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An adaptive agent predicting the future state of an environment
must weigh trust in new observations against prior experiences.
In this light, we propose a view of the adaptive immune system as
a dynamic Bayesian machinery that updates its memory repertoire
by balancing evidence from new pathogen encounters against
past experience of infection to predict and prepare for future
threats. This framework links the observed initial rapid increase
of the memory pool early in life followed by a midlife plateau
to the ease of learning salient features of sparse environments.
We also derive a modulated memory pool update rule in agree-
ment with current vaccine-response experiments. Our results
suggest that pathogenic environments are sparse and that mem-
ory repertoires significantly decrease infection costs, even with
moderate sampling. The predicted optimal update scheme maps
onto commonly considered competitive dynamics for antigen
receptors.

immune repertoire | Bayesian prediction | biophysics | immune memory |
stochastic dynamics

A ll living systems sense the environment, learn from the past,
and adapt predictively to prepare for the future. Their task

is challenging because environments change constantly, and it
is impossible to sample them completely. Thus, a key ques-
tion is how much weight should be given to new observations
vs. accumulated past experience. Because evidence from the
world is generally uncertain, it is convenient to cast this problem
in the language of probabilistic inference where past experi-
ence is encapsulated in a prior probability distribution which
is updated according to sampled evidence. This framework has
been successfully used to understand aspects of cellular (1–4)
and neural (5–8) sensing. Here, we propose that the dynamics of
the adaptive immune repertoires of vertebrates can be similarly
understood as a system for probabilistic inference of pathogen
statistics.

The adaptive immune system relies on a diverse repertoire
of B- and T-cell receptors to protect the host organism from
a wide range of pathogens. These receptors are expressed on
clones of receptor-carrying cells present in varying copy num-
bers. A defining feature of the adaptive immune system is its
ability to change its clone composition throughout the lifetime
of an individual, in particular via the formation of memory
repertoires of B and T cells following pathogen encounters
(9–14). In detail, after a proliferation event that follows suc-
cessful recognition of a foreign antigen, some cells of the newly
expanded clone acquire a memory phenotype. These cells make
up the memory repertoire compartment that is governed by its
own homeostasis, separate from the inexperienced naive cells
from which they came. Upon reinfection by a similar antigen,
memory guarantees a fast immune response. With time, our
immune repertoire thus becomes specific to the history of infec-
tions and adapted to the environments we live in. However,
the commitment of part of the repertoire to maintaining mem-
ory must be balanced against the need to also provide broad
protection from as-yet-unseen threats. What is more, memory
will lose its usefulness over time as pathogens evolve to evade
recognition.

How much benefit can immunological memory provide to an
organism? How much memory should be kept to minimize harm
from infections? How much should each pathogen encounter
affect the distribution of receptor clones? To answer these ques-
tions, we extend a framework for predicting optimal repertoires
given pathogen statistics (15) by explicitly considering the infer-
ence of pathogen frequencies as a Bayesian forecasting problem
(16). We derive the optimal repertoire dynamics in a tempo-
rally varying environment. This approach can complement more
mechanistic studies of the dynamics and regulation of immune
responses (12, 17–22) by revealing adaptive rationales underly-
ing particular features of the dynamics. In particular, we link
the amount of memory production to the variability of the envi-
ronment and show that there exists an optimal time scale for
memory attrition. Additionally, we demonstrate how biologi-
cally realistic population dynamics can approximate the optimal
inference process and analyze conditions under which memory
provides a benefit. Comparing predictions of our theory to exper-
iment, we argue for a view in which the adaptive immune system
can be interpreted as a machinery for learning a highly sparse
distribution of antigens.

Theory of Optimal Immune Prediction
The pathogenic environment is enormous, and the immune
system can only sample it sparsely, as pathogens enter into
contact with it at some rate λ. We consider an antigenic
space of K different pathogens with time-varying frequencies
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Fig. 1. Sketch of a model of immune repertoire dynamics as a sequential inference process about a time-varying pathogen distribution. (A) The organism
lives in a pathogenic environment with frequencies of different pathogen strains that change over time. (B) Past pathogen encounters provide an avenue
for the immune system to learn the pathogen distribution. Using sequential Bayesian inference provides an optimal way to update the beliefs about
the frequencies of different pathogens over time. (C) Based on its beliefs about the prevalence of pathogens, the optimal immune dynamics allocates
lymphocytes across different pathogens to minimize the expected harm from infections. Broadly, the more frequent a pathogen is, the more the organism
should be covered. This resource allocation maps the changes in beliefs to the changes in the repertoire composition.

Q(t)= (Q1(t), . . . ,QK (t)). These frequencies are unknown to
the organism and evolve stochastically. Their dynamics is for-
mally described by a Fokker–Planck operator A encoding how
pathogenic frequencies change (Fig. 1A and Materials and Meth-
ods). We reason that the immune system should efficiently
use the information available through these encounters, along
with prior knowledge of how pathogens evolve encoded in
the system dynamics, to build an internal representation of
the environment (Fig. 1B). Biologically, we can think about
this representation as being encoded in the composition of
the adaptive immune repertoire (the size and specificity of
naive and memory lymphocyte clones), but generally further
cellular memory mechanisms might also contribute. Based on
this representation of the world, the immune system should
organize its defenses to minimize harm from future infections
(Fig. 1C).

