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Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide.

Blindness can occur from retinal detachment caused by pathologic retinal angiogenesis

into the vitreous, termed intravitreal neovascularization (IVNV). Although agents that

interfere with the bioactivity of vascular endothelial growth factor (VEGF) are now used to

treat IVNV, concerns exist regarding the identification of optimal doses of anti-VEGF for

individual infants and the effect of broad VEGF inhibition on physiologic angiogenesis in

external organs or in the retina of a preterm infant. Therefore, it is important to understand

VEGF signaling in both physiologic and pathologic angiogenesis in the retina. In this

manuscript, we review the role of receptors that interact with VEGF in oxygen-induced

retinopathy (OIR) models that represent features of ROP pathology. Specifically, we

discuss our work regarding the regulation of VEGFR2 signaling in retinal endothelial

cells to not only reduce severe ROP but also facilitate physiologic retinal vascular and

neuronal development.
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INTRODUCTION

Retinopathy of prematurity (ROP) remains a leading cause of blindness in children worldwide
despite advances in neonatal care (1). The pathophysiology of ROP is described by a two-phase
hypothesis that has been refined with the ability to save extremely premature infants (2). In Phase I
ROP, intraretinal vascularization is compromised, and ongoing physiologic vascular development
is delayed leading to areas of hypoxic retina. In Phase II ROP, also classified as Stage 3 ROP (3),
aberrant retinal angiogenesis grows into the vitreous and is termed intravitreal neovascularization
(IVNV). IVNV leads to blindness from retinal detachment that is not, or cannot be, treated (4, 5).
Currently, Phase II ROP is treated withmethods to ablate the peripheral avascular retina, often with
laser (6), or with intravitreal agents that interfere with the bioactivity of vascular endothelial growth
factor (VEGF) (7–11). However, broad inhibition of VEGF in preterm infants might interfere
with physiologic angiogenesis in external organs or in the developing retina where it can lead
to persistent avascular retina and recurrent IVNV (9). Understanding VEGF-mediated molecular
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mechanisms involved in IVNV and physiologic vascular
development of the peripheral retina is important to identify safe
and effective treatment targets.

To understand the role of VEGF in the pathophysiology of
ROP, studies were conducted using animal models of oxygen-
induced retinopathy (OIR) that recapitulate features of ROP
pathology in preterm infants. The most common models were
in mouse, rat, and beagle (5). The models differ based on the
extent of inner vascular plexus coverage to the ora serrata at
the time animals are placed into the model, oxygen levels,
duration of exposure to oxygen, the age when animals are
placed into the model, and the features of ROP represented by
in the model. In the murine OIR model, mice are born and
raised in room air until postnatal day (p)7 when intraretinal
vascularization of the inner plexus extends to the ora serrata.
At p7, mice are placed into 75% oxygen for 5 days, which
causes hyperoxia-induced compromise of the developed inner
plexus in the central retina surrounding the optic nerve (vaso-
obliteration). Mice are returned to room air and develop
preretinal neovascular tufts (IVNV) at the junction of the
vascular and avascular retina at p17 (Phase II) (12). In the
rat model, newborn rat pups with almost no retinal vascular
development are exposed to oxygen extremes that fluctuate
between 50% and 10% every 24 h for 14 days. At p14, rats have
compromised physiologic vascularity and delayed physiologic
retinal vascular development (Phase 1). Pups are placed into
room air and develop IVNV at p18-20 (Phase II) (13). Although
the mouse model is often used for ease of genetic manipulation,
the rat OIR model best represents human ROP based on oxygen
stresses similar to those in preterm infants (fluctuations in
oxygen and changes in extremes of arterial oxygen), similar
appearing Phases in ROP (Phase I compromise in physiologic
vascularization and delay in physiologic vascular development
of the peripheral retina at p14, and Phase II IVNV, vascular
tortuosity, and vascular dilation at p18-20), and extrauterine
growth restriction (Figure 1). In the beagle OIR model, newborn
pups at p1 are placed into 100% oxygen for 4 days and,
at p5, are returned to room air. The beagle OIR model
develops delayed physiologic retinal vascular development and
compromised physiologic vascularity (Phase I) and IVNV (Phase
II) that have been measured at p15 and observed until p45
(14–16). This OIR model is useful to assess pharmacologic
treatments due to increased eye size in beagles compared
with rodents.

