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ABSTRACT
Cloning of macaque monkeys by somatic cell nucleus transfer (SCNT) allows the generation of monkeys
with uniform genetic backgrounds that are useful for the development of non-human primate models of
human diseases. Here, we report the feasibility of this approach by SCNT of fibroblasts from a macaque
monkey (Macaca fascicularis), in which a core circadian transcription factor BMAL1 was knocked out by
clustered regularly interspaced short palindromic repeat/Cas9 gene editing (see accompanying paper).
Out of 325 SCNT embryos transferred into 65 surrogate monkeys, we cloned five macaque monkeys with
BMAL1mutations in both alleles without mosaicism, with nuclear genes identical to that of the fibroblast
donor monkey. Further peripheral blood mRNA analysis confirmed the complete absence of the wild-type
BMAL1 transcript.This study demonstrates that the SCNT approach could be used to generate cloned
monkeys from fibroblasts of a young adult monkeys and paves the way for the development of macaque
monkey disease models with uniform genetic backgrounds.

Keywords:macaque monkey cloning, somatic cell nuclear transfer, non-human primate models,
CRISPR/Cas9 gene editing, circadian rhythm disorders

INTRODUCTION
Non-human primates are useful animal models
in biomedical research due to their proximity
in evolution, and similarities in physiology and
anatomy, to humans [1]. Transgenic monkeys
carrying human disease-related genes can be gen-
erated by lentivirus-based introduction of human
genes into monkey embryos [2–4]. With recent
advances in gene-targeting technologies such as
clustered regularly interspaced short palindromic
repeat (CRISPR)/Cas9 editing, it has become
feasible to generate monkey embryos and offspring
with specific gene mutations or insertions at a
relatively high efficiency [5–7]. However, trans-
genes introduced by viral vectors are inserted at
random locations and with variable copies in the
chromosomes [4]. Furthermore, mosaicism may
occur in nuclease-based gene editing of the embryo
[5,8–10], whereby multiple genotypes are created

in different tissue cells of a single animal, which
complicates phenotypic analysis. Cross-breeding
of founders has been the common solution for
eliminating mosaicism in mice, but is unpractical
for monkeys because of the long duration of the
generation cycle [11,12]. Acceleration of sperm
maturation by xenografting testis tissues could
reduce the cycle time by about one-half [13], but
oocyte maturation remains slow. Finally, monkeys
used for gene editing so far have come from diverse
genetic backgrounds, imposing serious challenges
in their use as animal models in pre-clinical studies
of therapeutic treatments in a manner similar to
mouse disease models.

Somatic cell nuclear transfer (SCNT) using
gene-edited donor somatic cells can generate a
group of genetically uniform gene-modified ani-
mals without mosaicism and cross-breeding. Thus,
the SCNT-based approach is particularly valuable
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for generating gene-modified monkey models [14].
We have recently demonstrated the feasibility of
monkey SCNT and obtained two monkeys using
fetal fibroblasts as somatic cell donors [15]. In the
present study, we further developed the monkey
SCNT approach by generating five monkey off-
spring using fibroblasts from a young adult macaque
monkey. Moreover, the latter ‘founder’ monkey was
genetically modified by CRISPR/Cas9 editing of a
core circadian gene, Brain and Muscle ARNT-Like
1 (BMAL1), in zygotes (see accompanying paper).
Thus, monkey cloning by SCNT could be used to
generate non-human primate models of gene-based
human diseases.

RESULTS
Preparation of somatic cells from a
BMAL1 knockout monkey
BMAL1 is a core transcription factor involved in
regulating circadian rhythm [16,17]. In the accom-
panying paper, we have reported the generation of
five BMAL1 gene-edited monkeys by zygote edit-
ing via the CRISPR/Cas9 method. Among the five
monkeys, we chose monkey A6 as the founder
monkey for cloning because this monkey exhib-
ited a complete absence of the BMAL1 transcript
and strong circadian disorder phenotypes, includ-
ing dampened circadian cycling of blood hormones,
elevated nocturnal locomotive activity, reduced
rapid eyemovement (REM) and non-REM sleep, as
well as psychosis-related behaviors. Skin fibroblasts
were obtained from monkey A6 and cultured prior
to their use for SCNT (Fig. 1A–C).