How could the immune system leverage a representation of
beliefs about pathogen frequencies to provide effective immu-
nity? Each lymphocyte (B or T cell) of the adaptive immune
system expresses on its surface a single receptor r out of L pos-
sible receptors. This receptor endows the lymphocyte with the
ability to specifically recognize pathogens (labeled a) with prob-
ability fa,r . The immune repertoire is defined by frequencies of
these receptors across the lymphocyte population, denoted by
P=(P1, . . .PL). These frequencies sum up to one, which implies
a resource allocation trade-off between the different receptor
types—having more of one in the repertoire implies having less
of others. How much harm an infection inflicts depends on how
much resources the immune system has devoted to fighting the
infection, i.e., the fraction P̃a(t)=

∑
r fa,r Pr of the repertoire

specific to antigen a , which we will refer to as the coverage of
the antigen. Given the pathogen frequencies Q(t) and repertoire
distribution P(t), the mean harm cause by the next infection is
given by

∑
a Qa · c(P̃a), where c is decreasing function of the

fraction of the repertoire specific to the infection (15). The host
organism does not know Q with certainty, but has an internal
belief B(Q, t) about the frequencies learned through sampling
during previous infections. An optimal immune system can then

distribute its resources to minimize the expected harm of the next
infection:

P?(t)= argmin
P

∑
a

Q̂a(t) · c(P̃a)≡G(Q̂(t)), [1]

where Q̂(t)≡〈Q〉B(Q,t) are the expected frequencies of
pathogens. Note that, because in our framework the state of the
immune system does not affect the stochastic dynamics of
the pathogenic environment, this strategy is the best possible
one, even for minimizing harm against all future infections,
provided that the repertoire is allowed to revise its composition
instantaneously. Although the function G may be complicated,
it generally implies that receptors that are specific to frequent
infections (high Q̂a) should be well represented in the optimal
repertoire (high P̃?a ) (ref. 15 and Materials and Methods). In this
framework, we have assumed that infections, their clearing by
the immune system, and the subsequent update of the repertoire
are all fast compared with changes in the environment, which
occur over a time τ , and to the mean time between pathogenic
encounters (λ−1). In our optimization, we keep the specificity
of the receptors (fa,r ) fixed, assuming that this specificity is set
independently by biophysical constraints and by the need to
allow discrimination between antigens, especially between self
and foreign ones (12, 23).

The internal representation of the environment can be
regarded as a system of beliefs, or guesses, about pathogen fre-
quencies. Formally, these beliefs can be represented in the form
of a probability distribution function B(Q, t) over pathogen fre-
quencies, which the host implicitly computes using all of the
information it has garnered over time. Optimally, these beliefs
are computed by the rules of Bayesian sequential forecasting,
by combining the memory of past encounters with knowledge
of the stochastic rules under which the pathogenic environment
evolves (Materials and Methods). Optimally, the belief distri-
bution should be initialized at birth to reflect the steady-state
distribution of the dynamics,
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B(Q, 0)= ρs(Q), [2]

where Aρs =0. Upon encountering a pathogen a at time t , the
prior belief distribution B(Q, t−) is combined with the likelihood
of the observed pathogen Qa to compute the postencounter
belief B(Q, t+) according to Bayes rule (16):

B(Q, t+)=
Qa B(Q, t−)∫

dQ′Q ′a B(Q′, t−)
. [3]

Between encounters, the immune system should continue to
update its beliefs by forecasting how pathogen frequencies
change with time. The optimal way to do so is to project the old
belief distribution forward in time using (16)

dB(Q, t)

dt
=AB(Q, t). [4]

This prediction step, which is performed in the absence of any
new information, relies on the immune system “knowing,” i.e.,
having learned over long evolutionary time scales, the probability
laws governing the stochastic evolution of the environment—but
not, of course, the actual path that it takes. In Results, we show
how Eqs. 2–4 can be turned from abstract belief updates into
dynamical equations for a well-adapting immune repertoire.

The Bayesian forecasting framework provides a broad account
of the possible adaptive value of many features of the adap-
tive immune system without the need for additional assump-
tions. Immune memory formed after a pathogenic challenge is
explained as an increase in optimal protection level resulting
from an increase in estimated pathogen frequency, following Eq.
3. Attrition of immune memory is also adaptive, because it allows
the immune repertoire to forget about previously seen pathogens
which it should do in a dynamically changing environment (Eq.
4). Lastly, some of the biases in the recombination machinery
and initial selection mechanisms (24) represent an evolutionary
prior (Eq. 2) which tilts the naive repertoire toward important
regions of antigenic space.

We are proposing an interpretive framework for understand-
ing adaptive immunity as a scheme of sequential inference. This
view provides two key insights. First, it confirms the intuition that
new experience should be balanced against previous memory and
against unknown threats in order for adaptive immunity to work
well. Second, it suggests a particular dynamics of implicit belief
updates that can globally reorganize the immune repertoire to
minimize harm from the pathogenic environment. Going beyond
these broad ideas, in Results, we analyze in detail a model for opti-
mal immune prediction in which all these statements can be made
mathematically precise. We also show a plausible implementa-
tion that the immune system could follow to approximate optimal
Bayesian inference, and we compare the resulting dynamics with
specific features of the adaptive immune system.