There are fivemembers of the VEGF family: VEGFA, placental
growth factors (PlGFs), VEGFB, VEGFC, and VEGFD (17).
Studying the role of VEGF in the murine OIR model is difficult
since a single allele knockout of VEGF or VEGF receptors
(VEGFRs) is lethal in mice (18–20). Although transgenic
mice lacking VEGFB (Vegfb−/−) are viable, no difference was
observed in IVNV compared with littermate wild-type mice
(21). In rat pups raised in OIR compared with room air, retinal
VEGFA protein was significantly increased and, mainly, VEGFA
splice variant 164 (VEGFA164) mRNA at p14 and p18 (22–24).
These findings implicated VEGFA in both physiologic retinal
vascular development and IVNV. Therefore, broad inhibition of
VEGFA was predicted to reduce both. Surprisingly, intravitreal

neutralizing antibodies to rat VEGFA compared with IgG
significantly reduced IVNV in a dose-dependent manner without
interfering with physiologic retinal vascular development at p18
in rat pups. However, IVNV and avascular retina area within
the vascularized retina were significantly increased at p25 in
rat pups that received an effective dose of anti-VEGFA (25).
A VEGF-Trap, which binds VEGFA and PlGFs, was compared
with a human Fc control after intravitreal injection at p8
in beagle pups. At p21, both IVNV and physiologic retinal
vascular development were reduced at high doses of the VEGF-
Trap compared with control. However, the lowest dose (5 µg)
of the VEGF-Trap reduced IVNV but not physiologic retinal
vascular development (26). Taken together, these studies provide
experimental evidence that anti-VEGF agents can interfere with
physiologic retinal vascular development, compromise already
developed retinal vasculature, and lead to recurrent IVNV
at certain doses. Therefore, studies were warranted to refine
the dose of anti-VEGF agents that would inhibit IVNV and
permit sufficient VEGF expression at a concentration that allows
physiologic vascular development of the peripheral retina. In
support of this notion, Müller cells or astrocytes in the retina
were demonstrated to overproduce VEGFA implicated in the
development of IVNV in the murine OIR model (27–29). In rat
pups raised in the OIR model, novel approaches to knock down
VEGFA or VEGFA164 in Müller cells by subretinal introduction
of lentiviral vectors that contained a CD44 promoter upstream of
an miR-30-based shRNA cassette significantly reduced IVNV at
p18 (30, 31) without recurrence at p32 (32). However, lentiviral-
mediated knockdown of Müller cell-derived VEGFA thinned
the retinal outer nuclear layer compared with knockdown
of Müller cell-derived VEGFA164 by lentiviral vectors (30).
Although the data supported the hypothesis that an optimal
anti-VEGF dose will not interfere with physiologic vascular
development of the peripheral retina, identifying this dose in
infants might be challenging due to variation of pathology among
individual infants or eyes (33). Nonetheless, the data support
the involvement of VEGFA in the pathophysiology of ROP
and physiologic development of retinal vasculature, neurons,
and glia. In this article, we discuss VEGFA signaling through
different receptors in models of ROP to identify mechanisms
involved in the Phases of ROP pathology and provide insights
into novel therapeutic approaches for ROP that overcome
limitations in identifying optimal doses of antiangiogenic agents
for individual infants.

THE ROLE OF VASCULAR ENDOTHELIAL
GROWTH FACTOR RECEPTORS IN
MODELS OF RETINOPATHY OF
PREMATURITY

VEGF members bind to VEGF receptors (VEGFRs), which
induce receptor homodimerization or heterodimerization and
activation through autophosphorylation of the tyrosine residues
in the receptor intracellular domains (34). There are three
subtypes of VEGFRs, but VEGFA binds VEGFR1 or VEGFR2
to elicit biologic functions (35). Immunohistochemical staining
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FIGURE 1 | Schematic representation of similarities between human retinopathy of prematurity (ROP) and oxygen-induced retinopathy (OIR) models. Human ROP is

described by a two-phase hypothesis (row 1). In Phase I, events surrounding preterm birth (i.e., lack of maternally derived factors, relative hyperoxia, repeated oxygen

fluctuations, poor infant growth, etc.) cause a delay in physiologic retinal vascular development (PRVD) and compromise to already developed vessels (compromised

physiologic vascularity). In Phase II, the hypoxic avascular retina releases pro-angiogenic factors that promote aberrant retinal angiogenesis into the vitreous termed

intravitreal neovascularization (IVNV). The murine OIR model (row 2) recapitulates Phase I compromised physiologic vascularity and has been termed vaso-obliteration

at p12, and Phase II IVNV at p17. The rat OIR model (row 3) recapitulates Phase I delay in PRVD to the peripheral retina and compromised physiologic vascularity at

p14, and Phase II IVNV and vessel tortuosity and dilation at p18-20. Created with Biorender.com.

