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DNA copy number aberrations (DCNA) and subsequent altered gene expression profiles may have a major impact on tumor
initiation, on development, and eventually on recurrence and cancer-specific mortality. However, most methods employed in
integrative genomic analysis of the two biological levels, DNA and RNA, do not consider survival time. In the present note, we
propose the adoption of a survival analysis-based framework for the integrative analysis of DCNA and mRNA levels to reveal their
implication on patient clinical outcome with the prerequisite that the effect of DCNA on survival is mediated by mRNA levels.
The specific aim of the paper is to offer a feasible framework to test the DCNA-mRNA-survival pathway. We provide statistical
inference algorithms for mediation based on asymptotic results. Furthermore, we illustrate the applicability of the method in an
integrative genomic analysis setting by using a breast cancer data set consisting of 141 invasive breast tumors. In addition, we provide
implementation in R.

1. Introduction

Concomitant analysis of the two biological levels, DNA and
RNA, and elucidating their implication in cancer devel-
opment and cancer-related mortality is a key objective of
studies within the cancer genetics field. Integrative analysis
of DNA copy number aberrations (DCNA) andmRNA levels
has received considerable interest with studies employing a
wide range of statistical methods [1–5]. Integrative genomic
analyses aim to identify novel biomarkers that can distinguish
between patients with favorable and unfavorable prognosis.
However, the sole focus on DCNA-driven altered gene
expression profiles falls short of this goal. To develop a
better understanding of the impact DCNA-driven altered
gene expression profiles have on tumor recurrence or cancer-
specific mortality, we need to consider patient survival
status and survival time, that is, survival analysis. However,
the unique relationship between DNA and RNA raises the
need to interpret the data from a more refined viewpoint.

Ascertaining causality between two biological factors is far
to be straightforward. However, no one would question that
mRNA is transcribed from a DNA template. Thus, mRNA
mediates the genetic information imprinted in DNA and
possibly the effect copy number aberrations have on survival
status. The chosen statistical-mathematical framework has
to properly address this issue. Mediation assumes that an
independent variable (DNA) causes the mediator (mRNA),
which in turn causes the outcome (survival status). Thus, the
mediator accounts partially or totally for the relation between
the predictor and outcome. The concept and methodology
of mediation were recently extended to survival analysis [6–
8], but so far forays into genetics are limited or nonexis-
tent. Genomic data poses specific challenges to an analyst
[9]. The most obvious challenge is the need of testing
thousands of markers simultaneously that raises the need
of an automatized procedure. In this note, we illustrate a
framework to apply integrative genomic analysis of DNA
copy number aberrations and mRNA levels in a mediation
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analysis context to test DNA copy number-mRNA-survival
pathways. If a mediation effect is observed for a specific gene,
we hypothesize that the specific gene is a driver gene. If
no mediation effect is observed then possible associations
between DNA copy number aberration and the outcome are
likely to indicate passenger genes. Naturally, other factors
thanDNAcopy number aberration influence gene expression
and mRNA levels; thus, a gene can be causally linked with
the outcome without any apparent association between copy
number aberrations and survival. Our specific aim is to
provide Delta-method-based asymptotic statistical inference
for the mediation effect feasible to test large numbers of
probes simultaneously. We examine the properties of the
advocated approach with the help of a simulation study
and illustrate applicability using genomic and transcriptomic
microarray data from 141 invasive breast tumors.

2. Methods

2.1. Data. Through the whole paper we assume that the data
consist of DNA copy number aberration data, messenger
RNAdata for every patient, and the associated survival length
and status. Moreover, we assume that the date is kept on their
original log

2
ratio scale.These values represent the logarithm

of the normalized copy number and mRNA measurements
with samples from healthy tissues. The logarithm has base 2.
Both DCNA and mRNA values generally were between −2
and 2 on a continuous scale. A reading of 0 indicates equal
amounts of genetic material in tumor and normal tissues;
any value above 0 indicates gains of DNA in tumor cells
(a value of 1 indicated double amounts of DNA in tumors
compared with normal tissues). Inversely, negative values
indicate loss of genetic material (a value of −1 indicates a
heterozygous loss of genetic material compared with normal
tissues). Naturally, other data types can be used as well, but
we advise the readers to keep measurements on continuous
scale and do not discretize the data (e.g., loss/normal/gain).