Results
A Lymphocyte Dynamics for Approximating Optimal Sequential Infer-
ence. For concreteness, we consider a drift-diffusion model of
environmental change (Eq. 11). The drift-diffusion model, while
clearly a much-simplified model of real evolution, captures two
key features of changing pathogenic environments: the coexis-
tence of diverse pathogens and the temporal turnover of dominant
pathogen strains. The aim of this model of pathogen evolution
is not to provide a realistic description of short-term pathogen
dynamics within a population such as during an epidemic, but
rather to capture overall features of the long-term dynamics of
many pathogens over a host’s lifetime. The drift-diffusion model
is mathematically equivalent to a classical neutral stochastic evo-
lution of pathogens (25) driven by genetic drift happening on a
characteristic time scale τ and immigration from an external pool

with immigration parameters θ=(θ1, . . . , θK ) (Eq. 11). Gener-
ally, pathogens are under selective pressure to evade host immu-
nity, and strains are replaced faster than under the sole action
of genetic drift. Matching the time scale of pathogen change to
those observed experimentally, the model then provides a simple,
effective description of the pathogen dynamics.

Can a plausible dynamics of lymphocyte receptor clones
approximate the optimal repertoire dynamics? In particular, is
there an approximate autonomous dynamics for the repertoire
composition, which does not require access to the full latent
high-dimensional belief distribution B(Q, t)? Consider the sim-
ple case of a logarithmic cost function, c(P̃a)=− ln P̃a , and
uniquely specific receptors, fa,r = δa,r , in which the optimal
match between the receptor and pathogen distributions (Eq. 1)
is the identity, P∗a = Q̂a (ref. 15 and Materials and Methods).

For the pathogen dynamics of Eq. 10, we show, using a decom-
position of B(Q, t) into a mixture of Dirichlet distributions
(SI Appendix, section 1B), that there exists an approximate but
autonomous dynamics for the number of lymphocyte receptors
N. It takes the following simple form (parallel to Eqs. 2–4):

Na(0)=χθa for all a, [5]

Na(t
+)=Na(t

−)+χ when a is encountered, [6]

τ
dNa

dt
=−1

2
(χ−1|N| − 1)(Na −χθa) for all a, [7]

where χ is a scale factor controlling the total population size
and where P=N/|N|. Here and in the following, we use |x|=∑

i xi to denote the l1-norm of a vector x. We compared
these approximate dynamics to an exact solution computed by
spectrally expanding the generator of the stochastic dynamics
(SI Appendix, section 1C) and found that they approximate the
optimal dynamics closely (Fig. 2).

These dynamics have a plausible biological implementation.
Each pathogen encounter leads to a fixed increment χ of the
number of specific lymphocytes (Eq. 6), implying a regulation
mechanism that controls the number of cell divisions upon clonal
expansion as a function of precursor frequency. Through thymic

Fig. 2. A plausible repertoire dynamics can implement approximate
Bayesian inference. Frequency Qa of a pathogen over time (blue line) in a
dynamically changing environment along with the exact optimal repertoire
dynamics (orange line) and the approximate dynamics based on Eqs. 5–7 (Pa,
green line). The approximate dynamics closely follows the exact Bayesian
dynamics implemented as described in SI Appendix, section 1C (Pa*, orange
line). Parameters are as follows: K = 500, θ= 0.02, τ = 20 year, λ= 10/year,
c(P̃a) =− ln P̃a, and fa,r = δa,r .
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output, the repertoire starts at and is renewed by the naive
repertoire—encoded in χθa (Eqs. 5 and 7). By definition, this
naive repertoire is optimally tuned to the baseline frequencies
of pathogens θa/|θ|. The total number of lymphocytes |N| regu-
lates the time scale of cell decay and renewal (Eq. 7), which can
be done through some global homeostatic mechanisms.

To gain intuition about what the dynamics of Eqs. 5–7 mean,
let us define the rescaled variables na =χ−1Na . Eq. 6 increases
na by 1 whenever pathogen a is sampled. n can thus be inter-
preted as counting the number of times the different pathogens
were sampled and their initial value na(0)= θa as pseudocounts
corresponding to the prior belief in the pathogen frequencies.
In a changing environment, experience gained from previous
encounters eventually loses its predictive power, and thus Eq.
7 discounts these old encounters, giving more relative weight
to recent ones. If there are no new pathogen encounters, na

eventually relaxes back to the prior θa .
The assumption that P∗a = Q̂a can be relaxed, provided that

the nonlinear relation G between P and Q (Eq. 1) remains
approximately invertible, leading to autonomous dynamics of the
lymphocyte clone sizes Na(t) similar to Eqs. 5–7 (SI Appendix,
section 2C).

Learnability of Pathogen Distribution Implies a Sparse Pathogenic
Landscape. The immune system must be prepared to protect us
not just from one pathogen but a whole distribution of them.
Even restricting recognition to short peptides and accounting for
cross-reactivity (26), estimates based on precursor frequencies
for common viruses give an effective antigen environment of size
K ∼ 105–107 (27). How can the immune system learn anything
useful about such a high-dimensional distribution from a limited
number of pathogenic encounters? Naively, one might expect
that the number of samples needed to learn the distribution of
pathogens must be larger than of the number of pathogens, i.e.,
λt ∼K , where t is the time over which learning takes place.
Although little is known about the receptor–antigen encounter
rate λ, this estimate suggests that the pathogenic environment is
not easily learnable, and therefore memory has limited utility.

