNPC, WNT5A, and DRAM1) to evaluate
the invasive scores for each cell (see section “Materials and
Methods”). Similar results were observed that those three cell
clusters were the top-ranked ones with high invasive scores
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FIGURE 3 | The correlation of M1 with GBM invasion. (A) Heatmap showing the Spearman correlation coefficients of expression levels for any gene pair in M1.
(B) Boxplots showing the M1 scores (top) and invasive scores (bottom) of each cell cluster identified by our previous work using the same data. The GBM
invasion-associated markers were manually extracted from previous studies. (C) Barplots in the middle showing the significant Spearman correlation coefficients of
top 100 positively (left) and negatively (right) lncRNAs between their expression levels and M1 scores. In the examples of lncRNAs, boxplots represent the expression
levels of the corresponding lncRNA in tumor cells and normal cells, while barplots represent the proportion of cell with their detected expression.

(Figure 3B), which further supported the contribution of M1
to GBM invasion.

Identification of GBM
Invasion-Associated LncRNAs
Given the close association of M1 with GBM invasion, we
next calculated the Spearman rank correlation coefficients
between the expression levels of each lncRNA and M1 scores

across all GBM cells and identified 1264 significantly correlated
lncRNAs (including 611 positively correlated lncRNAs and
653 negatively correlated lncRNAs, Supplementary Table 3),
which were considered as GBM invasion-associated lncRNAs.
The top 100 positively and negatively correlated lncRNAs
were shown in Figure 3C. For example, among the positively
correlated lncRNAs, VIM-AS1 ranked among the top one with
the correlation coefficient of 0.56, which was upregulated in
GBM cells with a higher expressed proportion (72.7%) compared
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FIGURE 4 | Pseudotime and survival analysis of invasion-associated lncRNAs. (A) Scatter plots showing the expression levels of three example lncRNAs
(RP11-161H23.5, CTD-2369P2.8, and RP11-342D11.2) increase as a function of pseudotime in “stem-to-invasion” path that identified in our previous work,
containing state 1, 2, 3, 5, 6, and 8 cells. A natural spline was used to model gene expression as a smooth, non-linear function over pseudotime. (B) Comparison of
overall survival among patients with high expression levels of these three lncRNAs (red line) and those with low expression levels of corresponding lncRNAs (green
line) by Kaplan–Meier analysis (with log-rank P values) in the cohort of 165 GBM patients. The patients were divided into two groups based on the average
expression level of corresponding lncRNAs across all patients. (C) Comparison of disease-free survival among patients with high expression levels of these three
lncRNAs (red line) and those with low expression levels of corresponding lncRNAs (green line) by Kaplan–Meier analysis (with log-rank P values) in the cohort of 165
GBM patients. The patients were divided into two groups based on the average expression level of corresponding lncRNAs across all patients.

to normal cells (26.2%). Previous studies also revealed that
the high expression of VIM-AS1 was positively associated with
patients’ worse prognosis (Suo et al., 2020). Other lncRNAs
like WWTR1-AS1 and LINC00665 similarly showed significantly
higher expression levels and cell proportions in tumor cells.

For negatively correlated lncRNAs, ENSG00000254528 (RP11-
728F11.4) and ENSG00000267062 (CTD-2659N19.10) ranked
among the top four and ten, both of which showed significantly
higher expression levels in GBM cells and nearly no expression
in normal cells. Notably, VIM-AS1 and WWTR1-AS1 were
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the top two lncRNAs with the highest correlations between
their expression levels and pseudotime along the “stem-to-
invasion path” in our previous work (Pang et al., 2019).
These findings promoted us to explore the dynamic changes
of GBM invasion-associated lncRNAs along the “stem-to-
invasion path.” We found that the expression levels of
many lncRNAs such as ENSG00000258232 (RP11-161H23.5),
ENSG00000267607 (CTD-2369P2.8), and ENSG00000238258
(RP11-342D11.2), gradually increased as cells transferred from
cancer stem cell-like state to invasive state (Figure 4A). These
consistent results confirmed the potential roles of these lncRNAs
on GBM invasion.

Given that cancer-associated mortality is principally
attributable to the development of invasion and metastasis,
we speculated that these GBM invasion-associated lncRNAs
might be of importance in determining patient outcomes. Next,
we performed survival analysis using the expression profiles
and clinical information of 165 GBM patients (see section
“Materials and Methods”). Among invasion-associated lncRNAs,
several of them showed significant correlations with prognosis of
patients. For example, the overall survival (OS) of patients with
high expression levels of ENSG00000258232 (RP11-161H23.5),
ENSG00000267607 (CTD-2369P2.8), and ENSG00000238258
(RP11-342D11.2) were significantly shorter than those with
low expression levels (P = 0.014, P = 0.009, and P = 0.0052,
respectively, Figure 4B). Moreover, patients with high expression
levels of these three lncRNAs also had worse disease-free
survival (DFS) than those with low expression levels (P = 0.048,
P = 0.0048, and P = 0.016, respectively, Figure 4C). These results
suggested potential implication of invasion-associated genes in
GBM tumorigenesis, progression and prognosis.