Karyotyping of cultured fibroblasts showed a
normal diploid set of 42 chromosomes (Fig. 1D).
Genotype analysis by sequencing the TA clones
of polymerase chain reaction (PCR) products that
were amplified usingDNA from the ear tissue, blood
cells and fibroblasts of the A6 founder monkey re-
vealed two types of BMAL1mutation: an 8-bp dele-
tion (‘−8’) andan8-bpdeletion togetherwith a4-bp
insertion and 2-bp point mutation (‘−8, +4,2PM’)
(Fig. 1E). Further genotype analysis of single fibrob-
last cells showedeither ahomogeneousbi-allelicmu-
tation of ‘−8/−8’ or heterogeneous bi-allelic mu-
tation of ‘−8/−8, +4,2PM’ in the BMAL1 gene
(Fig. 1F). As shown in the accompanying paper,
BMAL1 editing resulted in the same two BMAL1
genotype, and the complete absence of BMAL1 ex-
pression in the founder monkey A6.

SCNT using fibroblasts of the
BMAL1-edited monkey
Using the same protocol described in the previ-
ous study [15], we performed SCNT using fibrob-

lasts derived from BMAL1-edited macaque mon-
key A6. As all of the detected donor cells carried
mutations leading to the loss of function of the
BMAL1 gene, we did not further purify different
cell types among the clonal lines of fibroblasts. Ma-
ture oocytes were obtained by super-ovulation of fe-
malemacaquemonkeys [18]. Reconstructed SCNT
oocytes were obtained by Sendi virus-assisted fusion
of single fibroblasts with enucleated oocytes, and
further activated by incubation with ionomycin and
6-dimethylaminopurine. To facilitate the epigenetic
reprogramming of the somatic nucleus, one-cell-
stage SCNT embryos were incubated with a histone
deacetylase inhibitor trichostatin A (TSA) and in-
jected with mRNA expressing H3K9me3 demethy-
lase Kdm4d, as described previously [15] (Fig. 2A,
B). Similar to that reported for SCNT embryos de-
rived from fetal fibroblasts [15], we found a high
percentage of blastocyst formation (10/17, 58.8%)
for SCNT embryos using fibroblasts obtained from
the BMAL1-edited monkey A6. Among these blas-
tocysts, 80% (8/10) formed a prominent inner cell
mass (ICM), a sign for normal embryo develop-
ment. Given the high efficiency of blastocyst and
ICM formation, we transferred 325 SCNT embryos
at the early (two-to-eight-cell) blastomere stages to
65 surrogate female monkeys, and found 16 preg-
nancies (Supplementary Table S1). Five live births
(B1–B5) were obtained, all of which survived well
under human-assisted feeding (51–141 d at the time
of manuscript submission) (Fig. 2C, Table 1). As
shown in Table 1, the best pregnancy and live-birth
rates were found for fibroblasts that underwent four
passages.

Genetic analysis of cloned monkeys
We first analyzed the BMAL1 genotype of the five
cloned monkeys using the ear tissues. We found
that four cloned monkeys (B1, B3, B4 and B5) car-
ried the heterogeneous bi-allelic mutation (−8/−8,
+4,2PM) and one monkey (B2) carried homoge-
neous bi-allelic mutation (−8/−8) of the BMAL1
gene (Fig. 2D). This is identical to the mutation
genotypes of donor fibroblasts described above and
those of the founder monkey A6.

To confirm the genetic origin of the cloned
monkeys, we analyzed single-nucleotide polymor-
phisms (SNPs) of mitochondrial DNA (mtDNA)
and short-tandem repeats (STRs) of nuclear DNA
[19,20]. FormtDNA, we found that the SNPs of the
ND3 gene for the cloned monkeys were all identi-
cal to those of their respective oocyte-donor mon-
keys, but different from those of the surrogate mon-
keys and donor fibroblasts, consistent with the pre-
dominant contribution of donor oocyte mtDNA to
the total mtDNA of SCNT embryos (Fig. 3A–E,



RESEARCH ARTICLE Liu et al. 103

CCTCAGCTGCCTCGTTGCAATTGGACGACTGC//GTTTCTCGGCACGCGATAGATGGAAA

CCTCAGCTGC AATTGGACGACTGC//GTTTCTCGGCACGCGATAGATGGAAA
CCTCAGCTGC AATTGGACGACTGC//GTTTCTCGGCACGCTTTCCAAAGATGGAAA

CCTCAGCTGC AATTGGACGACTGC//GTTTCTCGGCACGCTTTCCAAAGATGGAAA

CCTCAGCTGC AATTGGACGACTGC//GTTTCTCGGCACGCTTTCCAAAGATGGAAA

CCTCAGCTGC AATTGGACGACTGC//GTTTCTCGGCACGCGATAGATGGAAA

CCTCAGCTGC AATTGGACGACTGC//GTTTCTCGGCACGCGATAGATGGAAA

CCTCAGCTGC AATTGGACGACTGC//GTTTCTCGGCACGCGATAGATGGAAA
CCTCAGCTGC AATTGGACGACTGC//GTTTCTCGGCACGCGATAGATGGAAA

CCTCAGCTGC AATTGGACGACTGC//GTTTCTCGGCACGCGATAGATGGAAA
CCTCAGCTGC AATTGGACGACTGC//GTTTCTCGGCACGCTTTCCAAAGATGGAAA 

Ear tissue
(TA clone)