This apparent paradox can be resolved by the fact that the
pathogenic environment may be sparse, meaning that only a small
fraction of the possible pathogens are present at any given time. In
our model of the pathogen dynamics, this sparsity is controlled by
the parameter θ. In the scenario that we are considering, typical
pathogen landscapes Q are drawn from the steady-state distribu-

tion ρs(Q) of the immigration-drift dynamics, which is a Dirichlet
distribution parametrized by θ (SI Appendix, section 1, Eq. S1).
When θa is small, the distribution is peaked at Qa =0, meaning
that pathogen a is absent a majority of the time. For instance, for
uniform θa ≡ θ� 1, the effective number of pathogens present at
any given time is K θ (SI Appendix, section 3C). Since the system
only needs to learn about the pathogens that are present, the con-
dition for efficient learning should naively be λt ∼K θ, which is
much easier to achieve realistically for small θ.

Our theory can be used to quantify the benefit of memory
as a function of the different immunological parameters. We
compute the optimized cost function c(t)=

∑
a Qa(t)c(P̃

?
a (t))

and study how it decreases as a function of age, t , relative
to the cost at birth c0 = c(t =0), as the organism learns from
pathogen encounters. This relative cost also depends on the
encounter rate λ, the size of the pathogenic space K , the sparsity
of pathogenic space θ, and time scale of change in the environ-
ment τ . Fig. 3A shows that the benefit of memory increases with
pathogen sparsity—when θ is small, even a few encounters suffice
to seed enough memory to reduce the cost of future infections.
The cost saturates with age to a value c∞, either because memory
approaches optimality or because memory eventually gets dis-
carded and renewed as the environment changes. Fast-changing
environments lead to an earlier and higher saturation of the
cost with age (Fig. 3B) since learning and prediction are limited
by decorrelation of the environment. The pathogen dynamics
is sped up when there are strong selection pressures to evade
immunity. Faster dynamics decrease learning efficiency and in
turn reduce selective pressures. The effective time scale should in
practice be set by a coevolutionary balance between both effects.

Analytical arguments show that in the limit of few samples
the relative cost c/c0 achievable in a static environment scales
as λt/K θ (SI Appendix, section 3). In general, we find that
the cost is a function of λte/K θ, where the effective time te
is defined via λte = |n(t)| − |n(0)| ≈

√
2λτ tanh(λt/

√
2λτ) with

n(t) being the vector of the encounter counts discussed above (SI
Appendix, section 1D for derivation from Eqs. 6 and 7). Plotted
in terms of this variable, the relative cost gap as function of time,
(c− c∞)/(c0− c∞), collapses onto a single curve for all param-
eter choices (Fig. 3C). Fig. 3C shows that the cost drops by a
factor of ∼ 2, when λte/K θ∼ 1. Thus, there is a substantial ben-
efit to memory already when the effective number of encounters
is comparable to the effective number of pathogens. At young
ages (small t) or with slowly changing environments (large τ),

A B C

Fig. 3. Advantage of immunological memory depends on sufficient sampling. The mean expected cost of an infection in a changing environment is a
function of the age of the organism t, the time scale τ on which the environment changes, and the sparsity 1/θ of the environment. (A) Relative cost as a
function of age for environments with different sparsity (for fixed λτ = 105, K = 2,000). (B) Relative cost as a function of age for environments changing
more or less rapidly (for fixed θ= 0.02, K = 2,000). (C) Collapse of the data by plotting the relative cost gap against the number of samples per effective
(eff.) dimension. Simulations with logarithmically spaced parameters in the ranges λt from 1 to 5,000, λτ from 1 to 1,000,000, K from 100 to 2,000, and θ
from 0.01 to 0.2 (color-coded as in A). Cost is c(P̃a) = 1/P̃a, and receptors are assumed to be uniquely specific, fa,r = δa,r .
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te ≈ t , and so this condition is simply λt ∼K θ, i.e., the total num-
ber of encounters should be comparable to effective number of
pathogens that are present.

Optimal Attrition Time Scale. Our theory suggests that there is
an optimal time scale for forgetting about old infections which
is related to the time scale over which the environment varies.
Eq. 7 shows that memory should optimally be discounted on an
effective time scale τmem =2τ/(|n| − 1). Comparing this to the
slowest time scale of environmental variation, τc =2τ/|θ| (SI
Appendix, Eq. 37), where |θ|=

∑
a θa , we have

τmem = τc
|θ|
|n| − 1

. [8]

The time scale on which old memories should be forgotten scales
with the environmental correlation time scale. The two time
scales are equivalent when the immune system has little infor-
mation about the pathogenic environment (|n| ∼ |θ|). Given the
long time scales over which many relevant pathogens change,
immune memory should generally be long-lived (with the time
scale of decay being of the order of years or decades). Indeed,
despite the relatively short life span of memory cells (28), con-
stant balanced turnover keeps elevated levels of protection for
decades after an infection, even in the absence of persistent
antigens (29–31).

Interestingly, our theory predicts that memory should be dis-
counted more quickly when the immune system has gathered
more information (larger |n|). Using the mean-field equations for
|n(t)| − |n(0)| from the previous section, we can derive how the
memory time scales at steady state at high sampling rate. Using
that for large times |n(t)|� |n(0)| holds in the high sampling
rate limit, one can simplify the mean-field result to |n| ∼

√
2λτ

in steady state (t→∞). Combined with Eq. 8, τmem =
√
τc |θ|/λ

follows, which shows that a larger sampling rate leads to a
faster discounting of past evidence. This is reminiscent of results
in optimal cellular signaling where there are similar trade-offs
between noise averaging and responsiveness to changes in the
input signal (32).