of retinal sections from mice in the OIR model demonstrated
colocalization of von Willebrand factor-labeled IVNV and
VEGFR2, but not VEGFR1, at p19 (36). Retinal lysates from
p18 rat pups raised in the OIR model had increased VEGFR2
mRNA, but not VEGFR1mRNA, compared with p18 pups raised
in room air (24). Immunostaining of retinal sections from rats
raised in OIR demonstrated immunolabeling of VEGFR1 and
VEGFR2 in areas of IVNV at p20 (37). Colocalization of VEGFR2
and von Willebrand factor-stained IVNV was also observed in
retinal sections from p15 dogs raised in OIR (16). Specifically,

immunostaining of phosphorylated VEGFR2 was reduced in
retinal sections from p13 rats that were raised in rat OIR and

treated with intravitreal antibodies against VEGFA compared

with IgG (23). These findings primarily implicated VEGFR2 in

the pathophysiology of ROP; however, this reviewwill summarize

studies regarding the role of VEGFR1 and VEGFR2 in models
of ROP.

The Role of Vascular Endothelial Growth
Factor Receptor 1 in Models of
Retinopathy of Prematurity
Intraperitoneal administration of antibodies against VEGFR1
compared with IgG in mice reduced IVNV in mice placed
in OIR (38, 39). However, intravitreal PlGF1, a VEGFR1-
specific ligand, resulted in no difference in IVNV compared with
buffered salt solution control even though previous investigators
reported reduced IVNV after intravitreal neutralizing antibody
to VEGFR1 (40). The disparity in studies might be because
PlGF1 does not bind VEGFR2 monomers (41), and VEGFR2-
related signaling is important in IVNV (see The role of vascular
endothelial growth factor receptor 2 in models of retinopathy
of prematurity section). In support of this notion, Zeng et
al. observed disordered divisions of mouse embryonic stem
cell-derived vessels from VEGFR1 knockout mice (flt1−/−)
(42). VEGFR1 acts as a decoy receptor, and when knocked
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out, it does not bind to VEGF, which permits more VEGF
to trigger signaling through VEGFR2 (43). In line with this
thinking, rescue of VEGFR1 expression in flt1−/− embryonic
stem cell-derived vessels, with a transgene that expressed soluble
VEGFR1 under the guidance of a PECAM promoter, reduced
randomized divisions of endothelial cells and increased ordered
divisions (42). Similarly, in the rat OIR model, pups treated
with intravitreal anti-VEGFA antibodies had significantly more
vascular cell divisions that favored vascular extension rather
than widening (44). The studies provided strong evidence
that regulation of VEGFR2 is important in orienting dividing
endothelial cells and supports the hypothesis that ordered
divisions extend peripheral vascular development that occurs
in developing retina. The role of VEGFR1 activation in
physiologic vascular development of the peripheral retina using
a representative model of ROP remains unknown.

The Role of Vascular Endothelial Growth
Factor Receptor 2 in Models of
Retinopathy of Prematurity
As indicated in the above studies (40, 42), evidence suggested
a role for VEGFR2 in ROP. Further support was found
in mice with significantly reduced IVNV after gavage with
an antagonist to VEGFRs and platelet-derived growth factor
receptors (PDGFRs, PTK787) compared with selective PDGFR
antagonists (CGP57148 or CGP53716) or vehicle control (45).
Similarly, mice treated with a subcutaneous tyrosine kinase
inhibitor (SU5416) had significantly reduced IVNV. However,
room air-raised mice treated with SU5416 compared with
vehicle control had significantly reduced intraretinal vascular
extension of the inner plexus to the ora serrata and reduced
total retinal thickness of the peripheral retina (46). OIR-
raised dogs implanted with a pellet that released antibodies
against VEGFR2 into the vitreous had significantly reduced
IVNV and delayed physiologic vascular development of the
peripheral retina compared with pups implanted with a pellet
that released IgG into the vitreous (16). Taken together, the data
suggest that inhibition of VEGFR2 affects both physiologic and
pathologic retinal angiogenesis and retinal structure. Therefore,
this approach might not be a safe therapy for ROP. In an effort
to regulate VEGFR2 signaling specifically in retinal endothelial
cells, lentiviral vectors that expressed shRNA against VEGFR2 or
luciferase control under the guidance of an endothelial-specific
promoter, Cdh5, were tested in the rat OIR model. Knock down
of VEGFR2 in endothelial cells by shRNA significantly reduced
IVNV and allowed more physiologic vascular development of
the peripheral retina compared with littermate controls at p20.
Furthermore, total retinal thickness near the optic nerve head
was not thinned after lentiviral delivered Cdh5-targeted shRNA
against VEGFR2 compared with littermate controls. There was
also no difference in a- or b-wave amplitudes assessed by full-
field electroretinography in adult rats compared with littermate
controls (47). These findings contrasted with earlier studies
in which Müller cell-derived VEGFA knockdown by lentiviral
vectors in the rat OIR led to retinal thinning, (32) and intravitreal
VEGF-Trap delayed physiologic retinal vascular development

