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Background: Dynamic and precise estimation of blood loss (EBL) is quite important for perioperative 
management. To date, the Triton System, based on feature extraction technology (FET), has been applied to 
estimate intra-operative haemoglobin (Hb) loss but is unable to directly assess the amount of blood loss. We 
aimed to develop a method for the dynamic and precise EBL and estimate Hb loss (EHL) based on artificial 
intelligence (AI). 
Methods: We collected surgical patients’ non-recycled blood to generate blood-soaked sponges at a set 
gradient of volume. After image acquisition and preprocessing, FET and densely connected convolutional 
networks (DenseNet) were applied for EBL and EHL. The accuracy was evaluated using R2, the mean 
absolute error (MAE), the mean square error (MSE), and the Bland-Altman analysis. 
Results: For EBL, the R2, MAE and MSE for the method based on DenseNet were 0.966 (95% CI: 
0.962–0.971), 0.186 (95% CI: 0.167–0.207) and 0.096 (95% CI: 0.084–0.109), respectively. For EHL, the 
R2, MAE and MSE for the method based on DenseNet were 0.941 (95% CI: 0.934–0.948), 0.325 (95% 
CI: 0.293–0.355) and 0.284 (95% CI: 0.251–0.317), respectively. The accuracies of EBL and EHL based on 
DenseNet were more satisfactory than that of FET. Bland-Altman analysis revealed a bias of 0.02 ml with 
narrow limits of agreement (LOA) (−0.47 to 0.52 mL) and of 0.05 g with narrow LOA (−0.87 to 0.97 g) 
between the methods based on DenseNet and actual blood loss and Hb loss. 
Conclusions: We developed a simpler and more accurate AI-based method for EBL and EHL, which may 
be more fit for surgeries primarily using sponges and with a small to medium amount of blood loss. 
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Introduction

Intra-operative blood loss can be rapid and extensive, 
which affects the transfusion decisions of perioperative 
management. One of the most important responsibilities 
of an anesthesiologist is to estimate intra-operative blood 
loss in a timely and accurate manner and make decisions 
about invasive monitoring and blood transfusion. The 
underestimation of blood loss may result in a haemoglobin 
(Hb) deficiency resulting from a delayed transfusion, which 
leads to circulation instability and an insufficient oxygen 
supply. Furthermore, the overestimation of blood loss 
may be associated with increased morbidity and possible 
mortality from unnecessary invasive monitoring techniques, 
as well as a risk of wastage of blood products (1). There 
are several methods or technologies used to estimate blood 
loss (EBL) or Hb loss (EHL) during surgery (2), such as 
the visual method, gravimetric method and, recently, new 
methods based on computer algorithms (3-6). However, 
these methods present obvious limitations. Despite its 
accuracy and convenience in clinical use, the gravimetric 
method is not recommended. Although most frequently 
used in routine work, visual estimation by medical staff is 
not very reliable or accurate, especially in surgical cases 
with massive bleeding (2). Furthermore, the accuracy of 
visual EBL appears to be independent of sex, training and 
experience (7), which indicates that the method itself is 
inaccurate and unreliable.

Recently, a new method (Triton System, Gauss Surgical, 
Inc., Los Altos, USA) based on artificial intelligence (AI) 
has been introduced in some hospitals in the United States 
of America (3-6). Triton System is a camera-enabled mobile 
application native to the iPad and is mainly used for EHL. 
During surgery, captured images of blood-soaked sponges 
are encrypted, transferred wirelessly to a remote server 
and analysed by AI methods; then, the real-time EBL 
and EHL will present data based on the operation start 
time (6). Although this approach seemed promising in 
clinical situations [the bias and limits of agreement (LOA) 
were within the clinically relevant differences] (4,6), this 
system still has significant shortcomings and needs to be 
improved. First, the accuracy of this system needs to be 
further increased by new AI technology. According to the 
patent published in 2013 (8), the key technology of the 
image processing in Triton System is feature extraction 
technology (FET), which in brief, extracts the features 
of images, such as intensity, luminosity, hue, and other 
colour-related values, for EHL. However, the algorithm 