Memory Production in Sparse Environments Should Be Large and
Decrease with Prior Exposure. The theory can be used to make
quantitative and testable predictions about the change in the
level of protection that should follow a pathogen encounter.
Consider an infection cost function that depends as a power law
on the coverage, c(P̃a)= 1/P̃αa , with a cost exponent α that sets
how much attention the immune system should pay to recog-
nizing rare threats. (Below, we will use the shorthand α=0 to
indicate logarithmic cost.) Cost functions of this form can be
motivated by considering the time to recognition of an expo-
nentially growing antigen population by the immune system (15)
or, alternatively, by considering the time delay of the expan-
sion of the precursor cells to some fixed number of effector cells
(SI Appendix, section 4).

In the simplest model for repertoire updates, recognition
of pathogens leads to proliferation proportionally to the num-
ber of specific precursor cells, followed by a homeostatic
decrease of the memory pool (18, 33). Thus, the fold change
P̃a(t

+)/P̃a(t
−)= const where t−, t+ are times just before and

after the encounter. By contrast, our Bayesian theory predicts
that the fold change upon encountering pathogen a should be

P̃?a (t
+)

P̃?a (t−)
= (1+κ/P̃?a (t

−)(1+α))1/(1+α), [9]

where κ depends on prior expectations about the antigenic
environment and previous pathogen encounters (Materials and

Methods). Setting α=0 gives the result for a logarithmic cost
function.

To understand this prediction, first consider the effect of a pri-
mary infection on a naive repertoire, θa ≡ θ, P̃?(0)= 1/K , and
|n(0)|=K θ, where the receptors are uniquely specific (fa,r =
δa,r ). In this case, κ=1/K 1+αθ (SI Appendix, section 2A) and
Eq. 9 predicts a fold change of (1+ 1/θ)1/(1+α). We have argued
previously that their learnability implies that pathogenic environ-
ments are sparse, i.e., θ� 1. Therefore, we predict that primary
antigenic encounters should lead to a large memory production.
Experimentally, memory production typically leads to the prolif-
eration of antigen-specific cells by a factor of 100- to 1,000-fold
(14), in qualitative agreement with this prediction. Turning the
argument around, such a large increase in protection upon an
encounter is only adaptive in highly sparse environments. Quan-
titatively, it implies a sparsity parameter θ∼ 10−6–10−4 (here,
taking α=1 for definiteness) (Fig. 4B). Combined with the esti-
mate K ∼ 105–107 (27), this suggests that the effective number
of pathogens at any given time ranges from K θ=0.1 to 1, 000.

To test Eq. 9 on immunological data, we fit the Bayesian
update model to experiments reporting fold changes in antigen
titers upon booster vaccinations against influenza from ref. 34

A

B C

Fig. 4. Changes in protection levels upon infections for cost functions
c(P̃a) = 1/P̃αa (α= 0 indicates logarithmic cost). (A) The prediction of the
Bayesian model (Eq. 9 for different α) closely fits experimental data on anti-
body titers, while a constant fold-change model (which would correspond
to a straight horizontal line) does not. Data on prevaccination and post-
vaccination antibody titers against stem and head hemagglutinin epitopes
following a booster vaccination with inactivated H5N1 in humans from ref.
34. (B) Optimal fold change of coverage for ni(t

−) = θ for all i. The fold
change increases with the sparsity of the environment controlled by param-
eter θ. (C) Absolute (Abs.) change in coverage for primary infection and
reinfections (for α= 1), normalized such that the change for the primary
infection is 1 and neglecting attrition.
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(Fig. 4A) using least squares. Titers correspond to the concen-
tration of antibodies that are specific to the antigen a and can
thus be viewed as an experimental estimate of P̃a . The optimal
Bayesian strategy explains the data, accounting for the larger
boosting at small prevaccination titers and showing no increase
for large titers, while the proportional model predicts constant
boosting for all titers. Similar experimental results have been
reported for antibody titers before and after a shingles vacci-
nation (35). Mechanistic models have been proposed to explain
how the population dynamics of expanding lymphocytes might
give rise to nonproportional boosting for both B and T cells (22,
33, 36, 37).

Interestingly, for T cells, Quiel et al. (38) have shown that fold
expansion to peak cell numbers in an adoptive transfer experi-
ment depends on the initial number of T cells as a power law
with exponent∼−1/2. That scaling, which is for the peak expan-
sion, predicts more expansion at high precursor number than
Eq. 9, which is for memory production. This implies a nonlinear
relationship between peak T-cell level and memory production,
which further suppresses memory production at high precursor
numbers. This prediction might be checked in experiments mea-
suring memory production after infection clearance, as well as
the expansion peak.

