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Abstract

Background: Circadian patterns of cardiovascular vulnerability were well characterized, with a
peak incidence of acute myocardial infarction and stroke secondary to atherosclerosis in the
morning, which showed the circadian clock may take part in the pathological process of
atherosclerosis induced by hyperlipidemia. Hence, the effect of hyperlipidemia on the expression
of circadian genes was investigated in atherosclerotic mouse model.

Results: In apoE-/-mice on regular chow or high-fat diet, an atherosclerotic mouse model induced
by heperlipidemia, we found that the peak concentration of serum lipids was showed four or eight
hours later in apoE-/- mice, compared to C57BL/6] mice. During the artificial light period, a reduce
in circulating level of serum lipids corresponded with the observed increase of the expression levels
of some the transcription factors involved in lipid metabolism, such as PPARa and RXRo.
Meanwhile, the expression of circadian genes was changed following with amplitude reduced or the
peak mRNA level delayed.

Conclusions: Our studies indicated that heperlipidemia altered both the rhythmicity and
expression of circadian genes. Diet-induced circadian disruption may affect the process of
atherosclerosis and some acute cardiovascular disease.

Background consequence, many disease symptoms and onset patterns

In mammals, many behavioral and physiological proc-
esses display approximate 24 hour (24-h) rhythms [1]
mainly drived by rhythms of transcription of output genes
which are not only controlled by the master circadian
clock [2-4], localized in the hypothalamic suprachias-
matic nucleus (SCN), but also by the peripheral clock [5-
7] in the peripheral tissues, such as heart and liver. As a

are not randomly distributed within the 24-h period.
Especially, most cardiovascular diseases resulting from
complications of atherosclerosis, such as stroke and acute
myocardial infarction, often occur between 6 a.m and 12
a.m. [8-10], with a peak incidence in the morning. Epide-
miological and pathophysiological studies also indicate a
causal link between disrupted biological timing and the
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metabolic syndrome, which is associated with an
increased risk of accelerated atherosclerosis and cardio-
vascular disease [11].

As a metabolic risk factor, hyperlipidemia plays a signifi-
cant role in the process of atherosclerosis which is charac-
terized by the formation of atheromatous plaques. Many
studies have shown circadian genes were involved in reg-
ulating liqids metabolism. For example, Rev-erba-/- mice
exhibit a dyslipidemic phenotype with increased very low-
density lipoprotein (VLDL) triglyceride levels and apoli-
poprotein CIII (apoClIII) expression that participates in
regulating lipoprotein lipase activity and triglyceride lev-
els [12,13]. Compared to wild-type mice on a high-
fat(HF) diet, Clock-/- mice on the same diet showed less
triglyceride accumulation in the liver by suppressing
expression of Acsl4 and Fabpl genes involved in lipid
metabolism [14]. However, much less is known about
whether and how lipid metabolic process alters the circa-
dian clock. Some metabolic transcription factors have
been shown to regulate the expression of circadian genes.
For example, Bmall transcription is inhibited by REV-
ERBa, a transcription factor regulated by adipogenesis
[15]. Akira et al, showed that in C57BL/6] mice on HF
diets, circadian period of mice was lengthened and the
amplitude of circadian gene expression was attenuated,
compared to the RC-fed C57BL/6] mice [16].

We previously found that the expression of clock-control-
led genes (CCGs, Pai-1, t-PA, TF and ET-1) lost their circa-
dian rhythm in apoE-/- mice fed regular chow (RC) and
showed a reverse circadian rhythm in HF-fed apoE-/- mice
[17]. Our studies also showed that mammalian apoptosis-
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associated genes c-myc and p53 exhibited circadian
expression in C57BL/6J mice, but the rhythms lost com-
pletely in apoE-/- mice [18]. What changes occurred to the
expression of circadian genes? In the present study, in the
atherosclerotic mice model with hyperlipidemia, we indi-
cated how the expression of circadian genes was changed
in suprachiasmatic nucleus (SCN) of the hypothalamus,
hearts and livers of atherosclerotic mice and the changed
of serum lipid levels. We further analyzed the expression
of transcription factors (PPARa, RXRa and Rev-erba)
involved in lipid metabolism and found that hyperlipi-
demia altered the circadian rhythms in atherosclerotic
mice.