Blood cells
(TA clone)

Fibroblasts
(TA clone)

Fibroblasts
(Single cell)

(E)

(F)

(WT)

(-8; 18/23)
(-8, +4, 2PM; 5/23)

(-8; 15/18)
(-8, +4, 2PM; 3/18)

(-8; 15/24)

(-8)

(-8)
(-8, +4, 2PM)

(-8) 4/14

10/14

(-8, +4, 2PM; 9/24)

(B) (C)

2n = 42

(D)

ICSI sgRNA/Cas9 injection Mosaic knock out monkey Fibroblasts

(A)

sgRNA + Cas9

Figure 1. Preparation of fibroblasts from a BMAL1-edited monkey. (A) A schematic diagram depicting the procedure of cultur-
ing fibroblasts. (B) BMAL1-edited founder monkey A6 (see accompanying paper). (C) Primary fibroblast culture derived from
the skin of the A6 founder monkey; scale bar, 200 μm. (D) Normal karyotype of A6 fibroblasts. (E) TA clone analysis of the
PCR products using DNA (ear tissue, blood cell and fibroblasts) from the A6 monkey. (F) Single-cell genotype analysis of A6
fibroblasts.

Supplementary data S1). A total of 29 loci were used
for STR analysis, and the results showed that all five
cloned monkeys shared the same nuclear DNA of
donor fibroblasts and the founder monkey A6, but
that their nuclear DNA was different from those of
the surrogate monkeys and oocyte donors (Fig. 3F,
Supplementary Table S2).

AlthoughBMAL1-specific editingwas confirmed
in the A6 founder monkey by whole-genome se-
quencing and PCR analysis, off-target analysis was
also performed in the five cloned monkeys by PCR
using genomic DNA from ear tissue. We found that
no detectable mutation of potential off-target sites
was predicted (Supplementary Table S3). We also

detected no wild-type BMAL1 transcripts in the
bloodofmonkeyB1,whichwas the onlymonkey old
enough for blood collection (Fig. 3G).

DISCUSSION
In this study, we have cloned five cynomolgus
macaque monkeys by SCNT using fibroblasts ob-
tained from a young adult male monkey in which
BMAL1, a critical transcription factor for activating
circadian rhythms, was knocked out by CRISPR/
Cas9 gene editing.This founder monkey was shown
to exhibit strong circadian disorder phenotypes.The
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Figure 2. Generation of monkey offspring by SCNT using fibroblasts from a BMAL1 knockout monkey. (A) A schematic diagram depicting the procedure
of generating BMAL1 knockout monkey clones. (B) Example images of monkey SCNT embryos at different stages; scale bar, 120 μm. (C) Images of
B1–B5, five cloned cynomolgus monkeys generated by SCNT using fibroblasts from the BMAL1 knockout monkey A6. (D) BMAL1 mutation analysis on
ear tissue from all five cloned monkeys, showing that four monkeys carry heterogeneous bi-allelic (−8/−8, +4, 2PM) and one carries homogeneous
bi-allelic (−8/−8) mutation of the BMAL1 gene.
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Table 1. Statistics for the development of the SCNT
embryos.

Cell
passage

Embryos
transferred Surrogates Pregnancies

Live birth
(Number)

2 118 23 7 1 (B1)
3 148 30 4 1 (B2)
4 59 12 5 3 (B3, B4

and B5)
Total 325 65 16 5

genetic origin of the clonedmonkeys was confirmed
by the presence of the same BMAL1mutation geno-
types and identical nuclear DNA in the clonedmon-
keys as those in the founder monkey, and the dom-
inance of mtDNA by that of the donor oocyte.
These results demonstrate that monkeys produced
by CRISPR/Cas9 editing of a disease-related gene
could be used for SCNT and to generate monkey
clones with identical nuclear backgrounds, provid-
ing useful animal models of human diseases.