Long-Term Dynamics of a Well-Adapting Repertoire. Our model
makes predictions for the dynamics of growth and attrition of
memory over time, with consequences for immunity and for the
diversity of the immune repertoire. We quantify the dynamics
in terms of a memory fraction defined as a sum of the cov-
erage fractions P̃ai over all previously encountered pathogens
{ai}. The memory fraction measures the size of memory rela-
tive to the size of the whole immune repertoire. Early in life,
every infection is new, and even modest increases in the memory
fraction lead to large drops in infection susceptibility (measured
by the expected cost of new infections in Fig. 5A). At the same
time, the memory fraction increases rapidly (Fig. 5B), but the

growth of memory slows as subsequent infections lead to less
memory production following the optimal fold-change rule in
Eq. 9 and as attrition begins to play a role. The fraction of
the repertoire devoted to memory in midlife is largely deter-
mined by how the cost of infections scales with coverage. The
observed memory fraction of ∼ 50% at midlife suggests a cost
exponent ofα≈ 0.5 (Fig. 5B). The diversity of the memory reper-
toire increases with time at a rate that slows with age (quantified
in Fig. 5C by richness, which measures the number of unique
specificities and the Shannon entropy of the repertoire frequency
distribution).

To gain insight into these dynamics of our model, we average
the stochastic equations over the statistics of pathogen encoun-
ters. We show in SI Appendix, section 2B that this mean-field
approximation yields a differential equation for the popula-
tion fraction of different clones with two opposing contributions
which balance alignment of the immune repertoire with the cur-
rent pathogenic environment (i.e., memory production) against
alignment with the long-term mean environment (i.e., attrition).
Interestingly, the mean-field equation broadly coincides with
dynamics that were proposed in ref. 15 to self-organize an opti-
mal immune repertoire. The essential difference here is that the
time scale of learning slows down with increasing experience
following the rules of optimal sequential update in Eq. 9.

We then asked which features of the proposed repertoire
dynamics are most relevant to ensure its effectiveness. How
important is the negative correlation between fold expansion
and prior immune levels, and how important is attrition? Fur-
thermore, if the immune system follows Bayesian dynamics,
it must have integrated on an evolutionary time scale a prior
about composition and evolution of the pathogen environment
through the parameters θ and τ—however, the prior may be
inaccurate. How robust is the benefit of memory to imperfec-
tions of the host’s prior assumptions about pathogen evolution?
To answer these questions, we compare the long-term immune-
repertoire dynamics using the optimal Bayesian scheme to other

A B C

D E F

Fig. 5. Relative cost (A and D), memory-cell fraction (B and E), and memory diversity (C) as a function of age. A–C show long-term dynamics for a repertoire
following optimal Bayesian update dynamics for three different α. Memory diversity is plotted as richness, i.e., the number of unique memory specificities, as
well as the exponential of Shannon entropy S of the memory compartment defined for a probability distribution pi with

∑
i pi = 1 as S =−

∑
pi ln pi . D and

E compare the optimal Bayesian dynamics with a constant fold change update by a factor of 30 and the same proportional update but with a cap to 105 of
the total fold expansion for any clone. (F) Comparison of the cost as a function of age for the optimal dynamics (solid lines) and a dynamics without attrition
(dotted lines) for two environmental correlation time scales τc = 2τ/Kθ (SI Appendix, section 1C). Parameters are as follows: encounter rate λ= 40/year,
antigen space dimensionality K = 105, and antigen sparsity θ= 2.5 · 10−4. In A–E, we used τ→∞, and in D–F, α= 0.5. To reduce fluctuations, the statistics
were averaged over multiple runs of the dynamics. Data in B are from refs. 39 and 40.
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simplified schemes. We find that a constant fold expansion
dynamics quickly leads to very suboptimal repertoire composi-
tions (Fig. 5D, pink line), since the exponential amplification
of cells specific to recurrent threats quickly leads to a very
large fraction of the repertoire consisting of memory of those
pathogens (Fig. 5E, pink line). This suboptimality persists, even
if we assume that some global regulation caps the constant fold
expansion such that no individual receptor clone can take over all
of the repertoire (Fig. 5 D and E, gray line). Thus, negative feed-
back in T-cell expansion to individual antigens is very important
to maintain a properly balanced diverse repertoire. In contrast,
within dynamics with a negative correlation, the precise levels of
updating do not need to be finely tuned to the environmental
statistics: Varying the assumed sparsity of the pathogen distribu-
tion, which controls fold expansion upon primary infection in the
optimal dynamics, leads to a relatively modest deterioration of
the convergence speed of the learning process (SI Appendix, Fig.
S2A) and does not matter asymptotically (SI Appendix, Fig. S2B).
Attrition does not matter at young age, but can play an impor-
tant role for long-term adaptation to relatively rapidly changing
pathogen distributions (Fig. 5F). However, the attrition time
scale need not be finely tuned to get close to optimal dynamics
(SI Appendix, Fig. S3).

Adapting a Cross-Reactive Repertoire. Above, we described adap-
tation of immune repertoires in terms of changes in the effective
coverage P̃a =

∑
r fa,rPr , where the cross-reactivity matrix F =

(fa,r ) reflects the ability of each receptor to recognize many
antigens and also the propensity of each antigen to bind to
many receptors (26). Because of cross-reactivity, each pathogen
encounter should result in the expansion of not just one but
potentially many receptor clones. Here, we ask how the opti-
mal immune response is distributed among clones with different
affinities.

Following Perelson and Oster (41), we will represent the inter-
action of receptors and antigens by embedding both in a multidi-
mensional metric recognition “shape space,” where receptors are
points surrounded by recognition balls. Antigens that fall within
a ball’s radius will be recognized by the corresponding receptor.
In this presentation, a and r are the coordinates of antigens and
receptors, respectively, and their recognition propensity depends
on their distance, fa,r = f (|a − r |).