Results

Analysis of mouse serum lipid

The average levels of total cholesterol and LDL-cholesterol
(LDL-CHO) of apoE-/- mice fed with a high-fat diet were
higher than those of apoE-/- mice fed with regular chow
during a cycle, which is much higher than C57BL/6] wide-
type mice. In contrast, the whole level of HDL-CHO of
HF-fed apoE-/- mice was the lowest in three group mice,
the highest in C57BL/6] wide-type mice (Fig. 1A). The
peak concentration of total cholesterol, LDL-CHO and
HDL-CHO occurred at CT8 in apoE-/-mice on RC, which
delayed four hours in apoE-/-mice on HF diet and reached
at CT12, and didn't show in C57BL/6] during a cycle (Fig.
1B).

Formation of atheromatous plaque in the aorta arch of
apoE knock-out mice

Atherosclerotic plaque of aorta root was detected in HF-
fed apoE-/-mice for 5 weeks. As shown in Fig. 2, there is
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Concentration of serum cholesterol, LDL-CHO and HDL-CHO in the serum of apoE-/- and C57BL/6) mice.
(A)*P < 0.05 vs C57BL/6) mice and apoE-/-mice fed with regular chow; #P < 0.01 vs C57BL/6] mice fed with regular chow and
apoE-/-mice fed with a high-fat diet. (B) *P < 0.05 vs CT 16 in HF-fed apoE-/-mice; #P < 0.0l vs CT |2 in apoE-/-mice on RC
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Figure 2
Atherosclerotic plaques or foam cells showed by oil red O staining in frozen sections of aorta roots of the
mice. (A) Atherosclerotic plaque formed in apoE-/- mouse aortas fed with a high-fat diet, x100. (B) C57BL/6] mouse, x100.
(C) Foam cells were found in apoE-/- mouse aorta roots, X100. (D) The rectangle in Fig C shows foam cells under the
endothelium, x400.

no obvious atherosclerotic plaque except for some foam
cells deposited under the endothelium in the aorta root of
apoE-/- mouse on RC. No lesion was found in the aortic
tunica intima in C57BL/6J mouse.

Diurnal expression patterns of circadian genes in SCN,
hearts and livers of apoE-/- atherosclerotic mice
Circadian genes in SCN were involved in regulating many
kinds of physiological and biological functions. Rhythms
were observed except Clock in both C57BL/6] mice and
apoE-/- mice, but the amplitude wasn't changed. Bmal1l
mRNA level peaked at CT20, the lowest level was at CT8
in C57BL/6J mice Rhythmic expression of Cry1 and Per2
mRNA was similar, the highest mRNA level was found at
CT8 and CT12 respectively, and the lowest at CTO in

C57BL/6] mice. In apoE-/- mice on HF diet, the peak
mRNA levels of Bmall, Per2, and Cryl were showed at
CT12, the trough was different (Fig. 3).

In hearts, the peak mRNA of Bmall, Per2 and Cryl was
delayed four hours in apoE-/- mice compared to C57BL/
6] mice and the amplitude was changed. The peak and
trough of Bmall mRNA levels were at CTO and at CT12 in
apoE-/- mice, which occurred at CT20 and CT8 in C57BL/
6] mice respectively. Similarly, the highest and the lowest
Per2 mRNA level were found at CT12 and CTO in apoE-/-
mice, compared to CT8 and CT20 in C57BL/6] mice.
There was no significant different in Cryl mRNA level
between C57BL/6] mice and apoE-/- mice on RC. The
amplitude of Bmall mRNA level was about 2-fold higher
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Figure 3