2.2. The Model for the Mediation. Mediation occurs when
the effect of one variable, the antecedent (DNA copy num-
ber aberration) on the outcome, is transmitted through a
mediating variable (mRNA). Mediation explicitly assumes
the existence of a causal chain, and it can be modeled by a
series of regression equations. The mediator model for the
DNA copy number-mRNA-survival pathway is illustrated in
Figure 1. The parameters of the mediator model are 𝛼

𝑚
, the

effect of DNA copy number aberration on mRNA levels;
𝜆

𝑚
the effect of mRNA on survival; and 𝜆

𝑐
the direct effect

of DNA copy number aberration on the survival status.
These later two parameters are estimated by Aalen’s Additive
Hazards model, a flexible nonparametric regression [10, 11]
while 𝛼

𝑚
is estimated by an ordinary least squares regression.

Of immediate interest is the product of 𝛼
𝑚

and 𝜆
𝑚

that
constitutes the estimator for the mediation effect, 𝛼

𝑚
𝜆

𝑚
.

Moreover, besidemediation one could be interested in testing
the total effect (𝛼

𝑚
𝜆

𝑚
+ 𝜆

𝑐
) or ratio between the mediated

and total effect, the relative magnitude, 𝑃
𝑀
, that gives an

informative gauge of the relevance of the mediated effect

compared to the total effect of the covariate and is estimated
as

𝑃

𝑀
=

𝛼

𝑚
𝜆

𝑚

𝛼

𝑚
𝜆

𝑚
+ 𝜆

𝑐

. (1)

Transcription is the first step of gene expression, in which
a particular segment of DNA is copied into RNA by the
enzyme, RNA polymerase. This step represents the first
equation in the mediation analysis, namely, the effect of copy
number aberrations on mRNA. The assumption is that the
number of copies of a gene available in the cells has a direct
effect on the amount of mRNA molecules synthetized. The
second step in the mediation process is the translation, when
messenger RNA (mRNA) is decoded by a ribosome complex
to produce a specific amino acid chain, or polypeptide,
eventually an active protein that ultimately affects tissue and
organ functioning, thus survival.

2.3. Statistical Inference for the Mediation and Total Effect.
Statistical inferences for the parameters of the mediator
model are 𝛼

𝑚
, 𝜆
𝑚
, and 𝜆

𝑐
is straightforward based on the

central limit theorem for 𝛼
𝑚
and on the martingale central

limit theorem for 𝜆
𝑚

and 𝜆
𝑐
. The null hypothesis usually

states that the parameters are equal to zero (no effect) while
the alternative states that these parameters are not zero.
Similarly, we can test if themediation effect is 𝛼

𝑚
𝜆

𝑚
= 0; if we

see evidence 𝛼
𝑚
𝜆

𝑚
̸= 0 then we can establish mediation. This

can be easily translated to a null-hypothesis framework𝐻
0
:

𝛼

𝑚
𝜆

𝑚
= 0 against the alternative 𝐻

1
: 𝛼

𝑚
𝜆

𝑚
̸= 0. For this is

necessary to know the distribution of the mediation estimate.
Both 𝛼

𝑚
and 𝜆

𝑚
are unbiased and normally distributed;

however their product is not normally distributed [12, 13],
but it follows the normal-product distribution; a leptokurtic
distribution that is symmetrical around is mean [14]. While
the derivation of the distribution of products of random
variables is straightforward, implementation is rather difficult
[15]. Similarly, we could be interested in the total effect testing
the null-hypothesis of 𝐻

0
: 𝛼

𝑚
𝜆

𝑚
+ 𝜆

𝑐
= 0 against the

alternative𝐻
1
: 𝛼

𝑚
𝜆

𝑚
+ 𝜆

𝑐
̸= 0. Additionally, it is desirable to

build a confidence interval for 𝑃
𝑀
. For either the total effect

or relative magnitude there are no routines for the derivation
of the limiting distribution.