Earlier sections have already discussed the optimal dynamics
of the coverage P̃a , which is a convolution of the cross-reactivity
matrix with the receptor clone distribution Pr . Thus, the optimal
dynamics of the clone distribution can be derived by deconvolv-
ing the cross-reactivity subject to the constraint that Pr cannot
be negative. Carrying out this analysis in SI Appendix, section 2C
reveals a general qualitative phenomenon—competitive exclu-
sion between clones expressed in the repertoire and their close
neighbors within the cross-reactivity radius (SI Appendix, Fig. S4,
blue line). This exclusion is not an assumption of the model,
but rather stems from the optimal Bayesian theory. Given a
receptor clone that covers one region of antigenic shape space,
the global likelihood of detecting infections increases by placing
other clones to cover other regions. This can be shown analyti-
cally when cross-reactivity is limited, memory updates are small
in magnitude, and the pathogen distribution is assumed to be
uncorrelated (SI Appendix, section 2C).

In general, the frequencies of pathogens might be correlated
in antigenic space, for example, because mutations from a dom-
inant strain give rise to new neighboring strains. An optimally
adapting immune system should incorporate such correlations as
a prior probability favoring smoothness of the pathogen distri-
bution. Such priors work their way through the optimal belief
update scheme that we have described and weaken the compet-
itive exclusion between clones with overlapping cross-reactivity
(SI Appendix, Fig. S4, orange line).

In general, when cross-reactivity is wide or the required clone
fraction update is large, numerical analysis shows that achiev-
ing optimally predictive immunity after a pathogen encounter
requires a global reorganization of the entire repertoire (SI
Appendix, Fig. S5, blue line). There is no plausible mecha-
nism for such a large-scale reorganization since it would involve
up- and down-regulation, even of unspecific clones. However,
in SI Appendix, section 2C we show that the optimal update
can be well-approximated by changes just to the populations
of specific clones with pathogen-binding propensities fa,r that
exceed a threshold. The optimizing dynamics with this constraint
exhibit strong competitive exclusion, where only the highest-
affinity clones proliferate, while nearby clones with lower affinity
are depleted from the repertoire (SI Appendix, Fig. S5, orange
line). The local update rule provides protection that comes
within 1% of the cost achievable by the best global update.
Thus, reorganization of pathogen-specific receptor clone popu-
lations following an infection, as seen in vertebrates, can suffice
to achieve near-optimal predictive adaptation of the immune
repertoire.

Discussion
The adaptive immune system has long been viewed as a system
for learning the pathogenic environment (10). We developed
a mathematical framework in which this notion can be made
precise. In particular, we derived a procedure for inferring
the frequencies of pathogens undergoing an immigration-drift
dynamics and showed how such inference might approximately
be performed by a plausible population dynamics of lymphocyte
clones. Additionally, we analyzed how quickly the immune sys-
tem can learn about its environment and find that the antigenic
environment must be effectively sparse to be learnable with a
realistic rate of pathogen encounters.

The optimal repertoire dynamics recapitulate a number of
properties of real adaptive immune systems. Two repertoire
compartments emerge from the theory: memory, which encodes
lived experience, and naive, which encodes prior expectations.
Memory is effective in reducing harm from infection despite
the high dimensionality of pathogenic space; having encoun-
tered circulating pathogens only once on average can reduce
the overall cost of infections by half. The first encounter of
a naive individual with a pathogen leads to a large response,
which increases protection levels by several orders of magni-
tude. Memory production depends on prior protection levels
and eventually is predicted to saturate, as seen in vaccination
experiments (34). This saturation is predicted to lead to a sub-
linear increase with age of the fraction of the total repertoire
taken up by memory, consistent with observations in human
cohorts (39, 40).

Our work makes a number of concrete predictions amenable
to further testing. We make quantitative predictions about how
much memory should be formed following an infection, as a
function of number of pathogens effectively present in the envi-
ronment and the number of previous infections. These depen-
dencies might be tested by using a comparative approach, which
relates the amount of formed memory in different species to
how many pathogens to which they are susceptible. Our model
also makes predictions about changes in the size and diversity
of the memory compartment with aging, which might be tested
in future repertoire-sequencing studies similar to those done by
Britanova et al. (42), by sorting cells into naive and memory types
before sequencing. Ultimately, we hope that our work might
help motivate studies with longitudinal tracking of the long-
term repertoire dynamics in model organisms living in controlled
pathogenic environments.

Our framework can be extended to incorporate additional
constraints on immune-system function or further aspects of
pathogen evolution. An example of a constraint would be to
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introduce a maximal rate of change in the optimization to
model maximal cellular division and death rates. A more com-
plex pathogen dynamics might model explicitly their mutational
dynamics in antigenic space. Such dynamics will lead to cor-
relations in the pathogen distribution, which we showed will
influence the structure of the optimal conjugate repertoire. In
particular, the optimal response should spread around the cur-
rently dominant antigens to also provide protection against
potential future mutations. Hypermutations in B cells may play
a role in this diversification, in addition to their known func-
tion of generating receptors with increased affinity for anti-
gens of current interest. It would also be interesting to extend
our framework to other immune-defense mechanisms, including
innate immunity, where the role of memory has received recent
attention (43).

