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Body ownership shapes self-
orientation perception
Nora Preuss, B. Laufey Brynjarsdóttir & H. Henrik Ehrsson

Self-orientation perception is a necessary ability for everyday life that heavily depends on visual and 
vestibular information. To perceive the orientation of oneself with respect to the external environment 
would seem to first require that one has a clear sense of one’s own body (‘sense of body ownership’). 
However, the experimental evidence for this is sparse. Therefore, the aim of the present study was to 
investigate how the sense of body ownership affects perceived self-orientation. We combined a self-
orientation illusion – where the visual scene, i.e., a fully furnished room, was rotated slowly around the 
roll axis – with a full-body ownership illusion paradigm – where the ownership of a stranger’s body seen 
from the first-person perspective in the center of the scene was manipulated by synchronous (illusion) 
or asynchronous (control) visual-tactile stimulation. Participants were asked to judge the appearance 
of shaded disk stimuli (a shape-from-shading test), which are perceived as three-dimensional (3D) 
spheres; this perception depends on perceived self-orientation. Illusory body ownership influenced 
self-orientation as reported subjectively in questionnaires and as evident from the objective shape-
from-shading test data. Thus, body ownership determines self-orientation perception, presumably by 
boosting the weighting of visual cues over the gravitational forces detected by the vestibular system.

How do you know what is up and what is down in the world? Maybe because the world looks upright, you 
might say. However, how do you know that the world is not tilted, and you too, to the same degree? Because 
you feel upright, so, therefore, the world must be upright, you might add. This example illustrates the intimate 
relationship between the orientation perception of the self and of the world. However, how is this relationship 
implemented in the human mind, more precisely? Self-orientation perception – the sense of what is up, down, 
left, right, and around us – is mainly determined through our vestibular sense – or our ‘sense of balance’. Our 
vestibular system is situated in the inner ear and is the main indicator of where our head is located in space. 
However, self-orientation perception requires not only information from our vestibular sense but also sensory 
information from our body. This information includes, for example, proprioceptive and tactile cues, indicating 
where our body and its different segments (i.e., limbs) are located in space relative to gravity but also to each other 
(for an overview, see1). Self-orientation perception is therefore a complex process that requires information from 
multiple sensory sources.

Over the last two decades, researchers have been increasingly interested in the question of how we come to 
experience our body as our own (the sense of body ownership)2–4. The sense of body ownership allows us to 
discriminate between that which is part of our own physical self and that which is part of the external world; 
this sense is fundamental for survival and constitutes a basic aspect of human self-consciousness5–7. The sense 
of body ownership arises from the dynamic integration of visual, tactile, vestibular, proprioceptive and other 
bodily signals into a coherent multisensory experience of one’s own body6,8. As mentioned above, the integration 
of multisensory information not only contributes to the sense of body ownership but also plays an important 
role in self-orientation perception. Thus far, however, the relationship between the sense of body ownership and 
self-orientation perception has remained unclear.

Previous studies investigating body ownership of an entire body used a perceptual illusion paradigm based on 
multisensory stimulation9. In this ‘full-body ownership’ illusion paradigm, participants see a mannequin’s body 
from the first-person perspective (1PP) while synchronous touches are applied to the participant’s real body and 
the mannequin’s virtual body. Simultaneous visuo-tactile stimulation leads to an illusory perception of ownership 
of the mannequin’s body; participants perceive the mannequin’s body as their own and sense the touches where 
they see them occur directly on the mannequin’s body9–11. Asynchronous visuo-tactile stimulation significantly 
reduces the illusion and serves as a good control while using otherwise equivalent conditions9.

Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden. Correspondence and requests for materials 
should be addressed to N.P. (email: nora.preuss@ki.se)

Received: 27 June 2018

Accepted: 11 October 2018

Published: xx xx xxxx

OPEN

mailto:nora.preuss@ki.se


www.nature.com/scientificreports/

2SCIeNtIfIC REPOrTS |         (2018) 8:16062  | DOI:10.1038/s41598-018-34260-7

Interestingly, perceived self-orientation can also be altered through a manipulation of visual cues inducing 
so-called ‘reorientation illusions’12. A reorientation illusion is characterized by a sudden change in self-orientation 
perception and is, for example, experienced by astronauts when gravitational information is absent and visual 
cues are ambiguous13,14. An ‘inversion illusion’ is a version of this illusion in which one feels that they are com-
pletely upside-down. Furthermore, reorientation illusions can also be induced by altering visual information 
under normal gravitational conditions12. In healthy participants, a continuous rotation of the visual environment 
(e.g., induced through virtual reality systems) provides such a strong visual motion cue that participants can 
experience a perception of self-motion and reorientation.

Although body ownership and self-orientation both require multisensory integration, a possible link between 
these two perceptual phenomena has not been addressed using the aforementioned paradigm. Interestingly, we 
know that perceived perspective can be influenced by visual, vestibular, and tactile signals15–17 in a paradigm 
where participants observe a body being stroked on the back from a third-person perspective while simultane-
ously receiving synchronous strokes on their own back18. However, this paradigm is based on a conflict between 
the visual perspective (third person perspective) and the visuo-tactile stimulation, which prohibits a coherent 
full-body ownership experience from emerging11,19,20. Moreover, neither this paradigm, nor the full-body owner-
ship illusion described above, has been combined with a classic self-orientation paradigm to directly investigate 
interactions between self-orientation perception and the sense of bodily self.

The overall objectives of the present study were to examine the relationship between body ownership and 
self-orientation perception and to test the hypothesis that body ownership plays a significant role in shaping 
self-orientation and self-motion perception. We theorized that body ownership should increase the effectiveness 
of visual self-orientation and self-motion cues because the person’s own body defines the ego-centric spatial ref-
erence frame that is central to the interpretation of such cues and for spatial perception in general21. To test this 
prediction, we combined a self-orientation illusion and a full-body ownership illusion in which the ownership 
of a stranger’s body as seen from the 1PP was manipulated by synchronous (illusion) or asynchronous (control) 
visual-tactile stimulation. We hypothesized that self-orientation perception would be influenced by body owner-
ship and that the inversion illusion should, therefore, be stronger during synchronous visuo-tactile stimulation 
than during an asynchronous visuo-tactile condition.

Methods
Participants.  Thirty-three volunteers participated in the experiment (age = 25.15, SD = 2.98, 21 females). 
All participants had normal or corrected to normal vision. Participants gave written informed consent before 
participation and received one cinema ticket as compensation. The experiment was conducted in accordance 
with the local ethical guidelines, and the experimental procedure was approved by the Regional Ethics Review 
Board of Stockholm.

Stimuli and Apparatus.  Three-dimensional-image video material of an unknown person sitting in a chair 
looking down at their legs and feet was prerecorded using two identical cameras placed side by side (CamOne 
Infinity HD, resolution 1920 × 1080, Touratech AG) and a green-screen setup. The body stimulus (legs) and 
background (room) were recorded separately. The video material was processed using Finalcut Pro X (Apple Inc., 
Cupertino, CA). To induce a three-dimensional perception of the visual scene, the pictures obtained using the left 
and right cameras were placed side-by-side (1920 × 1080). A short demonstration video is available in the supple-
mentary material, showing the video for both the left and right eyes. A change in self-orientation perception was 
induced using a continuous 7°/sec rotation of the background stimulus around the roll axis (counterclockwise), 
which further induced self-motion perception. The rotation speed was chosen to be comfortable to the partici-
pants and was determined in a pilot study. Two electrodes were attached to the participant’s left index and middle 
fingers to measure the skin-conductance response (SCR) to a threat using Biopac System MP150 (Goleta, USA).