Diurnal variation of circaidan gene mRNA levels in SCN of C57BL/6) and apoE-/- mice. The experiment has been
repeated three times with similar results. The data from three experiments was normalized to GAPDH mRNA and repre-

sented as fold increase over CTO of C57BL/6) mice. (A) #P < 0.05 vs CT8 in C57BL/6J and apoE-/- mice fed with regular chow;
*P < 0.05 vs CT8 in HF-fed apoE-/- mice. (B) #P < 0.05 vs CT4 in C57BL/6J and apoE-/- mice fed with regular chow; *P < 0.05
vs CT8 in HF-fed apoE-/- mice. (D) #P < 0.05 vs CTO or CT20 in C57BL/6) and apoE-/- mice fed with regular chow; *P < 0.05

vs CT20 in HF-fed apoE-/- mice

at CT0 and about 3-fold lower at CT12 and CT16 in apoE-
/-mice than that in C57BL/6] mice. Enhanced expression
of Cry1 gene occurred at CT12 and CT16 in HF-fed apoE-
/-mice, compared to C57BL/6J mice and apoE-/-mice on
RC. Per2 mRNA level was decreased at CTO and CT4 in
apoE-/-mice, in contrast, which was increased at CT12 and
CT16, compared to C57BL/6] mice (Fig. 4).

Lipid metabolism processed in liver, circadian gene
expression including Clock showed rhythmic oscillation
in C57BL/6]J or apoE-/- mice. The expression of circadian
gene Bmall mRNA was decreased at several time points

accompanied with the peak delayed. During the whole
cycle, Per2 mRNA level was lower in apoE-/-mice than
that in C57BL/6] mice. The Cryl and Clock genes showed
a similar expression pattern. The peak mRNA level
reached at CT20 with delayed four hours, compared to the
peak time point CT16 in C57BL/6J mice (Fig. 5). The
expression and rhythmicity of circadian genes in hearts
and livers of apoE-/- mice were altered by the hyperlipi-
demia.
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Figure 4

Diurnal variation of circadian gene mRNA in hearts of C57BL/6) and apoE-/- mice. The experiment has been
repeated three times with similar results. The data from three experiments was normalized to GAPDH mRNA and repre-
sented as fold increase over CTO of C57BL/6) mice. (A)*P < 0.0l vs CTO, CT12 and CT16 in apoE-/- mice fed with regular
chow or a high-fat diet. (B)#P < 0.05 vs CT12 and CT16 in C57BL/6) and apoE-/- mice fed with regular chow. (D) *P < 0.05 vs

CTO, CT4, CTI2 and CT16 in apoE-/- mice on RC or HF diets

Diurnal expression profile of transcription factors related
with lipid metabolism of apoE-/- atherosclerotic mice

The similar patterns of clock genes expression alternation
induced by hyperlipidemia might be regulated by one or
couple of transcription factors binding with their
upstream response element. Some of known transcription
factors related with lipid metabolism such as Rev-erba,
PPARo and RXRa were detected in SCN, hearts and livers
of C57BL/6]J or apoE-/- mice. The expression of Rev-erba
was similar in SCN, hearts and livers of C57BL/6]J or apoE-
/-mice. The peak mRNA level was delayed four hours in

apoE-/- mice. At CTO, the amplitude of Rev-erba expres-
sion was decreased about 2-fold to 6-fold in SCN, hearts
and livers of apoE-/-mice in succession, compared to that
of C57BL/6]J mice. These changes occurred only during the
light period (Fig. 6). The expression pattern of PPARa and
RXRa. mRNA wasn't changed in SCN and hearts of C57BL/
6] and apoE-/-mice (data not shown), while was daily
oscilliation in livers. The mRNA expression of PPARa and
RXRa in apoE-/-mice fed with a high-fat diet was
increased at CTO, CT4 and CT8, compared to those of
C57BL/6] or apoE-/-mice fed with regular chow (Fig. 7).
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Figure 5