Validation of the Invasion-Associated
Module and LncRNAs by Extra Data
of GBM
To validate the contribution of M1 genes and lncRNAs to
GBM invasion, we downloaded another single-cell RNA-seq
data of 28 GBM patients [published by Neftel et al. (2019)].
After quality control, we retained 6863 GBM cells and 1067
normal cells with 11441 PCGs and 585 lncRNAs, in which the
numbers of commonly detected PCGs and lncRNAs in both
data sets were 11441 and 192, respectively. In this validation
data, we identified 1676 DEGs and 13 dysregulated lncRNAs
(Supplementary Table 4), among which 1066 DEGs and 6
dysregulated lncRNAs were shared by both data sets.

We recaptured the modularity of M1 genes in this validation
data as they showed stronger co-expression pattern compared
to the other two module genes (Figure 5A), suggesting
their functional synergy. The similar patterns were observed
in data from children and adults with GBM, respectively
(Supplementary Figure 5). To determine whether M1 genes were
involved in GBM invasion, we first used Monocle (Trapnell et al.,
2014) to group GBM cells into 15 clusters, excluding patient-
specific effects with linear regression (see section “Materials
and Methods,” Figure 5B and Supplementary Figure 6). Each
cluster consisted of cells from multiple patients (Supplementary

Figure 7). Then we calculated the EMT, invasive and M1 scores
as above for each cell and found that they showed quite similar
distribution patterns (Figures 5B,C). Cluster 5 and 6 consistently
had the highest scores, followed by cluster 4, 14, and 15, which
located adjacent to each other in the transcriptome space of
Figure 5B. These results again confirmed the association of M1
genes with GBM invasion.

Therefore, we calculated the Spearman rank correlation
coefficients between the expression levels of each invasion-
associated lncRNA identified in data from Darmanis et al.
This resulted in 71 significantly correlated lncRNAs (including
49 positively correlated lncRNAs and 22 negatively correlated
lncRNAs, Supplementary Table 5) among the 192 commonly
detected lncRNAs. Notably, NEAT1 was the top one lncRNA
with a positive correlation coefficient of 0.54 in validation data
(Figure 5D), which also ranked among the top 63 in the data from
Darmanis et al. Moreover, the high expression level of NEAT1
was significantly correlated with poor OS and DFS of patients
(Figure 5E), which was accordant with the roles of NEAT1
in promoting malignant phenotypes and progression of GBM
(Chen Q. et al., 2018; Zhou et al., 2019). All these results again
validated the contributions of the identified lncRNAs to GBM
invasion and progression.

DISCUSSION

The fast and invasive growth is the hallmark of GBM, which
is a major factor contributing to dismal outcomes (Du et al.,
2008). Therefore, understanding the molecular mechanisms
underlying tumor cell invasion and migration is crucial for
the treatment of GBM. Although previous studies have made
massive efforts to identify many PCGs and lncRNAs promoting
glioblastoma cell invasion using bulk sequencing data, few have
actually achieved successful clinical application. In this study, we
utilized single-cell RNA-seq data from multiple GBM patients
to dissect invasion-associated factors including lncRNAs, which
provided new insights into the development and progression
of glioblastoma.

Central to our understanding of glioblastoma biology is
the idea that a subpopulation of glioblastoma stem cells
drives tumorigenesis and progression (Singh et al., 2004).
Lan et al. (2017) analyzed the growth dynamics of GBM
clones and revealed that the initiation of human GBM
may result from the aberrant reactivation of a normal
developmental program. Couturier et al. (2020) compared
the lineage hierarchy of the developing human brain to the
transcriptome of 53586 adult glioblastoma cells at single-cell
level and found that glioblastoma development recapitulates a
normal neurodevelopmental hierarchy. These findings suggested
the important roles of the development system in tumorigenesis
and progression of GBM and were also supported by many
other studies (Filbin et al., 2018; Yuan et al., 2018). Consistently,
in this work, we identified dysregulated PCGs and lncRNAs
and the functional enrichment analyses showed that these
PCGs participated in brain development-associated biological
processed, such as glial cell differentiation and glial cell
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FIGURE 5 | Validation of invasion-associated M1 and lncRNAs using data from Neftel et al. (2019) (A) Heatmap showing the Spearman correlation coefficients of
expression levels for any gene pair in M1, M2, and M3. (B) T-SNE plots of tumor cells showing 15 clusters and the EMT scores, invasive scores and M1 scores in
each cell. Red denotes high scores and blue denote low scores. (C) Comparison of EMT scores, invasive scores and M1 scores in cells of each cluster, indicating
the similar distribution as cluster 5, 6, 14, and 15 display relatively higher scores. (D) List of commonly identified positively (left) and negatively (right) lncRNAs as well
as their Spearman correlation coefficient with M1 scores in this validation data. (E) Comparison of overall (top) and disease-free (bottom) survival among patients with
high expression levels (red line) of lncRNA NEAT1 and those with low expression levels (green line) by Kaplan–Meier analysis (with log-rank P values) in the cohort of
165 GBM patients. The patients were divided into two groups based on the average expression level of NEAT1 across all patients.
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proliferation. This implied that we indeed captured the potential
key factors contributing to GBM initiation and progression.