in the dog OIR model (26) compared with respective controls.
Taken together, the data support the thinking that VEGFA
signaling is important for neural retinal structure and function,
and normal retinal vascularization. Furthermore, regulation
of VEGFR2 signaling in retinal endothelial cells accomplishes
safe inhibition of IVNV while promoting physiologic retinal
vascular development and retinal structure and function. The
data also suggest that a certain dose or agent that regulates
VEGF-mediated signaling triggered through VEGFR2 in retinal
endothelial cells might be a possible therapeutic approach to
inhibit IVNV, facilitate physiologic retinal vascular development,
and reduce the likelihood of recurrent IVNV in ROP.

THE ROLE OF NEUROPILINS IN MODELS
OF RETINOPATHY OF PREMATURITY

Originally identified in Xenopus tadpole nervous tissues (48) as
receptors for semaphorins (49, 50), neuropilins are cell surface
glycoproteins that bind to VEGF family members (51) and
form complexes with VEGFRs as co-receptors (52). There are
two isoforms of the protein, neuropilin 1 and neuropilin 2,
and both have been demonstrated to interact with VEGFRs
to trigger signaling induced by VEGFA. Also, VEGFA164 has
been demonstrated to bind to neuropilin 1 and neuropilin
2 (53). Neuropilin 1 mRNA was increased in retinal lysates
from mice placed in OIR compared with room air at p17
(54). Also at p17, retinal sections from mice placed in OIR
demonstrated colocalization of neuropilin 1 mRNA with IVNV
(55). Specifically, neuropilin 1 (54, 56) or neuropilin 2 (57)
protein colocalized with IVNV. Furthermore, Budd et al. found
significantly increased neuropilin 1 and neuropilin 2 mRNA in
rats raised in OIR compared with room air at p14 and p18 (58).

The Role of Neuropilin 1 in Models of
Retinopathy of Prematurity
Neuropilin 1 knockout mice (Nrp1−/−) are embryonically lethal
(59–61). Neutralizing neuropilin 1 with intravitreal antibody
significantly reduced IVNV compared with IgG in mouse OIR
(55). Compared with littermate control mice that lacked Cre
alleles, tamoxifen-inducible knock out of endothelial neuropilin
1 in a Cre-loxP mouse model reduced IVNV in mice in OIR and
delayed intraretinal vascular development of the inner plexus in
mice raised in room air (62). However, knock out of neuropilin 1
inmyeloid lineage cells using LysM-Cre did not affect intraretinal
vascular development of the inner plexus in room air compared
with mice that lacked the floxed Nrp1 alleles but still expressed
LysM-Cre (63). These findings implicate endothelial neuropilin
1 not only in the development of IVNV but also in physiologic
retinal vascular development.