for EHL is unknown. Referring to the published data, 
linear regression (LR) is the most likely algorithm used for 
EHL. LR is used to determine the quantitative relationship 
between two or more variables and is one of the most 
commonly used statistical algorithms for continuous data. 
The major limitation of LR is that it does not work well 
when the realistic relationships among variables are non-
linear. The relationship between features extracted by 
FET and Hb loss may be non-linear and more complex. 
Triton System has indicated that feature extraction may be 
sufficient for processing images of blood-soaked sponges; 
however, new algorithms such as random forest (RF) (9) 
and extreme gradient boosting (Xgboost) (10) may increase 
the accuracy. Recently, as another branch of AI, deep 
learning has increasingly been used in the medical field and 
has the advantage of self-learning, resulting in automatic 
extraction of features. Densely connected convolutional 
networks (DenseNet) are one of the most promising deep 
learning algorithms (11), which can further increase the 
accuracy of image recognition and segmentation (12,13). 
These advances indicate that applying new AI technologies, 
including modified algorithms and deep learning, may 
increase accuracy and decrease bias. Second, Triton System 
is mainly used for EHL, and EBL is calculated by EHL 
(EBL = EHL/preoperative concentration of Hb). In clinical 
situations, the volume of blood loss is more important for 
medical staff due to the demand of guiding intra-operative 
fluid management. The EBL determined by Triton is not 
as acceptable because Hb changes in the surgical process. 
Third, the actual Hb in the sponge is detected by a low-
concentration Hb analyser after rinsing (6). Although 
researchers adjusted the value of Hb, they could not 
eliminate the systemic biases of rinsing and the analyser (5).  
Applying a different AI technology and alternative blood-
soaked sponge models with a known volume and Hb 
concentration with non-recycled blood may increase the 
accuracy of the estimation. Therefore, we aimed to provide 
a better method based on DenseNet to estimate blood loss 
dynamically and directly and Hb loss.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-1806).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
protocol was approved by the Institutional Ethics 
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Committee of the First Affiliated Hospital of Third 
Military Medical University (No. KY2019127), and written 
informed consent was obtained from each patient. The 
principal researcher was Prof. Bin Yi. Herein, we developed 
estimating models based on different AI technologies 
using images of blood-soaked sponges. The blood-soaked 
sponges contained surgical patients’ non-recycled blood 
and were collected from a suction canister. Blood collection 
and image acquisition were completed at the First 
Affiliated Hospital of Third Military Medical University 
in Chongqing, China, between October 30, 2019, and 
November 15, 2019.

Blood collection, blood-soaked sponge preparation and 
image acquisition

The inclusion criteria were as follows: patients were willing 
to participate in the study and signed the informed consent 
form; the intra-operative blood loss was greater than  
100 mL, and the blood Hb concentration in the suction 
canister was above 60 g/L. The exclusion criteria were 
as follows: patients refused to participate; patients were 
scheduled for caesarean section; patients were with pleural 
effusion and ascites, or with diseases which would change 
the colour of the blood, such as pancreatitis, hypoxia, 
jaundice, carbon monoxide poisoning, nitrite poisoning, 
and so on, or with blood-borne diseases, such as hepatitis B, 
hepatitis C, AIDS and so on.

On the surgical day, the suction canister was pretreated 
with 600 U/mL heparin sodium with a volume of 5 mL. 
Before the abundant flushing of fluid intra-operatively, 
researchers collected 20 mL of non-recycled blood in a 
syringe and performed blood gas analysis to detect the 
concentration of Hb. Preparation of the blood-soaked 
sponge was carried out within two hours after collection. 
The surgical sponges were 6 cm × 8 cm. In our preliminary 
experiment with artificial blood, 7 mL artificial blood was 
sufficient to soak the sponge with blood. In the current 
study, we set the gradient of blood as follows: 1, 2, 3, 
4, 5, and 6 mL (shown in Figure S1). There were four 
researchers, two for the blood-soaked model preparation 
and the other two for image acquisition. One researcher 
injected a set volume of the blood sample into a bowl, and 
the other researcher wiped the blood with a sponge. Then, 
the blood-soaked sponge was fully expanded and placed on 
white paper. The two researchers exchanged roles every 
five samples during the whole process. To simulate the 
clinical use of sponges and to make the most of the non-

recycled blood, we added 1 mL of non-recycled blood to 
the bowl each time until 6 ml had been added. Therefore, 
20 mL non-recycled blood could be used to establish three 
different sets of blood-soaked images (18 images in total). In 
the image acquisition step, the camera was adjusted to the 
same height and captured images with the same parameters. 
One researcher took images of the blood-soaked sponges in 
the normal illumination for the operation room, while the 
other recorded information about the images.