Clearly we need alternative routines, such as computer
intensive methods (e.g., bootstrap and permutations) or
approximations. The Delta method is a method for deriving
an approximate probability distribution for a function of an
asymptotically normal statistical estimator [16].

Application of the Delta method leads to the following
variance estimator for the mediation parameter:

𝜎

2
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Figure 1: Schematic representation for the mediation of DNA copy number aberrations effect on survival by messenger RNA. The 𝛼
𝑚

represents the change in messenger RNA levels as a result of one unit change in DNA copy number aberrations as modeled by a linear
least squares regression. The 𝜆

𝑚
and 𝜆

𝑐
represent the regression coefficients for Aalen’s’ additive hazard model when the survival status is

regressed on messenger RNA and DNA copy number aberration levels, respectively.

and for the relative magnitude which takes a more compli-
cated form and is given by
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For the technical details we refer the reader to Supplementary
Material available online at http://dx.doi.org/10.1155/2013/
413783.

Statistical inference is straightforward, using the derived
variance estimators and parameter estimates from standard
statistical software. Both confidence intervals and 𝑃 values
are easy to calculate based on the approximately normal
distribution of the estimates.

Approximate confidence interval for mediation effect is
calculated as (𝛼

𝑚
𝜆

𝑚
− 𝑍

𝛼/2
𝜎Med; 𝛼𝑚𝜆𝑚 + 𝑍𝛼/2𝜎Med). The

procedure is similar for the total effect and ratio, just with the
suitable changes. Confidence intervals for the direct effect can
be obtained in a similar way based on the output of theAalen’s
additive model.

As it is not straightforward how to adjust confidence
intervals for multiple testing, we need to calculate 𝑃 values.
We test the null hypothesis of no effect𝐻

0
: 𝛼

𝑚
𝜆

𝑚
= 0 against

the alternative 𝐻
1
: 𝛼

𝑚
𝜆

𝑚
̸= 0. Based on the approximately

normal distribution of the estimates we can calculate a test
statistics,𝑍-score as 𝛼

𝑚
𝜆

𝑚
/𝜎Med, with𝑍 ∼ 𝑁(0, 1). Inference

for the total effect proceeds with the same steps.
Alternatively statistical inference for the mediated effect,

but not the total effect, can be obtained by the means of
product normal distribution [14, 17]. Bootstrapping or other
computer intensive methods are easy and straightforward
alternates; however their applicability is limited by the large

number of genes that integrative genomic studies routinely
consider.

2.4. Simulation Study. To investigate the properties of the
proposed testing procedure with sample sizes attainable in
real life studies, we conducted a series of simulation studies.
The simulation studies were designed to offer insight into
the efficiency of the estimator for the mediated total effect.
Moreover, we considered the adequacy of 95% confidence
intervals.

Based on a previous analysis on 97 tumors we estimated
the mean log

2
ratio values for DNA copy number aberrations

at 𝜇 = 0.248 and 𝜎2 = 0.047. Thus, we simulated the DNA
copy number data as normally distributed with 𝜇 = 0.248
and 𝜎2 = 0.047. Furthermore, based on the same data we
generated the relative mRNA log

2
ratio values by −0.578 +

0.775DCNA + 𝜀 with 𝜀 ∼ 𝑁(0, 0.158). Survival times were
generated according to the additive hazard model with 𝛼(𝑡 |
x
𝑖
) = 𝛽

0
+𝜆

𝑚
mRNA+𝜆

𝑐
DCNA,where𝜆

𝑚
= 0.4 and𝜆

𝑐
= 0.1,

leading to an indirect effect of 0.31 and a total effect of 0.41.
The baseline 𝛽

0
was set to 1 and censoring was chosen to 0.9

to obtain a censoring around 60%, relevant for cancer studies.
We created data sets with samples sizes from 25 to 300 with
increment of 25. At each sample size we created 1000 samples.