Procedure.  During the experiment, participants sat on a chair with their head slightly tilted forward, look-
ing at their legs. Video stimuli were presented using a head-mounted display (HMD, Oculus Rift 2, http://www.
oculusvr.com/). The experimental procedure consisted of two different conditions that were presented in a ran-
domized and counterbalanced order: (1) synchronous and (2) asynchronous visuo-tactile stimulations induced 
through stroking of the participants’ actual legs and the legs seen in the HMDs. The strokes were applied man-
ually, and the experimenter received audio cues to indicate the location and timing of the strokes. Strokes were 
applied alternatively to both upper legs. The rhythm of the touches followed a semi-regular pattern: one stroke 
(~1 Hz), a pause of 1 sec, followed by two fast strokes (~0.5 Hz) to one of the legs, then to the other leg (see the 
video in the supplementary material). The direction of the seen and felt whole-body rotations were the same 
in both conditions. Each block lasted for 12.5 min, and a total of eight full 360° rotations were presented. The 
rotation stopped for 17 seconds after a 180° rotation in an upright or upside-down orientation, respectively (see 
Fig. 1 for illustration). The room upright orientation served as a control condition where we did not expect any 
reorientation. Participants were presented with three shaded disk stimuli during each such pause in the rotation. 
Their task was to indicate whether they perceived the disk as convex or concave by pressing one of two buttons 
with their right index and middle fingers. The shaded disk paradigm was first introduced by Jenkin, Dyde, Jenkin, 
Howard, and Harris22. Assuming that light comes from above, a darker shading on the bottom of the disk induces 
a convex 3D perception, whereas shading at the top of the disk induces a concave 3D perception23,24. A total of 48 
disk stimuli were displayed in a random and counterbalanced order in both conditions. No stroking was applied 
while the disk stimuli were presented. This approach was chosen to avoid distracting participants from the task 
and to exclude any unspecific effect due to the synchronous or asynchronous stroking. Participants performed a 
training session prior to the experiment to familiarize themselves with the task.

http://www.oculusvr.com/
http://www.oculusvr.com/
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Illusory ownership of the stranger’s body was measured using questionnaire ratings (subjective measurement) 
administered after each block, and SCR was induced by threatening the mannequin’s body with a knife (an objec-
tive measurement; see further below). Participants filled out a paper questionnaire concerning the sense of own-
ership (S1), the referral of touch to the stranger’s body (S2, S3), motion perception (S4, S5), orientation perception 
(S6, S7) and control questions (S8, S9, S10, S11; see Table 1). S1–S3 refers to the original full-body ownership 
illusion9. Statements were rated on a 7-point Likert-scale ranging from −3 (strongly disagree) to +3 (strongly 
agree), with 0 indicating “neither agree nor disagree”. Participants filled out the questionnaire after each block.

SCR to a knife threat towards the body stimulus was used as an objective measurement of ownership9,11,19. A 
stabbing knife threat towards the left and right legs of the body stimulus was applied two times during each block 
(at 4:40 min and 11 min) for a duration of 2 sec each time. Hence, a total of four SCRs were recorded. The video in 
the supplementary material illustrates the knife threat.

Data analysis.  All data were analyzed using the statistical software package R (R Core Team, 2017). 
Questionnaire data were analyzed using two-sided Wilcoxon-signed rank tests. Medians and interquartile ranges 
are reported. SCR data were range-corrected to correct for interindividual variance25,26. Each participant’s max-
imum SCR was determined prior to the start of the first experimental block. The participants were instructed 
to take a deep breath and then hold it for 2 sec. Each data point was then expressed as a proportion (ratio) of 
the range of the SCR response according to the following formula: SCRratio = (SCRmeasured_max − SCRmeasured_min)/
(SCRmax − SCRmin)26. SCR magnitude was analyzed using a Wilcoxon-signed rank test, which referred to all SCR 
responses, including zeros. The relationships between ownership ratings and SCR and ownership ratings and 
self-motion perception were analyzed using Spearman correlations.

Shaded disk analysis.  Shaded disk data were analyzed using a logistic mixed model approach. The 
log-odds of saying that a stimulus appeared ‘concave’ was predicted by the stimulus (‘top’ or ‘bottom’ shading), 
the visuo-tactile stimulation (synchronous, asynchronous) and their interaction. Details about the logistic model 
are available as supplementary material.