To understand mechanistically how neuropilin 1 regulates
angiogenesis, transgenic mice that expressed a mutant neuropilin
1 that lacked the cytoplasmic domain of the receptor were
generated (64). The cytoplasmic domain of neuropilin 1 has
been reported to interact with VEGFR2 to enhance VEGFR2-
mediated signaling (65–67). Therefore, expression of a mutant
neuropilin 1 receptor that lacked the ability to interact with
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VEGFR2 to trigger signaling might affect intraretinal vascular
development in mice. However, the study reported no difference
in intraretinal vascular development of the inner plexus between
room air raised mice that expressed a mutant neuropilin 1
and littermate control mice that expressed wild-type neuropilin
1 (64). To determine if VEGFA-binding neuropilin 1 was
required for angiogenesis, transgenic mice that expressed a
mutant neuropilin 1 with a point mutation in the VEGF-
binding b1 domain (Nrp1Y297A/Y297A) were generated along with
littermate wild-type controls. Nrp1Y297A/Y297A mice raised in
room air had significantly reduced intraretinal vascular extension
of the inner plexus at p7 and reduced IVNV in OIR at
p17 compared with age-controlled littermate wild-type mice
(68). Taken together, these observations suggest that VEGF-
binding endothelial neuropilin 1, but not the interaction between
neuropilin 1 and VEGFR2, was required for intraretinal vascular
development. However, further studies are required to determine
the role of neuropilin 1 in physiologic vascular development
of the peripheral retina and IVNV in translational models
of ROP.

The Role of Neuropilin 2 in Models of
Retinopathy of Prematurity
Neuropilin 2 knockout mice (Nrp2−/−) had significantly
reduced IVNV in OIR compared with littermate wild-
type mice; however, neuropilin 2 mRNA was expressed in
mice raised in room air from p0 to p7 (57). Therefore,
it was postulated that Nrp2−/− mice would have reduced
intraretinal vascular development compared with littermate
controls. However, there was no difference in inner plexus
vascular density between Nrp2−/− mice and littermate
wild-type mice raised in room air and analyzed at p7
(57). Taken together, the data suggest that neuropilin 2 is
involved in IVNV but not required for intraretinal vascular
development. Further studies are warranted in OIR models
to determine the effect on regrowth after hyperoxia and
physiologic vascular development of the peripheral retina
before considering neuropilin 2 as a potential therapeutic target
for ROP.

DISCUSSION

ROP is the leading cause of blindness and visual impairment
in children worldwide. In severe cases of ROP, blindness can
occur from retinal detachment caused by IVNV. Studies in
OIR models that recapitulate aspects of human ROP have
provided insights into VEGF signaling through VEGFRs and
neuropilins in specific cell types. Experimental studies support
the finding that regulating oversignaling through VEGFR2,
especially in retinal endothelial cells, would not only reduce
severe ROP but also facilitate normal vascular development.
However, there is no suitable way to target endothelial
VEGFR2 in premature infants yet. Broad inhibition of VEGF
or VEGFR2 using intravitreal neutralizing antibodies or small

molecules may affect signaling in other cells in the retina
and affect function and structure or potentially leak into the
circulation and affect developing organs. However, the use of
correct dose or agent suggests that reducing the bioactivity
of VEGF may have value to permit some VEGF signaling
important in physiologic vascular development of the peripheral
retina (10, 69). An appropriate dose of anti-VEGF may
regulate overactive VEGFR2 in retinal endothelial cells, which
occurs with increased ligand concentration (23, 31), without
abolishing VEGFR2 signaling in endothelial or other cells of
the retina.

Besides anti-VEGF, alternative approaches are being explored
to prevent VEGF-mediated ROP occurrence and progression.
Oxidative stresses (i.e., reactive oxygen species) have been
implicated in VEGF-mediated IVNV in rodent models of
ROP (70). Administration of antioxidants Cu/Zn superoxide
dismutase (71) or vitamin E (72) in extremely low gestational
age infants reduced the risk of ROP. However, side effects
related to vitamin E (73) preclude widespread use. Also,
antioxidants may fail to access the intracellular signaling
mechanisms leading to pathology or counteract beneficial
mechanisms of oxidative signaling. Therapeutic approaches
have been considered to regulate hypoxia inducible factors,
either stabilization with prolyl hydroxylase inhibitors in phase
I (74, 75) or potential inhibition in phase II. It remains to be
seen if the phases described in the two-phase hypothesis of
ROP can be distinguished sufficiently in an individual human
infant. Another treatment approach is carefully monitoring
oxygen tension at birth to prevent hyperoxia-induced damage
to blood vessels and reduce oxygen fluctuations that slow
vascular growth to the peripheral retina (76). Additional
experimental studies to regulate semaphorin/neuropilin
signaling (77) might lead to future approaches in ROP. Overall,
these approaches provide insights into possible therapeutic
approaches to regulate VEGF-induced VEGFR2 signaling
in ROP.
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