2.4.1. Properties of the Estimator. As unbiased and accurate
estimates are the foundation of a proper significance testing
we estimated the bias and accuracy of the mediation effect
estimator at varying sample sizes. We calculated bias as 𝛿 =
̂

𝛽 − 𝛽 and estimated accuracy with the help of mean squared

error MSE = ( ̂𝛽 − 𝛽)
2

+ (se( ̂𝛽))
2

.

2.4.2. Confidence Interval Adequacy. As a first gauge of
confidence interval adequacy we used the coverage level,
defined as the proportion of times the obtained confidence
interval contains the true, specified parameter. The coverage
expectedly should be close to the chosen nominal level,
for example, 95%. Over-coverage indicates too conservative
confidence intervals and low statistical power, while under-
coverage indicates overconfidence and it will result in false
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positive findings [18]. However, we cannot expect that the
coverage of a proper confidence interval to be equal to
the chosen nominal level. Rather due to the randomness
and limited number of simulations, we would expect that
the coverage will situate close to the nominal level and in-
between tolerance limits whose boundaries are determined
by the number of simulations performed. If we regard
one confidence interval then we have a clear dichotomy:
the confidence interval covers or not the true, specified
parameter. This follows the Bernoulli distribution, and if we
consider all confidence intervals constructed the Binomial
distribution. Thus, for a 95% confidence interval we expect
that the coverage should not fall outside of approximately
1.96 standard errors of the coverage probability (𝑝), 𝑝 ±
1.96√1(1 − 𝑝)/𝑁, where𝑁 is the number of simulations. As
we run 1000 simulation per sample size we expect that the
coverage should be between 0.936 and 0.963. Any other value
indicates over- or under-coverage.

A second gauge of confidence interval adequacy was the
its width, methods that provide confidence intervals with
adequate coverage and narrower confidence intervals provide
the best trade-off between type I and type II errors.

Thirdly, we would expect that the 95% constructed confi-
dence intervals to fall below the true value about 2.5% times
and above equally often [19].Thus, if we run 1000 simulations
we expect that 25 times (lower error) the confidence intervals
fall below the true parameter and 25 times above (upper
error), deviations from this indicating lack of symmetry.

Additionally we compared the performance of the pro-
posed approach to inferential procedures based on normal
product distribution and nonparametric bootstrap confi-
dence intervals (normal, base, percentile, and bias corrected
and accelerated).

2.5. Application on Breast Tumors. Primary invasive tumors
(𝑛 = 141) from 141 breast cancer patients were selected
from the fresh-frozen tissue tumor bank at the Sahlgrenska
University Hospital Oncology Lab (Gothenburg, Sweden).
All samples were assessed for DNA content at the time of
diagnosis from 1991 to 1999 (data not shown) by flow cytom-
etry at the Laboratory for Clinical Chemistry, Sahlgrenska
University Hospital. The presence of malignant cells was
assessed in all samples by evaluation of touch preparation
imprints stained with May-Grünwald Giemsa (Chemicon).
All procedures were done in accordance with the Declaration
of Helsinki and approved by the Medical Faculty Research
Ethics Committee (Gothenburg, Sweden).

Whole-genome tiling arrays with 38,043 reporters map-
ping to the UCSC May 2004 hg17: NCBI Build 35 were
manufactured as previously described [20] at the SCI-
BLU Genomics DNA Microarray Resource Center (SCI-
BLU), Department of Oncology, Lund University. Images
and raw signal intensities were acquired using an Agilent
G2505B DNA microarray scanner (Agilent Technologies)
and GenePix Pro 6.0.1.22 (Axon Instruments) image analysis
software. Data preprocessing and normalization were done
using the web-based BioArray Software Environment system
(BASE) provided by SCIBLU (http://base2.thep.lu.se/onk/).