Establish models based on feature engineering method

As shown in Figure 1, the process of establishing models 
based on the feature engineering method comprised three 
steps, namely, image preprocessing, feature extraction and 
estimation. Finally, we collected non-recycled blood form 
34 surgical patients. Therefore, 569 portions of blood-
soaked images were employed for feature engineering. After 
image acquisition, the first step of image preprocessing was 
to resize the image to 480×480×3. For feature engineering, 
the blood area was extracted. There were two steps for 
the blood area extraction. First, the resized images were 
converted from the RGB colour space into the HSV 
colour space. The value of a pixel in the H channel ranged 
from 0 to 180, and the values pixel in the S channel and V 
channel ranged from 0 to 255. Second, two mask maps were 
established to generate two blood area images that were 
composed of two colours, namely, black and red (shown 
in Figure S2); the red area represented the blood area. 
The detailed information is shown in the supplementary 
materials.

As is known, the area size, colour depth and brightness 
are associated with blood loss and Hb loss. After image 
preprocessing, feature extraction began. The two blood 
area images only had two colours. As a result, the two area 
features could be represented by the proportion of pixels in 
the blood area to the total pixels in the H channel of the two 
blood area images. The area size of the two blood images 
was calculated by the number of pixels. In the HSV colour 
space, the three channels represented hue, saturation and 
brightness. Therefore, as for colour depth and brightness, 
the mean and variance of the H, S and V channels were 
used to represent the colour depth and brightness of 
the blood area. After image preprocessing, there were  
14 features of the blood-soaked sponge images, namely, the 
area sizes of the blood and the mean and variance of the 
H, S and V channels in the two blood-area images (shown 
in Table S1). After image preprocessing, the dataset was 
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randomly divided into training dataset and testing dataset. 
In the current study, 10-flod cross validation was used to 
form the training and testing datasets for methods based on 
the feature engineering and deep learning. First of all, we 
arranged the samples in ascending order according to the 
gradients of blood loss. Then, we randomly shuffled the 
order of the samples and divided them into 10 equal subsets, 
in which contained all the gradients blood loss. While the 
proportion among the number of samples corresponding 
to the gradients of blood loss was slightly different in each 
subset. Afterwards, each subset was then used once as a 
testing dataset while the 9 remaining subsets formed the 
training dataset. As a consequence, the ratio of the number 
of samples between the training dataset and the testing 
dataset was about 9:1.

In the current study, we chose three different kinds of 
models that are widely used in machine learning. After 
feature extraction, the models for EBL and EHL were 
based on regression algorithms, namely, Xgboost, LR, and 
RF. LR is a linear model that uses a linear combination of 
attributes to make predictions with a good interpretability. 
RF can be used for category and regression, which are fit for 
high-dimensional data. Xgboost is an integrated learning 
method proposed by Chen et al. (14) with an excellent 
learning effect and efficient training speed, which have 
been widely accepted. The hyperparameters are fine-tuned 
through training dataset. And the detailed information 
about hyperparameters of Xgboost and RF for EBL and 
EHL were presented in the supplementary materials (shown 
in Tables S2 and S3).

Establish models based on dense network method

Images were divided into training and testing datasets as 
previously described. Since more images would be required 
for deep learning, we did image augmentation. In the 
training process, an online augmentation method was used 
to increase the number of the samples, which employed 
horizontal flip, vertical flip and horizontal vertical flip 
to generate new samples. The number of samples was 
quadrupled by this way. At each batch, the augmentation 
method was applied on the samples before training. The 
experimental environment of this article was based on a 
GPU supercomputing cluster server consisting of three 
FitServer R4200s. Ubuntu 16.04 LTS was used as the 
operating system with an Intel Xeon e5-2620 V4 processor 
and Nvidia GTX 1080 Ti GPU; the memory was 128 
GB (shown in Figure S3). Pytoch was used to build the 

convolutional neural network, and Python 3.6 was used 
as the programming language. DenseNet was proposed 
by Huang et al. in 2016 (11), and similar to previous 
deep learning algorithms, the resized images could be 
directly entered into the model for automatic learning. A 
feedforward approach was used to connect each layer to 
each of the other layers. For each layer in this network, the 
feature maps of all previous layers were used as inputs, while 
its own feature map was used as the input for all subsequent 
layers. To further improve the accuracy of EBL and EHL, 
DenseNet was applied in the current study. To reduce 
the number of parameters in the DenseNet, we did some 
modifications in DenseNet in this paper. In detail, the input 
in the presented DenseNet consisted one 3×3 convolutional 
layer. Second, the kernel size of average pooling layers in 
the presented DenseNet was 4×4. 