Diurnal variation of circadian gene mRNA in livers of C57BL/6) and apoE-/- mice. The experiment has been
repeated three times with similar results. The data from three experiments was normalized to GAPDH mRNA and repre-
sented as fold increase over CTO of C57BL/6) mice. (A)*P < 0.05 vs CT0, CT8, CT|2 and CT20 in apoE-/- mice on RC or HF
diets;#P < 0.05 vs CTO, CT16 and CT20 in C57BL/6) mice and apoE-/-mice fed with regular chow (B)*P < 0.05 vs CT8, CT12,
CTI16 and CT20 in apoE-/- mice on RC or HF diets; #P < 0.05 vs CT20 in C57BL/6) mice and apoE-/-mice fed with regular
chow (C)*P < 0.05 vs CT12 and CT 16 in apoE-/- mice on RC or HF diet (D)*P < 0.05 vs CTO, CT8 and CT 12 in apoE-/- mice

on RC or HF diets

Hyperlipidemia affected the expression of transcription
factors.

Discussion

Onset of acute cardiac events such as myocardial infarc-
tion and stroke has a peak in the early morning [19,20].
Although the precise mechanism underlying this phe-
nomenon is still unclear, they are mainly caused by
atherosclerosis, which is a chronic vascular disease
resulted from complicated causes such as abnormal lipid
metabolism and coagulation disorders. In the present
study, we used apoE knock-out mice on RC or HF diet as

the animal model at early and advanced stage of athero-
sclerosis, which was identified by serum lipids level anal-
ysis and oil red O staining of frozen sections of mice aorta
roots that was consistent with our previous results
[17,18]. We further investigated whether and how hyper-
lipidemia, as a risk factor of atherosclerosis, affected the
expression of circadian genes.

Our results indicated that the rhythmic profiles of circa-
dian genes were slightly altered in SCN of atherosclerotic
mice in comparison with C57BL/6J wild-type mice. The
master clock exerted the role of coordinating synchroniza-
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Figure 6

Diurnal variation of transcription factor Rev-erba mRNA of C57BL/6J and apoE-/- mice. The experiment has been
repeated three times with similar results. The data from three experiments was normalized to GAPDH mRNA and repre-
sented as fold increase over CTO of C57BL/6) mice. (A)*P < 0.05 vs CTO in apoE-/- mice on RC or HF diets. (B)*P < 0.05 vs
CTO0, CT8 and CT12 in apoE-/- mice on RC or HF diets. (C)*P < 0.01 vs CTO in apoE-/- mice on RC or HF diets; #P < 0.05 vs
CT8 in C57BL/6J and apoE-/- mice fed with regular chow;**P < 0.05 vs CT4 in C57BL/6J and HF-fed apoE-/- mice

tion of peripheral clock to adapt organism to circum-
stance. In mammals, light is the most potent entraining
signal, with the retinohypothalamic tract (RHT) being the
principal retinal pathway through which entraining infor-
mation reaches the SCN [21,22]. SCN neurons made
interaction to entrain the circadian oscillator, which scat-
tered throughout the body. Without the light stimulus,
intrinsic circadian clock will be turned off. As shown in
our data, the change of diet components had no effect on
expression of master circadian genes.

In the peripheral organs, peripheral circadian clock was
mainly affected by diet. In the present study, expression of
circadian genes in hearts of apoE-/- mice on RC or HF diet
presentd difference, where, peak mRNA level was found
with four hours delayed in comparison with that of
C57BL/6] mice on RC. At the same time, transcription fac-
tor Rev-erba showed four hours delayed, which may reg-
ulate the expression and function of circadian genes

[23,24]. However, the different expression pattern is that
the peak mRNA of circadian genes (Bmall, Cryl and
Per2) with four hour delayed occurred at the starting of
subjective dark period, while transcription factor Rev-erba
at starting of subjective light period in apoE-/-mice, com-
pared to that in C57BL/6] mice, respectively. The concen-
tration of serum lipids showed a peak during a cycle in
apoE-/-mice on RC or HF diet. The highest levels of total
cholesterol, LDL-CHO and HDL-CHO were observed at
CT12 in the starting of dark period in HF-fed apoE-/-mice,
which was four hours later than those in RC-fed apoE-/-
mice (was at CT8). In C57BL/6J mice, serum lipids level
showed no change during the period. The similar expres-
sion changes between serum lipids and circadian genes
were detected in apoE-/-mice. Disorder of lipid metabo-
lism affected the expression of circadian genes in hearts
possibly through transcription factor Rev-erbo which was
involved in regulating the lipids metabolism [25].
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Figure 7