In our previous study [15], successful cloning
of macaque monkeys with SCNT was performed
by using female fetal fibroblasts from an aborted
fetus as the somatic nucleus donor. In this study,
we generated for the first time cloned monkeys us-
ing fibroblasts of a 16-month-old young adult male
monkey, with success rates close to that obtained
by SCNT of fetal fibroblasts. While the overall effi-
ciency of SCNT remains low, it could be further im-
proved by optimizing the epigenetic reprogramming
conditions. The introduction of epigenetic modu-
lators such as H3K9me3 demethylase Kdm4d was
shown to facilitate the development of SCNT em-
bryos [15,21–23]. Down-regulation of X chromo-
some genes caused by high-level Xist activation, as
found in mouse and pig SCNT embryos [24–26],
may also impair the development of cloned mon-
key embryos.Thus, impedingXist expression is likely
to improve the efficiency of monkey cloning. Be-
sides, methods to correct other abnormal epige-
netic reprogramming effects, such as aberrant DNA
re-methylation [27] and the loss of H3K27me3 im-
printing [25], are also likely to further improve
efficiency.

Ideally, gene editing could be performed in cul-
tured fibroblasts derived from a wild-type founder
monkey and screened for fibroblast cell lines with
precise gene targeting prior to SCNT. However,
previous studies [28], confirmed by our prelimi-
nary studies, have shown that CRISPR/Cas9 edit-
ing of donor somatic cells greatly affects cell viabil-
ity and leads to cell apoptosis. In the present study,
we used fibroblasts from a founder monkey carry-
ing a BMAL1 gene mutation that was produced by

CRISPR/Cas9 editing of intracytoplasmic sperm in-
jection zygotes, circumventing the need for gene
editing of fibroblasts.This foundermonkey was cho-
sen for its complete absence of BMAL1 expression
and clear phenotypes resembling circadian disor-
ders in humans (see accompanying paper). Despite
complete BMAL1 ablation, CRISPR/Cas9 editing
of BMAL1 in the founder monkey had resulted in
two genotypes of base-pair mutation (homogenous
−8/−8 and heterogeneous −8/−8, +4,2PM) in
different tissue cells. This genetic mosaicism was
eliminated in our cloned monkeys, each of which
carries only one of the two genotypes. Thus, the
present cloning strategy is suitable for the cloning
of gene-modified monkeys with clear phenotypes.
Further characterization of the phenotypes of the
five cloned monkeys will be performed when they
reached appropriate ages.

METHODS
Animal ethics statement
The use and care of cynomolgus monkeys (Macaca
fascicularis) complied with the guidelines of the An-
imal Advisory Committee at the Shanghai Insti-
tutes for Biological Science, Chinese Academy of
Sciences, under the approved application entitled
‘Generation of gene-modified monkey models by
somatic cell nuclear transfer’ (ION-2018002). The
monkeys used in this experiment were housed in
an air-conditioned environment (temperature: 22±
1◦C;humidity: 50%±5%RH)with a 12-h light/12-
h dark cycle (lights-on time 07:00 to 19:00). All ani-
mals were fed a commercial monkey diet (Anmufei,
Suzhou) twice daily, and with fruits and vegetables
supplemented once daily.

Fibroblast cell culture, and genotype and
karyotype analysis
A small piece of sterilized skin tissue was ob-
tained from the lateral thigh of the anesthetized
BMAL1-edited founder monkey A6 (see accompa-
nying paper). The tissue was washed three times in
phosphate-buffered saline containing penicillin and
streptomycin, cut into small pieces (1–2 mm3) and
cultured as explants in a 6-cm culture dish. The fi-
broblast cells that migrated away from the tissue ex-
plants after 10 d were cultured in a 10-cm dish and
passaged by one-third dilution every 3 d.

For BMAL1 genotype analysis, the ear tissue,
blood cells and cultured fibroblasts of the A6 mon-
key were collected for genome DNA extraction us-
ing a TIANamp Genomic DNA Kit (TIANGEN,
DP304). The PCR products of the BMAL1 target
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Figure 3. Analysis of the genetic origin and BMAL1 expression of cloned monkeys. (A–E) Examples of SNPs for B1–B5,
respectively, showing mtDNA SNPs that were identical to those of the oocyte donor monkey, but different from those of
surrogate monkey and donor fibroblasts. (F) Examples of STRs from ear tissue samples taken from five cloned monkeys (B1–
B5), showing that their nuclear DNA was identical to that of the donor fibroblast, but different from those of their oocyte
donor and surrogate monkeys. A more extensive list of the STRs is given in Table S2. (G) Reverse transcription PCR analysis
of BMAL1 expression on the blood sample from cloned monkey B1 showed a complete absence of the wild-type BMAL1
transcript.

site specifically amplified by the primers (forward:
5′-ACCATCGGCTGCGTACACCTCTAT-3′; re-
verse: 5′-ATTTCAGGTGTGAGCCACTCCACC-
3′) were cloned into a T vector and then sequenced
for the genomic analysis.