As shown in Figure 1, first, we resized the image as 
256×256×3. At the beginning, a 3×3 convolution with 8 
output channels was performed on the input images. Then, 
there were four dense blocks and three transitional layers 
in DenseNet. The dense block contains two layers. Each 
layer can be thought of as a composite function of three 
consecutive operations: bath normalization, followed by 
a rectified linear unit and a 3×3 convolution. For the 3×3 
convolutional layers in this network, each side of the inputs 
was zero-padded by one pixel to keep the feature map size 
fixed. The transition layers consist of batch normalization 
(BN), ReLU, 1×1 convolution and 4×4 average pooling. At 
the end of the last dense block, the architecture consisted 
of a bath normalization and rectified linear unit followed 
by a 4×4 average pooling layer, and then, a linear layer was 
attached to obtain the output. The output is 1D vector that 
consists of two values which are the predictive values of 
EBL and EHL (shown in Table 1).

The MSE loss function was used within training 
processes of DenseNet. n is the number of the samples, 

,h b
i iy y  represent the labels of EHL and EBL respectively, 

,ˆ̂ h b
i iy y  represent the predictive values of EHL and EBL 

respectively.
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The growth rate of DenseNet was 4. The optimizer is 
Adam and the compression factor of DenseNet is 0.5. The 
training of DenseNet is controlled by the epoch without 
stopping criteria. The maximum epoch is 150. When the 
epoch is below 50, the learning rate is 0.005; when the 
epoch is between 50 to 100, the learning rate is 0.0005; 
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Figure 1 Flow diagram for the estimating models based on artificial intelligence, namely, dense network and feature engineering. EBL, 
estimation of blood loss; EHL, estimation of haemoglobin loss. 

When the epoch is between 100 and 150, the learning rate 
is 0.00005. The training Batch size is 20, while the testing 
batch size 8. 

Model evaluation

EBL and EHL were estimated from continuous data, so we 
evaluated the performance of the models with regression 
indicators, such as the mean absolute error (MAE), mean 
square error (MSE) and R-squared (R2). The MAE is 
used to describe the average of difference between the 
predicted value and the actual value. The MSE represents 
the average of the square of the difference between the 
estimated value and the actual value. Usually, the MSE is 
more sensitive than the MAE. For the MAE and MSE, the 
smaller the value, the better. R2, also called the coefficient 
of determination, the closer the value to 1, the stronger the 
ability to interpret the output and the better the model fits.

Statistical analysis

For quantitative variables, the mean, standard deviation 
(SD), and range are presented. For the primary effectiveness 

variables, 95% confidence intervals (CIs) are presented. 
The concordance between methods based on AI and the 
actual value was tested via a Bland-Altman analysis, wherein 
the bias (the mean difference between the two measures), 
upper or lower LOA with 95% CIs and standard deviation 
of error were calculated by MedCalc Statistical Software 
version 15.8 (MedCalc Software bvba, Ostend, Belgium; 
https://www.medcalc.org; 2015). 

Results

As shown in Table 2, for EBL, the R2 value was greater 
than 0.900, which was quite satisfactory regardless of 
the algorithm. However, taking the MSE and MAE into 
account, the methods based on RF and Xgboost seemed 
better than those based on LR. The R2, MAE and MSE 
values for the method based on DenseNet were 0.966 (95% 
CI: 0.962–0.971), 0.186 (95% CI: 0.167–0.207) and 0.096 
(95% CI: 0.084–0.109), respectively, which were more 
satisfactory than those of the methods based on feature 
engineering. For EHL, the estimation was more difficult. 
Among the methods based on feature engineering, Xgboost 
presented a higher R2 values (0.915, 95% CI: 0.904–0.925) 
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and lower MAE (0.409, 95% CI: 0.362–0.456) and MSE 
values (0.396, 95% CI: 0.345–0.446). However, the R2, 
MAE and MSE values for the method based on DenseNet 
were 0.941 (95% CI: 0.934–0.948), 0.325 (95% CI: 0.293–
0.355) and 0.284 (95% CI: 0.251–0.317), respectively, which 
were more satisfactory than those of Xgboost.