Since invasion and metastasis are the late events during
the course of multi-step tumor progression (Lambert et al.,
2017), which result in the vast majority of deaths from cancer
(Coghlin and Murray, 2010), we seek to identify critical factors,
especially lncRNAs, that are involved in the regulation of
GBM invasion. Given the lack of functional annotation of
lncRNAs, we first identified co-expressed PCG modules by
WGCNA to determine the invasion-associated genes. Among
the three modules, M1 significantly enriched the largest number
of differentially expressed PCGs, many of which have been
reported the association with GBM invasion, such as EPAS1,
ANXA2 and its target gene OSMR (Matsumoto et al., 2020).
And ANAX2 was also the target of lncRNA LINC00941, which
was one of the invasion-assocaited lncRNAs. Previous studies
have revealed that S100A10 could form a heterotetramer with
ANXA2 to promote tumor cell invasion (Chen C.Y. et al.,
2018) and S100A11 could also interact with ANXA1 which
is a Ca 2+-regulated phospholipid-binding protein (Boudhraa
et al., 2016) to form Ca 2+-dependent heterotetramers. These
genes were all contained in M1 with high expression in GBM
cells, underlying the functions of cellular response to cadmium
ion (Figure 2B) enriched by M1 genes, which might be a
potential molecular mechanism of GBM invasion. Surprisingly,
although most of M1 genes showed positive correlations, CD99,
MTRNR2L1, and MTRNR2L8 were negatively correlated with
others. As it has been widely reported that overexpression of
CD99 could increase the migration and invasiveness of GBM
cells (Seol et al., 2012; Cardoso et al., 2019), we deduced
that although CD99 and other invasion-associated PCGs play
key roles in regulating tumor cell invasion, their mediated
mechanisms were distinct and redundant, resulting in their
mutually exclusive expression patterns. Moreover, combining
our previous work for characterization of cell clusters and
construction of progression trajectory, we further confirmed
the contribution of M1 to GBM invasion as M1 genes showed
relatively high expression in cell clusters with high EMT
and invasive scores. Interestingly, we calculated the average
expression levels of cell type-specific markers defined by
previous study (Darmanis et al., 2015) as the cell type scores
in each cluster and found that cluster 3, 4, 7, and 9 with
higher M1 scores consistently showed the highest expression
levels of microglia cell markers (Supplementary Figure 8),
implying the roles of microglia in GBM invasion. These
observations were also recaptured in another single-cell RNA-
seq data of GBM, suggesting the accuracy and repeatability
of our findings.

Based on the determination of the invasion-associated
module, we further identified the invasion-associated lncRNAs.
In data from Darmanis et al., we found that VIM-AS1 and
WWTR1-AS1 ranked among the top 1 and 6 in positively
correlated lncRNAs with higher expression in GBM cell
compared to normal cells. Notably, their expression gradually
increased along the “stem-to-invasion path” in our previous
work (Pang et al., 2019), confirming their roles in GBM
invasion. In validation data from Neftel et al. (2019) NEAT1

was the top one positively correlated lncRNA and MIAT
was the top one negatively correlated lncRNA, consistent
with their roles in GBM progression that increased NEAT1
could promote proliferation, malignant phenotypes and
TMZ resistance (Bi et al., 2020) and high expression of
MIAT is associated with prolonged survival (Bountali et al.,
2019). However, we did not recapture the top-ranked
lncRNAs like VIM-AS1 and WWTR1-AS1 as they were
not detected in validation data. This may result from the
generally lower expression levels of lncRNAs compared to
PCGs and the inherent limitations of scRNA-seq like high
dropout rates and data sparsity. Actually, among the 192
commonly detected lncRNAs, 71 were consistently identified as
invasion-associated lncRNAs in both data sets, indicating the
robustness of our results.

In summary, our work took advantage of scRNA-seq to
identify and dissect the GBM invasion-associated lncRNAs and
their effect on clinical outcomes at a high resolution, providing
new insights into the molecular mechanism of the development
and progression of GBM and new potential targets for the
treatment of invasive glioblastoma and possibly other solid
malignant tumors.
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