Although our study was motivated by the adaptive immune sys-
tem, some of our main results extend to other statistical inference
problems. We have extended earlier results on exactly com-
putable solutions to the stochastic filtering problem for Wright–
Fisher diffusion processes (44) to derive an efficient approximate
inference procedure. This procedure might be of use in other
contexts where changing distributions must be inferred from
samples at different time points, e.g., in population genetics.
Additionally, we have derived the convergence rate for Bayesian
inference of categorical distributions in high dimensions in the
undersampled regime, showing that effectively sparse distribu-
tions can be inferred much more quickly. These results add to
the growing literature on high-dimensional inference from few
samples (45, 46), which has arisen in the context of the big-data
revolution.

We propose that the adaptive immune system balances inte-
gration of new evidence against prior knowledge, while discount-
ing previous observations to account for environmental change.
Similar frameworks have been developed for other biological
systems. In neuroscience, leaky integration of cues has been pro-
posed as an adaptive mechanism to discount old observations
in change-point detection tasks (47, 48), and close-to-optimal
accumulation and discounting of evidence has been reported
in a behavioral study of rat decision-making in dynamic envi-
ronments (49). Inference from temporally sparse sampling has
been considered in the framework of infotaxis, which is rel-
evant for olfactory navigation (50). In the context of immu-
nity, related ideas about inference and prediction of pathogen
dynamics have been used to predict flu-strain and cancer-
neoantigen evolution in silico (51, 52). Finally, ideas similar to
those developed here could be used in ecology or microbiome
studies to reconstruct evolutionary or ecological trajectories of
population dynamics from incomplete sampling of data at a
finite number of time points, e.g., from animal sightings or
metagenomics.

Materials and Methods
Modeling Pathogen Dynamics by an Immigration-Drift Process. In our model,
we describe the stochastic dynamics of the pathogenic environment (Fig. 1A)
by a Fokker–Planck equation for the conditional probability distribution
ρ(Q, t)

∂ρ(Q, t)

∂t
= Aρ(Q, t), [10]

where A is a differential operator acting on ρ that controls the dynamics.
For concreteness, we consider a population that changes due to genetic drift

and immigration from an external reservoir, which we describe by a Wright–
Fisher diffusion equation (53, 54)

τ
∂ρ(Q, t)

∂t
=−

1

2

∑
a

∂

∂Qa
[(θa− |θ|Qa)ρ(Q, t)]

+
1

2

∑
a,b

∂2

∂Qa∂Qb
[Qa(δa,b−Qb)ρ(Q, t)],

[11]

where τ sets the time scale of dynamics, θ is a K-dimensional vector of
immigration rates, and δa,b is the Kronecker delta, which is 1 if a = b and
0 otherwise. To efficiently simulate trajectories according to this dynamics,
we sample the new distribution of frequencies directly from the transition
density of the stochastic process as described in SI Appendix, section 1E.
This dynamics retains key features of real pathogen environments. First, at a
given point in time, the environment contains many different pathogens
with different frequencies determined by genetic drift and immigration.
Second, the dominant pathogens change over time, such as is the case for
many viruses, e.g., the flu or HIV.

Minimizing the Cost of Infection. To solve the optimization problem Eq.
1 analytically, a set of necessary conditions for optimality, the so-called
Karush–Kuhn–Tucker conditions, can be derived. When all receptors are
present at a nonzero frequency in the optimal repertoire P?r > 0, these
conditions imply (15)

∂
∑

a Qac(P̃a)

∂Pr

∣∣∣∣∣
P?

=−λ?, [12]

where λ? is set by the condition
∑

r P?r = 1. If we further simplify the
problem by assuming that there is no cross-reactivity between different
pathogens and by considering power-law cost functions, then this simplifies
to the explicit solution

P̃?a =
1

Z
Q1/(1+α)

a , [13]

where Z is a normalization constant. Other cases are discussed in detail in
ref. 15, including how to solve the optimization problem numerically by
using a projected gradient algorithm in the general case.

Change in Protection upon a Pathogen Encounter. The inference dynamics
induces via the mapping from Q̂ to P? (Eq. 1) a dynamics of an optimally
adapting immune repertoire. To get intuition we derive how the cover-
age changes in a simple setting in which Eq. 13 holds (further cases are
considered in SI Appendix, section 2).

Rewriting Eq. 6 in terms of the expected pathogen frequencies Q̂ = n/|n|,
we obtain an update equation for the expected frequencies upon encounter
of antigen a as

Q̂
+

=
n− + ea

|n+|
=
|n−|Q̂−

+ ea

|n+|
, [14]

where to simplify notations, we use Q̂(t+) = Q̂
+

, and where |n+|=
|n−|+ 1. By using Eq. 13, it follows that coverages are updated as

P̃+
b =

[((P̃−
b )1+α|n−|+ δa,b/(Z−)1+α)/|n+|]1/(1+α)

Z+/Z− [15]

Defining κ= 1/(|n+|(Z−)1+α) and neglecting the change in normalization
which is of order 1/K relative to the update size, we obtain Eq. 9. To fit
the dataset, we note that a proportional rescaling of P̃a by a factor k can
be subsumed within the model by redefining κ→κk1+α. Therefore, the
scaling of P̃a to an antibody titer can be subsumed within κ.
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