Figure 1.  Left figure: Participants saw a stranger’s body form first-person perspective and were exposed to 
either synchronous or asynchronous visuo-tactile stimulation (within-subject) while the orientation of the 
visual surroundings presented in the head-mounted display was changing. Right figure: After a 180° rotation, 
shaded disk stimuli were presented, and the participants were asked to indicate their 3D perception. The image 
on the left shows a stimulus that is usually perceived as ‘convex’, while that on the right shows a stimulus that is 
usually perceived as ‘concave’.

Statement

Median

W pSync Async

S1: I felt as if I was looking at my body 2 1 186.5 0.013

S2: It seemed as if the touch I felt was caused by the stick that touched the body that I saw 2 −2 433 <0.001

S3: The touch I saw was the touch I felt 2 −3 494.5 <0.001

S4: I felt as if I was rotating in the room 3 2 88.5 0.023

S5: I felt as if the room was rotating around the body I saw −2 1 72 0.215

S6: Sometimes it felt as if I was upside-down compared to gravity 2 1 171 0.049

S6b: How often? 0.500 0.487 308 0.019

S7: Sometimes it felt as if the room was upside-down compared to gravity 1 2 85.5 0.461

S7b: How often? 0.420 0.493 144 0.112

S8: I felt the touch of the stick on my back −3 −3 10.5 1

S9: I felt as if I had two bodies −3 −1 46 0.045

S10: I felt as if my body was turning blue −3 −3 51 0.334

S11: I felt as if the furniture in the room changed shape −3 −3 35.5 0.782

Table 1.  Results of the Wilcoxon signed-rank test for each statement.
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Results
The results from the questionnaire are illustrated in Fig. 2. These show that participants experienced stronger 
ownership during the synchronous (S1: median = 2, IQR = 2) compared to the asynchronous condition (S1: 
median = 1, IQR = 3) (S1: W = 186.5, p = 0.01). Furthermore, the participants experienced stronger referral of 
touch to the stranger’s body in the synchronous (S2: median = 2, IQR = 1; S3: median = 2, IQR = 1) than in the 
asynchronous condition (median = −2, IQR = 3; median = −3, IQR = 1) (S2: W = 433, p < 0.001; S3: W = 494.5, 
p < 0.001). Interestingly, participants also reported a stronger self-motion illusion (S4: W = 88.5, p = 0.02) and 
a stronger illusion of being upside-down (S6: W = 171, p = 0.049; S6a: W = 308, p = 0.019) in the synchronous 
(S4: median = 3, IQR = 2; S6: median = 2, IQR = 2) compared to the asynchronous condition (S4: median = 2, 
IQR = 4; S6: median = 1, IQR = 3). We note that one of the control statements was more firmly rejected in the 
asynchronous compared to the synchronous condition (S9: W = 46, p = 0.045), but we will not interpret this 
further, as the participants clearly denied this (unlikely) experience in both conditions. None of the remaining 
questionnaire statements showed significant differences between the synchronous and asynchronous conditions. 
All questionnaire results are presented in Table 1. Interestingly, as illustrated in Fig. 3C, we further observed that 
the body ownership ratings (synchronous – asynchronous) correlated significantly with the self-motion ratings 
(r = 0.36, p = 0.04), which suggests that a systematic relationship existed between these two types of percepts, 
consistent with our hypothesis.

Analysis of the SCR data did not reveal any difference in SCR magnitude to a knife threat between the two 
visuo-tactile stimulation conditions (see Fig. 3A; Z = −0.71, p = 0.48). Importantly, however, the difference 
between ownership ratings (synchronous-asynchronous) were significantly correlated with the differences in the 
threat-evoked SCR magnitude (synchronous-asynchronous) (see Fig. 3B; r = 0.43, p = 0.02). This means that 
the higher the ownership statement was rated, the stronger the SCR was, which provides objective corroborative 
evidence that we successfully induced the full-body ownership illusion.
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Figure 2.  Questionnaire results: S1–S3 capture the illusion statement (‘ownership’ and ‘referral of touch’), S4 
reflects ‘self-motion perception’, and S5 reflects ‘perceived room rotation’, S6 measures ‘upside-down orientation 
perception’, and S7 reflects ‘room upside-down perception’. S8–S11 are control questions. For details about the 
statements, see Table 1.