The RNA samples were processed at SCIBLU using Illu-
mina HumanHT-12 Whole-Genome Expression BeadChips
(Illumina), according to the manufacturer’s instructions.
The expression microarrays contained approximately 49,000
probes representing >25,400 RefSeq (Build 36.2, Release 22)
and Unigene (Build 199) annotated genes. Images and raw
signal intensities were acquired using the Illumina BeadArray
Reader scanner and BeadScan 3.5.31.17122 (Illumina) image
analysis software, respectively.

Data preprocessing and quantile normalization were
applied to the raw signal intensities using BASE. Further data
processing was done in Nexus Expression 2.0 (BioDiscovery)
using log

2
-transformed, normalized expression values and a

variance filter. Normalized values from five normal breast
samples profiled with Illumina HumanWG-6 Expression
BeadChips (GEO, accession number GSE17072) were used as
reference [21]. Further details the reader will find in Parris
et al. [22] and its supplementary material. The individual
array-CGH and expression microarray data are accessible
through the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO accession numbers
GSE20486 and GSM304824).

The data from the two genomic platforms were matched
[23]. In conclusion out data set consist of 141 breast tumours
belonging to 141 breast cancer patients and from each tumour
8349 genes were analysed. These data were selected for
illustrative purposes.

Adjustment for multiple testing was done with method of
Benjamini and Hochberg to control the false discovery rate.

3. Results

3.1. Properties of the Estimator. At sample sizes under 50 the
estimator proved to overestimate systematically the mediated
and total effects (Figure 2). Moreover the mean squared error
at small sizes was considerably higher than the estimated
effects itself. This partially was due to biased estimates but
also due to the high variability observed at small sample sizes
(Figure 3).

3.2. Properties of the Confidence Interval. The coverage of
the 95% confidence interval varied considerably with sample
size (Figure 4). At small samples the Delta-method based
confidence intervals systematically exceeded the nominal
level. This was characteristic even for confidence intervals
based on normal and base bootstrapping (Table 1). At sample
sizes over 100 the coverage level was close to the nominal
value and was in between the acceptance limits. Similarly at
sample sizes above 100 the comparative analysis showed that
the 95% confidence interval based on the Delta-method had
similar or slightly better coverage and width than confidence
intervals based on nonparametric bootstrapping. Similarly,
the coverage and width coincide well with the confidence
intervals based on the normal product distribution (Table 1).
Moreover, the confidence interval based on theDelta-method
was symmetrical; intervals that failed to cover the true
population value fell roughly equal to the lower and upper
tail of the distribution.

http://base2.thep.lu.se/onk/
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Figure 2: Bias and mean squared error of the estimated mediated and total effects.
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Figure 3: Sample size dependent distribution of the estimated
mediated and total effects.

3.3. Analysis of Breast Tumors. Analysis of 8,349 chromo-
some segments spread over the entire genome revealed
that DCNA explains observed mRNA levels for 2,790 genes
(Supplementary Figure 1). mRNA levels showed significant
association with survival for 288 genes, but only 128 genes
showed significant DCNA-mRNA and subsequent mRNA-
survival association.After adjusting formultiple testing, none
of these 8,349 genes showed a significant mediation effect.
If we only tested the 128 genes with both DCNA-mRNA
and mRNA-survival association, then all 128 genes showed
significant mediation effects. Among these 128 genes, the
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Figure 4: Sample size related coverage probabilities for the 95%
Delta-method based confidence intervalfor the mediated and total
effects.Thedashed grey line represents the acceptance limits for 1000
simulations.

mRNA levels for 124 genes mediated completely the effect of
DCNAs on survival and no significant direct effect of DCNAs
on survival was recorded. For four fragments we observed
that mRNA levels exhibited significant mediation effect but
DCNAs exerted an effect on survival that was not mediated
by mRNA levels belonging to that specific fragment.