Diurnal variation of transcription factors PPARo and RXRa mRNA of C57BL/6) and apoE-/- mice. The experi-
ment has been repeated three times with similar results. The data from three experiments was normalized to GAPDH mRNA
and represented as fold increase over CTO of C57BL/6) mice. (A)*P < 0.01 vs CTO, CT4 and CT8 in C57BL/6J and apoE-/- mice
fed with regular chow (B)*P < 0.01 vs CT0, CT4 and CT8 in C57BL/6) and apoE-/- mice fed with regular chow

Our results indicated the peak level of serum lipids
delayed in livers of apoE-/- mice, meanwhile, during the
subjective light period, the decrease in circulation serum
lipids level corresponded with the observed increase of
PPARo and RXRa expression levels, transcription factors
involved in lipid metabolism. A reported molecular
mechanism of the lipid-lowering effect of PPARa was the
formation of a PPAR-RXR heterodimer complex, which
binds to PPAR response elements (PPREs) in the pro-
moter regions of genes involved in beta-oxidation and
lipoprotein/cholesterol transport [26]. In apoE-/- mice,
the peak and the trough of circadian gene mRNA levels
were observed with four hours delayed, accompanied
with mRNA levels decreased at several time points in com-
parison with C57BL/6] mice. Previous studies demon-
strated that several metabolic transcription factors such as
PPARa and RXRa have been shown to be involved in reg-
ulating Clock, Bmall and CIOCK/BMALI1-dependend
mRNA expression. For example, the transcription of Per2
is regulated by RXRa, the ligand of PPARe, which regu-

lates lipid and lipoprotein metabolism, and inflamma-
tion, major risk factors for atherosclerosis [27,28].
Hyperlipidemia affected the diurnal cycle of circadian
genes. The transcriptional factors such as Rev-erba,
PPARa and RXRa may involve in the alternation of circa-
dian gene expression. Altered expression of circadian
genes further affected the diurnal expression variation of
clock-controlled genes which was involved in atherogene-
sis and the onset of acute cardiovascular diseases [17,18].

Our study showed that hyperlipidemia and the early and
advanced stage of typical atherosclerotic lesions formed in
apoE-/- mice fed with regular chow or a high-fat diet.
Diurnal variation of serum lipids level affected the expres-
sion of circadian genes, which might be mediated by acti-
vation of some transcription factors such as PPARa, RXRa
and Rev-erba. This investigation provided new insight
into hyperlipidemia-induced circadian disruption may
affect the process of atherosclerosis or some acute cardio-
vascular disease.
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Table I: The primer Sequences Used for PCR Amplification
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Gene Genebank Annealing temperature Primer sequence 5' to 3'
Accession No.
Per2 NM 011066 58°C Forward Primer: CAGACTCATGATGACAGAGG
Reverse Primer: GAGATGTACAGGATCTTCCC
Bmall NM_007489 62°C Forward Primer: CACTGACTACCAAGAAAGTATG
Reverse Primer: ATCCATCTGCTGCCCTGAGA
Clock NM_ 007715 58°C Forward Primer: CTTCCTGGTAACGCGAGAAAG
Reverse Primer: TCGAATCTCACTAGCATCTGACT
Cryl NM 007771 58°C Forward Primer: CACTGGTTCCGAAAGGGACTC
Reverse Primer: CTGAAGCAAAAATCGCCACCT
Rev-Erba NM_ 145434 61°C Forward Primer: TACATTGGCTCTAGTGGCTCC
Reverse Primer: CAGTAGGTGATGGTGGGAAGTA
PPARa NM 011144 61°C Forward Primer: TCGGCGAACTATTCGGCTG
Reverse Primer: GCACTTGTGAAAACGGCAGT
RXRa NM_009024 61°C Forward Primer: CTGCACTCTCCTATCAGCACC
Reverse Primer: AGTCCCGAAGCCCAATGTG
GAPDH BC 083149 62°C Forward Primer: ACAGCCGCATCTTCTTGTGCAGTA