As shown in Table 3 and Figure 2, we applied the Bland-
Altman analysis to evaluate the concordance of EBL and 
EHL among the different methods based on AI and the 
actual blood and Hb losses. For EBL, the biases of Xgboost 

(−0.04 mL) and DenseNet (0.02 mL) were the smallest. In 
addition, the LOA of DenseNet (−0.47 mL to 0.52 mL) were 
the narrowest. For EHL, the biases of the methods based on 
Xgboost (−0.05 g) and DenseNet (0.05 g) were the smallest. 
In addition, the LOA based on DenseNet (−0.87 g to  
0.97 g) were the narrowest (shown in Table 3 and Figure 3). 
In our study, not only the model performance but also the 
results of the concordance analysis for the method based on 
LR were not superior to those of other methods based on AI.

Discussion

In the current study, we developed better methods for EBL 
and EHL based on feature engineering and deep learning 
using blood-soaked sponges. For EBL and EHL, regardless 
of comparing the model performance or concordance 
results, the methods based on DenseNet were more 
appropriate than the model based on LR. 

The precise and dynamic estimation of intra-operative 
blood loss is one of the medical staff’s key jobs and is also 
quite important for surgical patients’ safety. The aim of 
EBL and EHL is to guide perioperative fluid management 
and surgical decisions. Therefore, most of the estimation 
methods are for EBL, not for EHL. Until now, visual 
estimation has been the most frequently used method. 
However, as we described previously, visual estimation 
is inaccurate and unreliable; in particular, the larger the 
amount of blood loss, the larger the measurement error (2). 
Moreover, other studies have suggested that overestimations 
and underestimations have no obvious association with 
the experience of medical staffs (15,16). Although some 
visual aid tools and training courses have been reported 
to increase the accuracy of visual EBL (17-20), the visual 
aids were for a particular situation or for a set amount of 
blood loss, which not be very practical or helpful for the 
complicated, variable intra-operative requirements for 
EBL. The gravimetric method involves the collection of 
all blood-soaked items and deduction of the dry weight of 
the item, which requires an accurate scale. However, this 
method cannot discriminate between blood and other types 
of fluid, which may affect the final results. Furthermore, 
although this method is easy to master, it is time-consuming 
and labor-intensive (2). Photometric methods require 
specific devices, which are not practical for daily use (2). An 
ideal method for EBL and EHL should be quick, easy and 
accurate.

Currently, AI technology is increasingly applied in the 
medical field. Recently, Triton System, which is based on 

Table 1 The detailed architecture of DenseNet

Layers Composition Output size

Convolution 3 3 conv, stride1, padding1× 8×256×256

Dense block BatchNormalization
ReLU 2

3 3 conv,stride1, padding 1

 
  × 
 × 

16×256×256

Transition 
layers

BatchNormalization
ReLU

1 1conv, stride1×

8×256×256

4 4 average pool, stride 4× 8×64×64

Dense block BatchNormalization
ReLU 2

3 3 conv, stride1, padding 1

 
  × 
 × 

16×64×64

Transition 
layers

BatchNormalization
ReLU

1 1conv, stride1×

8×64×64

4 4 average pool, stride 4× 8×16×16

Dense block BatchNormalization
ReLU 2

3 3 conv, stride1, padding 1

 
  × 
 × 

16×16×16

Transition 
layers

BatchNormalization
ReLU

1 1conv, stride1×

8×16×16

4 4 average pool, stride 4× 8×4×4

Dense block BatchNormalization
ReLU 2

3 3 conv, stride1, padding 1

 
  × 
 × 

16×4×4

Regression 
layer

BatchNormalization
ReLU

4 4 average pool, stride 4×

16×1

Linear 1×2

ReLU, rectified linear unit.
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Table 3 The concordance between methods based on AI for estimating blood loss and haemoglobin loss and the actual data