4. Discussion

In the present study, we proposed a novel approach to
integrate DNA copy number aberrations and gene expression
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Table 1: Results of simulation of the characteristics of the 95%CI for
the mediation effect.The lower and upper errors denote the number
of times when these intervals fell below or above the true population
value.

Coverage Lower error Upper error Width
𝑛 = 25

Delta method 0.977 0.003 0.020 4.288
Product normal 0.951 0.015 0.034 4.514
Boot

Normal 0.995 0.001 0.004 6.153
Base 0.996 0.001 0.003 6.286
Percentile 0.944 0.029 0.027 6.286
BCa 0.952 0.024 0.024 6.224

𝑛 = 50

Delta method 0.971 0.006 0.023 2.587
Product normal 0.954 0.018 0.028 2.663
Boot

Normal 0.984 0.004 0.012 3.036
Base 0.987 0.003 0.010 3.118
Percentile 0.942 0.031 0.027 3.118
BCa 0.954 0.022 0.024 3.099

𝑛 = 75

Delta method 0.969 0.009 0.022 2.008
Product normal 0.961 0.015 0.024 2.047
Boot

Normal 0.980 0.007 0.013 2.215
Base 0.985 0.004 0.011 2.268
Percentile 0.950 0.027 0.023 2.268
BCa 0.963 0.020 0.017 2.253

𝑛 = 100

Delta method 0.960 0.015 0.025 1.672
Product normal 0.947 0.025 0.028 1.696
Boot

Normal 0.965 0.012 0.023 1.801
Base 0.977 0.007 0.016 1.839
Percentile 0.943 0.027 0.030 1.839
BCa 0.947 0.025 0.028 1.831

patterns (mRNA levels) with survival thatmight offer insights
into the biological mechanisms of cancer-related mortality.
We specifically aimed to provide a methodology applicable
to large scale genomic studies that is easy to implement and
interpret.

The advocated approach is largely based on and expands
upon the current advances in mediation analysis in a survival
context [7, 24–26] and adheres to the effort to infer causal
association between genes and disease [27–31]. Ferkingstad
et al. [32] offers an early example of this approach, though
their approach is more practical in addressing the effect
of target genes on survival. The novelty of the paper lies
in the adaption of the mediation analysis to an integrative
genomic setting and in providing a simple and feasible
procedure to test the mediation effects concomitantly on
a large number of probes. Our simulation results showed

that the proposed inference based on the Delta-method is
equivalent to inferential procedures based on normal product
distribution or resampling, the staple methods of inference
in mediation studies [33] in moderate and large samples.
Beside lower computational load and shorter running time,
the main advantage over resampling or simulation-based
inference lies in the possibility of multiple adjustments.
Multiple adjustments require 𝑃 values with a resolution that
makes resampling or simulation based inference unfeasible
for integrative genomic studies. Moreover, the Delta-method
based inference can be expanded to more complicated causal
diagrams. The Distribution of Product estimator [17, 34] is a
natural alternative to the Delta-method based inference with
superior properties in small samples. However, is not clear
how it can be extended to total effects, relative magnitude, or
more complicated causal networks.

The simulation study that we performed was limited its
scope however highlighted interesting aspects. Mainly, that
extreme caution is advised at sample sizes under 100.

Premeditatedly, we omitted evaluating the relativemagni-
tude, the ratio between indirect and total effect. However, we
do present formulae of the variance. The relative magnitude,
PM, prevails in the literature despite lack of straightforward
interpretation [35]. Additionally, point and variance esti-
mates for the relative magnitude are unstable and require
extreme sample sizes for a stable point estimation and correct
inference [36, 37].