For karyotype analysis, a confluent 10-cm dish
of the A6 fibroblasts was incubated with 100 ng/ml
colcemid for 4–6 h. The cells were then digested by
0.25% trypsin-ethylenediaminetetraacetic acid and
treated with 0.075 M KCl at 37◦C for 30 min. Hy-

potonic solution-treated cellswere fixed inmethanol
and acetic acid (3:1 in volume) medium for 30 min
and dropped onto pre-cleaned slides. Karyotypes
were assessed by normal chromosome number
counting.

Super-ovulation and oocyte collection
Super-ovulation of female monkeys was performed
as described previously [18]. Briefly, healthy female
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cynomolgusmonkeys were intramuscularly injected
with 25 IU recombinant human follitropin twice
daily fromday 3 of themenstrual cycle to day 11.On
the night of day 11, 1000 IU of human chorionic go-
nadotrophin was intramuscularly injected, followed
byoocyte collection fromthe follicles (2–8mmindi-
ameter) via laparoscopy and anegative-pressure suc-
tion system. The collected oocytes were cultured in
pre-equilibrated hamster embryo culture medium 9
(HECM-9). Metaphase II-arrested oocytes were se-
lected for SCNT.

Monkey SCNT, embryo culturing and
embryo transfer
The monkey SCNT procedure was the same as
that previously reported [15]. Briefly, the spindle–
chromosome complex was removed rapidly by a
piezo-driven pipette under a spindle-imagingmicro-
scopic system (Oosight). The fibroblast was intro-
duced to the perivitelline space through a slit in the
zona pellucida that was created by laser irradiation
and fused to the enucleated oocyte by virus (HVJ-
E)-mediated fusion. The reconstructed monkey
SCNT embryos were activated in TH3 (HEPES-
buffered TALP medium, containing 0.3% bovine
serum albumin) medium containing 5 mM iono-
mycin for 5 min and 2 mM 6-dimethylaminopurine
for 5 h.TheSCNTembryoswere treatedwith 10nM
TSA for10hduring andafter activation, and injected
with 10 pl of 1000 ng/ml Kdm4dmRNA at 6 h after
activation.

The SCNT monkey embryos were cultured in
HECM-9 medium at 37◦C under 5% CO2.The em-
bryos were transferred toHECM-9medium supple-
mented with 5% fetal bovine serum after reaching
the eight-cell stage, and the medium was changed
every other day until the embryos reached the blas-
tocyst stage. For embryo transfer, females with syn-
chronous menstrual cycles whose ovaries had a
stigma or fresh corpus luteum were used as surro-
gates. Embryos (at the two-to-eight-cell stage) were
transferred to the oviduct.

Genetic analysis of cloned monkeys
Genomic DNA extracted from ear tissue was
used for short tandem repeats (STR) analysis.
Locus-specific primers containing fluorescent dye
(FAM/HEX/TMR) were used for PCR amplifi-
cation. Fluorescent dye-labeled STR amplicons
were diluted and mixed with internal size standard
ROX500 and deionized formamide, and then
capillary electrophoresed on an ABI PRISM 3730
genetic analyzer to obtain the rawdata.The resultant

raw data were analyzed with the program Gene
Marker 2.2.0, which produces Excel documents
including size and genotype information, DNA
profiles and wave plots. For SNP analysis, mtDNA
was also extracted from the monkey ear tissue
samples. PCR with specific primers (forward:
5′-CCACTTCACATCAAACCATCACTT-3′; re-
verse: 5′-CAAGCAGCGAATACCAGCAAAA-3′)
inmtDNAwas performedwith 35 cycles at 95◦C for
30 s, 55◦C for 30 s and 72◦C for 1 min, followed by
a 5-min extension step at 72◦C. The PCR products
were used for sequencing and the results were used
for the SNP analysis.

Reverse transcription PCR analysis
Total RNA was isolated with TRIzol R© Reagent
(Invitrogen) from leucocytes from 0.5 ml blood
from infant A6, infant B1 and two wild-type
control monkeys, and reverse transcribed to
cDNA using a PrimeScriptTM RT reagent Kit
with gDNA Eraser (Perfect Real Time, Takara,
Japan) according to the manufacturer’s instruc-
tions. Primers specific for BMAL1 (forward;
5′-TAACCTCAGCTGCCTCGTTG-3′; reverse;
5′- TATTCATAACACGACGTGCC-3′) were used
to amplify a 201-bp fragment from the wild BMAL1
gene, but not for themutant BMAL1 gene. PCRwas
performed using a three-step amplification program
of 40 cycles at 95◦C for 10 s, 60◦C for 15 s and 72◦C
for 30 s.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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