Parameter LR RF Xgboost DenseNet

EBL

SD 0.45 0.33 0.34 0.25

LLOA (mL) −0.77 (−0.98, −0.57) −0.59 (−0.74, −0.44) −0.71 (−0.87, −0.55) −0.47 (−0.50, −0.44)

ULOA (mL) 0.99 (0.79, 1.20) 0.69 (0.54, 0.83) 0.64 (0.48, 0.80) 0.52 (0.48, 0.55)

Bias 0.11 (−0.01, 0.23) 0.05 (−0.04, 0.13) −0.04 (−0.13, 0.06) 0.02 (0.00, 0.04)

EHL

SD 0.67 0.57 0.55 0.47

LLOA (g) −1.17 (−1.48, −0.87) −1.04 (−1.30, −0.78) −1.13 (−1.38, −0.88) −0.87 (−0.93, −0.81)

ULOA (g) 1.465 (1.16, 1.77) 1.19 (0.93, 1.45) 1.03 (0.78, 1.28) 0.97 (0.91, 1.03)

Bias 0.15 ( −0.03, 0.33) 0.078 (−0.07, 0.23) −0.05 (−0.20, 0.10) 0.05 (0.02, 0.09)

Data were presented with 95% CIs. EBL, estimation of blood loss; EHL, estimation of haemoglobin loss; LR, linear regression; RF, random 
forest; Xgboost, eXtreme Gradient Boosting; DenseNet, Dense Network; SD, standard deviation; LLOA, lower limit of agreement; ULOA, 
upper limit of agreement; CI, confidence interval.

Table 2 Model performances of EBL and EHL based on feature engineering and dense network

Algorithms R2 MAE MSE

EBL

LR 0.906 (0.896, 0.916) 0.355 (0.332, 0.378) 0.265 (0.242, 0.288)

RF 0.938 (0.925, 0.950) 0.178 (0.152, 0.204) 0.176 (0.148, 0.204)

Xgboost 0.946 (0.937, 0.956) 0.215 (0.202, 0.228) 0.150 (0.130, 0.170)

DenseNet 0.966 (0.962, 0.971) 0.186 (0.167, 0.207) 0.096 (0.084, 0.109)

EHL

LR 0.861 (0.844, 0.877) 0.545 (0.501, 0.589) 0.642 (0.570, 0.714)

RF 0.907 (0.894, 0.920) 0.419 (0.369, 0.470) 0.430 (0.365, 0.494)

Xgboost 0.915 (0.904, 0.925) 0.409 (0.362, 0.456) 0.396 (0.345, 0.446)

DenseNet 0.941 (0.934, 0.948) 0.325 (0.293, 0.355) 0.284 (0.251, 0.317)

Data were presented with 95% CIs. EBL, estimation of blood loss; EHL, estimation of haemoglobin loss; LR, linear regression; RF, 
random forest; Xgboost, eXtreme Gradient Boosting; DenseNet, Dense Network; MAE, mean absolute error; MSE, mean square error; CI, 
confidence interval.

AI, has been introduced to several hospitals in the USA. 
This device is able to dynamically estimate intra-operative 
blood loss and Hb loss. Referring to the patent (8), the 
actual Hb mass in images used for model construction 
was detected by rinse methods; while the actual blood 
loss calculated by Triton System was used to estimate the 
Hb mass and available Hb concentration of the patient, 
which are not affected by other fluids. The EBL by Triton 
System was reported to have a strong correlation with 

photometric methods (3,4,6). However, the equation used 
to calculate the EBL presented certain limits; for example, 
the Hb concentration of the patient could change via 
fluid therapy or blood loss. Unfortunately, the research 
involving Triton System did not present indicators for 
model performance, such as MAE, MSE and R-squared. 
However, the root mean squared error (RMSE), which 
indicates the measurement error of the model, of Triton 
System was 1.15 g per sponge, which was larger than that of 
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Figure 2 Results of concordance among methods based on (A) linear regression; (B) random forest; (C) extreme gradient boosting; (D) 
dense network for estimating blood loss and the actual data. EBL, estimation of blood loss; LLOA, lower limit of agreement; ULOA, upper 
limit of agreement; and CI, confidence interval.