Figure 3.  (A) Mean skin conductance response (SCR) magnitude in response to a knife threat to the stranger’s 
body as viewed in the HMDs. SCR magnitude is expressed as the ratio of the value and the maximal SCR 
registered in each participant (see methods for details). (B) Spearman correlation between the difference scores 
of the ownership rating and the SCR magnitude (ratio): The x-axis reflects the difference between the visuo-
tactile synchronous and asynchronous conditions in the ownership statement (S1, Table 1). The y-axis reflects 
the difference between the visuo-tactile synchronous and asynchronous conditions in terms of SCR magnitude. 
(C) Spearman correlation between subjective body ownership and subjective self-motion: The x- and y-axes 
reflect the differences between the synchronous and asynchronous conditions in terms of body ownership and 
self-motion perception ratings, respectively.
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Performance in the shaded disk task during upside-down orientation was analyzed using a logistic 
mixed-model approach. The analysis revealed that adding the predictor ‘shaded disk stimulus’ (χ2 = 34.98, df = 1, 
p < 0.001) and adding the interaction between ‘shaded disk stimulus’ and ‘visuo-tactile condition’, which tested 
our main a priori hypothesis, had a significant influence on performance (χ2 = 6.24, df = 1, p < 0.01) (Fig. 4, 
Table 2). This means that: (i) stimuli with shading on the top were more likely to be perceived as concave whereas 
stimuli with shading on the bottom were more likely to be perceived as convex and (ii) synchronous visuo-tactile 
stimulation modulated the perception of the shaded disc stimulus when the room was presented upside-down. 
Adding the predictor ‘visuo-tactile condition’ did not improve the model fit significantly (χ2 = 0.03, df = 1, 
p < 0.86), which suggests that there was no unspecific effect of body ownership on the performance of the shaded 
disc test. Finally, and as expected, analyzing the performance during upright room orientation revealed a signif-
icant effect of ‘shaded disk stimulus’ (χ2 = 32.59, df = 1, p < 0.001); there was no effect of ‘visuo-tactile condition’ 
(χ2 = 0.5, df = 1, p < 0.48) or the interaction of ‘shaded disk stimulus’ and ‘visuo-tactile condition’ (χ2 = 0.21, 
df = 1, p < 0.64) (Fig. 4, Table 3). This latter analysis indicates that the shaded disk test worked as expected in the 
control condition when there was no self-orientation illusion (i.e., in the upright room orientation).

Discussion
The aim of the present study was to investigate how body ownership contributes to self-orientation perception. 
To this end, we combined a full-body ownership illusion paradigm with a visually induced reorientation illusion 
where the visual 3D environment was rotated around the body in view. Subjective questionnaire ratings indi-
cated that the feelings of self-motion (S4) and self-orientation (S6) were modulated by body ownership because 
these sensations were stronger in the synchronous visuo-tactile condition than in the asynchronous condition. 
Moreover, the higher the ownership ratings, the stronger the rating of perceived self-motion. Interestingly, the 
questionnaire findings were supported by objective measurements of self-orientation perception using the 
shape-from-shading task. This behavioral paradigm showed that perception of the shaded disk stimuli was 
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Figure 4.  Effect of body ownership on the objective test for self-orientation. The y-axis shows the probability 
of responding ‘concave’ to a stimulus. The x-axis shows the two possible stimuli: shading on the top (left) and 
shading on the bottom (right). Left figure: Logistic regression revealed a significant (p < 0.01) interaction 
between ‘shaded disk stimulus’ and ‘visuo-tactile condition’ when the room was upside-down, indicating a 
change in perceived orientation in the participants during the full-body ownership illusion. Right figure: No 
such interaction was found when the room was in an upright condition.

Estimate SE Z value p

Intercept 2.16 0.35 6.16 <0.001

Stimulus (convex) −5.71 0.88 −6.53 <0.001

Condition (asynchronous) 0.32 0.24 1.33 0.18

Interaction −1.01 0.41 −2.47 0.01

Table 2.  Results of the logistic mixed model during upside-down orientation including all three predictors.