In this note, we have focused on the statistical and
practical issues, and by using a breast cancer data set illus-
trate the applicability of the method. The occurrence and
progression of neoplastic disease require multiple genetic
events, ranging from single nucleotide mutations to large
DNA regional rearrangements, occurring sequentially in a
cell lineage. These genetic events have major effects on
the process of mRNA transcription and further protein
translation. This small scale study showed that around 36%
of DCNA changes are mirrored on the mRNA level and the
remaining 64% could be a result of genomic instability of
the analyzed carcinomas (i.e., passenger genes). However,
from the 8,349 DNA fragments that we considered initially,
we recorded no mediation effect. This could have both
biological and mathematical reasons. One has to recall that
both the DCNA and mRNA data originate from tumors that
were surgically removed. Thus, one could expect that their
effect diminishes as time passes. Though, striking genomic
similarities between primary and secondary tumors that
develop often years apart [38, 39] indicate their implication,
not only in the cancerous process but in patient survival
times. Beyond the biological reasoning, sample size issues
common for genomic studies persists. The relatively small
sample and gene ration in our sample (141 patients and
8,349 segments) imposed a rather stringent multiple testing
threshold. Mediation analysis is common in psychology
and social sciences were generally one (or perhaps a few)
mediation analysis per study is performed.Thus, there was no
immediate need for adjustment for multiple testing. Fritz and
MacKinnon [40] concluded that generally a sample size larger
than 400 is desired to achieve adequate statistical power. The
proper multiple adjustment strategy for mediation analyses
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is yet to be determined. Likely, a prefiltering of the data
based onbiological clinical reasoning is needed (e.g., consider
only genes with above a predefined copy number change).
However, as drawing biological conclusions was beyond the
scope of our work we did not consider any specific pre-
filtering of the data in order not to over-optimize the data to
the method [41].

An attempted filtering based to the assumptions of medi-
ation (the independent variable (DNA) causes the mediator
(mRNA) which in turn causes the outcome) reduced the data
to only 128 genes located in 128 DNA segments. All the 128
genes in this reduced sample showed significant mediation.
For 124 of these 128 segments, mRNA seemingly mediated
the entire effect that DCNA had on survival. These segments
likely contain oncogenes or tumor suppressor genes involved
in tumor initiation and progression. For the remaining 4
genes, the effect of DCNAwas not solely mediated by mRNA
produced within the fragment. These segments may contain
sequences with regulatory elements or encode microRNA
with transacting effects. Conversely, expression of these genes
could be affected by transacting genes with global effect (e.g.,
master predictors as coined by Peng et al. [42]).

As this small example illustrated considering mediation
could highlight interesting aspects that classical integrative
genomic or survival analysis wouldmiss. Classical integrative
genomics considers association between DCNA and mRNA
and aims to assess the strength of association between the
two biological levels without any clinical endpoint. Classical
survival analysis (e.g., Cox regression) would also miss
important aspects. A Cox regression model describing the
effect of DCNA and mRNA on survival will consider the two
as independent factors. If the effect of DCNA on survival
is mediated by mRNA and there is no direct effect, a Cox
regression model will miss this effect and it will conclude
that DCNA has no effect on survival status. Moreover, in
opposition to the Aalen’s additive model decomposition of
Cox regression estimates into direct andmediated effects lack
any straightforward analytical expression and there are no
general measures for a mediated effect [6].

The expansion proposed in this paper not only adds a
clinically relevant endpoint to the two biological levels but
also builds a biologically plausible model and offers ways of
inference. Naturally, this adds an extra layer of complexity to
an already complex issue, but we believe the gains outweigh
the impediments.

Here, we merely focus on integrative genomic studies
while the method can easily be applied to other study types
as well. Similarly, generalizations for more than onemediator
or more than one pathway are straightforward. Researchers
could test models based on known pathways or empirical
models resulting from large scale networkmodeling [43] built
on the premise that DCNA can have global effects beside
effects on those genes contained within that DCNA [44].
Moreover, causal networks incorporating covariates other
than genomic data can be considered. The structure of the
causal diagram and minimal sufficient adjustment sets for
estimating mediated (or) total effects can be determined
using appropriate epidemiological theory and tools [45].

5. Conclusions

We believe that mediation analysis can be a useful addition
to the toolbox of bioinformaticians and geneticists seeking
to integrate DNA copy number aberrations, altered gene
expression profiles, and patient survival.
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