ours ( RMSE= MAE ); the RMSE of Xgboost was 0.158 g,  
and the RMSE for DenseNet was 0.051 g. Moreover, the 
R2 values for the models based on Xgboost and DenseNet 
were 0. 915 and 0.941, respectively, which indicated an 
excellent interpretability of the estimation results. As for 
the concordance between Triton System and the rinse 
method, the bias and LOA for a single sponge were 0.73 g 
and (−1.01 to 2.47 g) (6), which were larger than those of 
the methods based on DenseNet and Xgboost. Meanwhile 
in our study, the method based on LR showed results that 
were less satisfactory than those based on DenseNet and 
Xgboost. The presented results indicated that our methods 
may achieve better performance in terms of concordance 
and measurement error. Despite the differences among 
the models, how the blood-soaked sponges were made 
may also contribute to the different performances among 
Triton System and our methods. In Triton System, all the 
blood-soaked items were from medical waste, and the actual 
volume of blood and Hb mass were unknown. Although 

the researchers adjusted the value of Hb loss detected by 
the rinse method via the Hb recovery rates of individual 
sponges (89.5%, 95% CI: 86.8% to 92.1%, n=116) (6), the 
systemic bias was decreased but not eliminated. However, in 
our study, we used non-recycled blood of a known quantity 
to establish blood-soaked sponges, which would help to 
elevate the accuracy of our models. Furthermore, the image 
acquisition of Triton System needs the blood-soaked sponge 
to be lifted vertically and at a set distance from the iPad 
screen, which would increase the workload and occupation 
exposure of a circulating nurse. The image acquisition in 
our methods required a white background, and the images 
were vertically captured; therefore, the circulating nurse 
could place the blood-soaked sponges fully expanded with 
forceps on the ground for image acquisition.

In the current study, the methods based on Xgboost 
and DenseNet achieved the best performance regardless 
of being used for EBL or EHL. Xgboost is a well-known 
modified algorithm that can construct an optimal model by 
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Figure 3 Results of concordance among methods based on (A) linear regression; (B) random forest; (C) extreme gradient boosting; (D) 
dense network for estimating haemoglobin loss and the actual data. EHL, estimation of haemoglobin loss; LLOA, lower limit of agreement; 
ULOA, upper limit of agreement; CI, confidence interval.

minimizing the loss function. However, Xgboost possessed 
worse 95% CIs for model performance and concordance 
analysis results than those of DenseNet, which may be 
due to the less satisfactory model generalization ability 
of Xgboost. Compared with feature engineering, apart 
from the advantages of traditional deep learning methods, 
DenseNet has the following main advantages (11): to 
achieve the same accuracy, DenseNet requires fewer 
parameters. DenseNet has a very good resistance to over-
fitting, especially for applications where training data are 
relatively scarce and its generalization performance is 
stronger, so if there is no data augmentation, DenseNet 
does not drop significant data. Therefore, despite the 
number of images in our study not being large enough 
for typical deep learning methods, DenseNet achieved a 
satisfactory performance. The results indicated that the 
research and development costs would be lower than those 
based on traditional feature engineering. It is strongly 
suggested that in the near future, our methods would be 
substantially cheaper to promote.

In the current study, we attempted to develop a better 
method based on AI to estimate intra-operative blood loss, 
not to validate a new device or software. Therefore, there 
are some limitations. First, we only applied AI technology 
for EBL and EHL on one kind of sponge. Research on EBL 
and EHL on other sizes of sponges and canisters should be 
performed. Second, due to the difficulties of collecting non-
recycled blood, we only set the volume gradient from 1 to 
6 mL. However, for AI technology, the more images there 
are, the better model; nevertheless, based on the current 
images, relatively satisfied results were achieved. In the near 
future, we will introduce more images to elevate the model 
performance.

Conclusions

In the current study, we developed a new method for 
estimating blood loss and Hb loss based on DenseNet, 
which achieved a higher accuracy and lower bias than those 
of methods based on feature engineering. The presented 
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model may be a better AI-based method for the estimation 
of intra-operative blood and Hb loss, especially for surgeries 
primarily using sponges and for a small to medium amount 
of blood loss.
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Establishment of blood-soaked sponges

In the current study, we set the gradient of blood as 
following: 1, 2, 3, 4, 5, 6 mL. The typical view of the blood-
soaked sponges were shown in Figure S1.