Reverse Primer: GGCCTTGACTGTGCCGTTGAATTT

Materials and methods

Animal model

36 male apoE-/- and 18 male C57BL/6] control (10 weeks
postpartum) mice were purchased from Beijing Labora-
tory Animal Research Center (Beijing, China). ApoE-/-
mice were randomly divided into two groups: half of these
mice (n = 18) were fed with regular chow, the others (n =
18) were fed with a high-fat diet (containing 0.15% cho-
lesterol and 21% fat). The light period was a 12:12-h
light/dark (LD) cycle with light on at 08:00 and light off
at 20:00. Mice were adapted to this lighting for 2 weeks
and then transferred to a 12:12-h dark/dark (DD) cycle for
3 weeks. Water and food were obtained ad libitum. After
DD cycles, mice were sacrificed at four hours internals,
starting at CTO 08:00 (CT _circadian time used for assess-
ing biological time without any time cues; CT0 designates
the beginning of the subjective day and CT12 20:00 is the
subjective night), namely, CTO, CT4, CT8, CT12, CT16,
CT20. Mice (n = 3 per group per time point) were sacri-
ficed after deep anesthesia by an intraperitoneal injection
of pentobarbital sodium under safe dark red light. Supra-
chiasmatic nucleus of hypothalamus, hearts and livers
were quickly harvested and immediately frozen in liquid
nitrogen, and kept at -80°C until use for total RNA extrac-
tion. All animal experiments were performed according to
the criteria of the Medical Laboratory Animal administra-
tive Committee of Shanghai.

Analysis of mouse serum lipids

The serum was prepared for serum lipids detection in
C57BL/6] mice and apoE-/-mice. The levels of total cho-
lesterol (T-CHO), HDL cholesterol (HDL-CHO) and LDL
cholesterol (LDL-CHO) in serum were measured by enzy-
matic methods [29] using the kits purchased from Rong-
sheng Biotechnology Company Ltd (Shanghai, China)
according to the manufacturer's instructions of detecting.

Oil Red O staining

The aorta roots were rapidly isolated and the arch of each
aorta was removed for frozen sections. The aortic seg-
ments were embedded in Tissue-Tek O.T.C compound.
Cross-sectional serial sections with a 6-um thickness were
prepared for oil red O staining to show atherosclerotic
plaques.

Total RNA extraction and reverse transcription

Total RNA from suprachiasmatic nucleus, hearts and liv-
ers were isolated with Trizol reagent (Invitrogen,
Carlsbad, CA), according to the manufacturer's instruc-
tions. Two micrograms of total RNA were reversely tran-
scribed and amplified by using the RevertAId™ First Strand
cDNA Synthesis kit (Fermentas, Burlington, Canada).

Real-time PCR
The real-time PCR was carried out by using SYBR-Green
Realtime PCR Master Mix with SYBR-Green I (Toyobo,
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Osaka, Japan) in a total volume of 25 ul. PCR amplifica-
tions were performed in a real-time PCR system (Bio-rad)
in duplicate. To identify the specificity of the PCR, the
PCR products were electrophoresed on ethidium bro-
mide-stained 2% agarose gels, and a single band with
expected molecular size for each transcript was confirmed
(data not shown). The relative quantification of gene
expression was analyzed from the measured threshold
cycles (CT) by using the 2- Ct method in the experiment.
The data was normalized by determination of the amount
of glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
mRNA in each sample. Primer sequences of the target
genes in the present study were found in Genebank as
shown in Table 1.

Statistical analysis

All data are expressed as means + SEM. The values for
mRNA levels are presented as relative values in all experi-
ments. The oscillation of each gene expression was evalu-
ated by two-way analysis of variance (ANOVA) and the
post hoc Student's t-test was used to compare the values
between the groups at the same CT point, by SPSS 13.0
software. A probability value < 0.05 was considered statis-
tically significant.
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