Estimate SE Z value p

Intercept 3.26 0.56 5.8 <0.001

Stimulus (convex) −6.61 0.96 −6.9 <0.001

Condition (asynchronous) −0.06 0.29 −0.22 0.83

Interaction −0.2 0.44 −0.46 0.64

Table 3.  Results of the logistic mixed model during upright orientation including all three predictors.
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affected by illusory body ownership such that the full-body ownership illusion changed participants perceived 
self-orientation. In summary, these novel findings suggest that the sense of body ownership determines perceived 
self-orientation as well as self-motion perception, a conclusion that has an important bearing on fundamental 
theories of how the sense of self and space are linked in the human mind.

Previous studies have shown that strong visual cues induce a feeling of self-motion and reorientation27,28. This 
well-known phenomenon was clearly observed in our questionnaire data, where subjects reported moderately 
strong self-motion perceptions as well as a change in perceived orientation, even in the asynchronous control 
condition (S4 and S6, see Table 1). To the best of our knowledge, no study has investigated whether body owner-
ship influences self-motion and orientation perception over and above the effects of visual cues. Our results show 
that body ownership augments these spatial orientation sensations, which suggests that the multisensory interac-
tions that underpin the sense of body ownership also shape self-orientation perception. What could be the mech-
anism behind this functional interaction? One parsimonious explanation is that the synchronous visual-tactile 
information that elicited the feeling of ownership of the body in view made the visual information from the sur-
rounding environment more potent as a self-motion cue (“The scene is rotating around my body, not just around 
another person’s body”), resulting in a stronger weighting of visual information, which in turn resulted in boosted 
feelings of self-motion and self-reorientation. In contrast, in the asynchronous condition, body ownership was 
reduced, which made the visual cues less informative as self-motion cues; therefore, vision was weighted less than 
the vestibular information, leading to a reduction in perceived self-motion and reorientation.

This interpretation, that body ownership influences the interpretation of visual self-motion and 
self-orientation cues, is consistent with the findings of previous studies showing that body ownership influences 
visual perceptual processes such as visual size29–31 and visual distance perception31, as well as visual awareness32. 
From this “embodied vision” perspective, the present results constitute a new example of body ownership modu-
lating the 3D perception of shaded disk stimuli, which is an indicator of a change in self-orientation perception. 
However, an important difference from the above studies is that in the present study, we demonstrate an effect of 
body ownership on the perceived spatial orientation of oneself in the field of gravity. This is fundamentally differ-
ent from ownership-induced changes in visuospatial object-size and distance perception29–31, although the inter-
action between the representation of one’s own physical self and the external space is a common denominator.

In this study, several limitations are possible. The stroking was absent during the 17-second periods when 
the participants performed the shaded disk task. It is possible that this could have reduced the difference in 
illusion strength between the synchronous and asynchronous illusion conditions, which in turn would have 
worked against the hypothesis that we were testing, leading to reduced effect sizes. However, our key effects 
on self-orientation were statistically significant. It should also be noted that full-body ownership illusions can 
be maintained for periods longer than 17 seconds without dynamic visuo-tactile stimulation after first having 
been elicited in the usual way with synchronous visuo-tactile stimulation33. Another possible concern is that 
the upside-down visual presentation of the room could have reduced the body ownership illusion compared to 
the normal upright presentation. However, informal pilot experiments indicated that the full-body ownership 
illusion was robust across the different room orientations, and we also know from previous experiments that the 
illusion works very well in different spatial environmental contexts30,31,33,34; again, any such effect would have 
worked against the hypothesis that we were testing with the shaded disk paradigm.

To conclude, the present study provides evidence that the sense of body ownership influences self-orientation 
perception. Thus, the way we perceive the world from an egocentric perspective and our sense of self-orientation 
is determined by the multisensory perception of body ownership. Future studies should aim to investigate the 
underlying neural mechanisms that contribute to the coherent experience of our bodily self and its perceived 
location in space.
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