Image pre-processing

To estimate intraoperative blood loss on sponge, the first 
factor to be considered is the area of the blood. In the 
proposed method, the area of blood is divided into two 
parts for extraction. Firstly, the blood-soaked sponge image 
is reshaped to 480×480×3 and converted from RGB color 
space to HSV color space. The value of pixel in H channel 
ranges from 0 to 180. The value of pixel in S channel and 
V channel ranges from 0 to 255. Secondly, two mask maps 
are generated by Eq. [2] and Eq. [3], where the M1ij and 
M2ij are the pixels at position (i, j) of two mask maps, the 
Hij, Sij and Vij are the pixels at position (i, j) of H, S and V 

channels.
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Then, the two mask maps are used to generate the two 
blood areas by Eq. [4] and Eq. [5], where Bij is the pixel 
vector at position (i, j) of the blood-soaked sponge image, 
BR1ij and BR2ij are the pixel vector at position (i, j) of 
the two blood areas. Figure S2 shows the tow blood areas 
images and the blood-soaked sponge image, it is obviously 
that the two blood area images only have two colors red and 
black, and the red area is represented the blood area. 
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Figure S1 The typical images of blood-soaked sponges with a set gradient of volume.

Supplementary
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Feature extraction

After get the two blood area images B1 and B2, the two area 
features and other color features can be calculated. The 
first step is to convert the two blood area images from RGB 
color space to HSV color space. Since the two blood area 
images only have two colors red and black. As a result, the 
two area features can be represented by the red area in the 
image to the overall image area. In order to simplify the 
extraction process, the ratio of the number of non-0 pixels 
in the H plane to the number of total pixels was used to 
approximate the area ratio. Assuming the number of the 
non-0 pixels in the two blood areas is RP1num and RP2num, 
then the two area features can be calculated by Eq. [6].

=
480 480

=
480 480

num

num

RP1AR1

RP2AR2

×

× 	

[6]

In addition to area, the color depth and brightness of 
the blood area are also important factors in estimating 
intraoperative blood loss on gauze. In HSV color space, 
the three channels represent hue, saturation and brightness 
respectively. Therefore, the proposed method uses the 
mean and variance of H, S and V channels to represent 
the color depth and brightness features of the blood area. 
These features can be calculated by Eq. [7], where m and 
n was the size of image, hi,j, si,j and vi,j represent the pixel of 
H, S and V channels in position (i, j) respectively. Finally, 
the features of the blood-soaked gauze image have fourteen 
elements and were shown in Table S1. Tables S2 and S3 show 
the hyperparameters of random forest and Xgboost used in 
feature engineering method.
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Supercomputing platform

The experimental environment of this article was based 
on the GPU supercomputing cluster server: consists of 
three FitServer R4200, Ubuntu 16.04 LTS was used as the 
operating system with Intel Xeon e5-2620 V4 processor and 

Figure S2 Blood area images and blood-soaked sponge image.

Table S1 The features of the blood-soaked gauze image

Features of 1B Features of 2B Description

1AR 2AR Feature of blood area

1
Mh 1

MS Mean of pixels in H channel

1
MS 2

MS Mean of pixels in S channel

1
Mv 2

Mv Mean of pixels in V channel

1
Sh 2

Sh Variance of pixels in H channel

1
Ss 2

Ss Variance of pixels in S channel

1
Sv 2

Sv Variance of pixels in V channel



Figure S3 Part of supercomputing platform.

Nvidia GTX 1080 Ti GPU, the memory is 128 GB. Pytoch 
was used to build the convolutional neural network, and 

Python3.6 was used as the programming language (shown 
in Figure S3).

Table S2 Hyperparameters of Xgboost

Hyperparameters EBL EHL

Learning rate 0.1 0.05

Number of estimators 600 300

Max depth 3 4

Min child weight 4 6

Subsample 0.6 0.6

Gama 0.1 0.1

Reg_alpha 0.1 0.1

Reg_lambda 0.1 0.1

Eval_metric RMSE RMSE

RMSE, root mean squared error; EBL, estimation of blood loss; 
EHL, estimation of haemoglobin loss.

Table S3 Hyperparameters of random forest

Hyperparameters Values

Number of estimators 100

Min_samples_split 2

Criterion MSE

Min_samples_leaf 1

Min_impurity_decrease 1e-07

MSE, mean square error.


