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A B S T R A C T   

Background: The increasing evidence suggests that necroptosis mediates many behaviors of tu-
mors, as well as the regulation of the tumor microenvironment. Long non-coding RNAs (lncRNAs) 
are involved in a variety of regulatory processes during tumor development and are significantly 
associated with patient prognosis. It suggests that necroptosis-related lncRNAs (NRlncRNAs) may 
serve as biomarkers for the prognosis of hepatocellular carcinoma (HCC). 
Methods: lncRNA expression profiles of HCC were obtained from TCGA database. LncRNAs 
associated with necroptosis were extracted using correlation analysis. Prognostic models were 
constructed based on least absolute shrinkage and selection operator algorithm (LASSO) and 
multivariate Cox regression analysis. The differences of tumor microenvironment between high- 
risk and low-risk groups were further analyzed. Single-cell RNA sequencing data of HCC was 
performed to assess the enrichment of necroptosis-related genes in immune cell subsets. Finally, 
real-time RT-PCR was used to detect the prognosis-related lncRNAs expression in different HCC 
cell lines. 
Results: We constructed a prognostic signature based on 8 NRlncRNAs, which also showed good 
predictive accuracy. The model showed that the prognosis of patients with high-risk score was 
significantly worse than that of patients with low-risk score (P < 0.05). Combined with the 
clinical characteristics and risk score of HCC, Nomogram was drawn for reference in clinical 
practice. In addition, immune cell infiltration analysis and single cell RNA sequencing analysis 
showed that a low level of immune infiltration was observed in patients at high risk and that there 
was a significant correlation between NRlncRNAs and macrophages. The results of RT-qPCR also 
showed that 8 necroptosis-related lncRNAs were highly expressed in HCC cell lines and human 
liver cancer tissues. 
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Conclusion: This prognostic signature based on the necroptosis-related lncRNAs may provide 
meaningful clinical insights for the prognosis and immunotherapy responses in patients with 
HCC.   

1. Introduction 

As one of the most common malignant tumors, primary liver cancer ranks third among fatal cancers in China [1], with the most 
common type of the primary liver cancer being hepatocellular carcinoma (HCC) [2]. A variety of factors contribute to HCC, including 
hepatitis B virus (HBV), fatty liver, aflatoxin B1, hepatitis C virus (HCV), obesity, diabetes, iron overload, and cirrhosis caused by 
alcohol [3,4]. Among them, HBV, HCV infection and alcohol abuse are the most important causes of HCC worldwide [5,6]. With the 
popularization of HBV vaccination and the widespread use of antiviral drugs, the etiological pattern of HCC may be changing. In 
addition, the increase in nonalcoholic fatty liver disease (NAFLD), coupled with metabolic syndrome and obesity, also increases the 
risk of liver cancer [7]. 

Long non-coding RNAs (lncRNAs) are a type of RNAs whose transcripts are exceed 200 nt and do not encode proteins [8]. In recent 
years, with the development of high-throughput technologies, numerous studies have shown that non-coding RNAs are dysregulated in 
cancer [9]. LncRNAs display multiple biological functions in cancer, including epigenetic regulation, DNA damage and cell cycle 
regulation, regulation of microRNAs, involvement in signal transduction, mediating proliferation, metastasis, and drug resistance, etc 
[10–12]. Further, lncRNAs can also influence the development of hepatocellular carcinoma by regulating immune cells. MEG3 can 
inhibit HCC development by inhibiting M2 macrophage polarization [13]. However, lncRNA-CRNDE can regulates M2 macrophage 
polarization and promotes angiogenesis in liver cancer [14]. 

Necroptosis is the programmed cell death with a necrotic appearance [15]. In the process of necroptosis, receptor-binding ser-
ine/threonine protein kinase 1/3 (RIPK1/3) and its substrate mixed lineage kinase domain-like protein (MLKL) are key molecules 
involved in necroptosis. Phosphorylated MLKL translocates to the inner side of the cell membrane and disrupts the integrity of the cell 
membrane, leading to necroptosis [16]. Cell membrane rupture promotes the release of damage-associated molecular patterns 
(DAMPs) in the cytoplasm, thereby mediating further inflammatory responses [17,18]. Necroptosis plays an indispensable role in 
maintaining homeostasis, and is also involved in a series of the pathological processes such as ischemia-reperfusion injury, viral 
infection, and tumorigenesis [19]. The necroptosis of tumor cells triggers antigenic and inflammatory responses that activate dendritic 
cells (DCs) and lead to adaptive immunity [20]. A study published in 2017 identified a new apoptosis checkpoint controlled by the 
molecules RIPK1 and TRAF2 in an experimental mouse model, and found that low expression of RIPK1 and TRAF2 in patients with 
HCC undergoing resection or liver transplantation was predictive of poor prognosis [21]. However, the latest research shows that 
RIPK1-RIPK3-MLKL-dependent necroptosis signaling can promote liver cancer in mice by activating NFκb, and drugs targeting the 
necroptosis response pathway may be a safe and effective strategy to relieve its carcinogenic potential [22]. 

Numerous studies have demonstrated that lncRNAs play a critical role in a variety of programmed cell death, but few studies have 
looked at the contribution of necroptosis-related lncRNAs to liver cancer [23]. In this study, systematic bioinformatics analysis was 
performed to determine the impact of necroptosis-related lncRNAs on the prognosis of the patients with HCC. A risk score prognostic 
model was developed using differentially expressed necroptosis-related lncRNAs to examine prognosis and tumor microenvironment 
differences between HCC patients with high-risk and low-risk score, which may provide significant clinical insights regarding the 
prognosis and response to immunotherapy for patients with HCC. 

2. Materials and methods 

2.1. Data collection 

The RNA-sequence (normal and tumor) transcriptome data and clinical information of HCC patients were downloaded from The 
Cancer Genome Atlas (TCGA) (https://www.cancer.gov/) database. Samples without survival information were excluded. The single- 
cell RNA-sequencing data GSE166635 was obtained from the Gene Expression Omnibus (GEO) database. At the same time, the 
necroptosis-related pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG) database (https://www.genome.jp/dbget-bin/ 
www_bget?pathway+hsa04217) were downloaded, from which a total of 159 necroptosis-related genes (NRGs) were extracted. 
Using Pearson correlation analysis, the relationship between NRGs and lncRNAs was examined. The criteria for correlation analysis 
were set to Correlation coefficient >0.4 and P < 0.001. 

2.2. Differential expression analysis of necroptosis-related lncRNA (NRlncRNAs) and construction of prognostic signature 

The limma package in R software was used to analyze the differential expression of necroptosis-related lncRNAs (DENRlncRNAs) 
and filter criteria for screening DENRlncRNAs was set to false discovery rate (FDR) < 0.05 and |log2 fold change (FC)|≥1.5. Then the 
entire TCGA dataset was randomly divided into training and testing groups in a ratio of 7:3. The training group was conducted to 
construct the necroptosis related lncRNA signature, and then the reliability of the signature was validated through the entire TCGA 
dataset and testing group. First, to evaluate the correlation between DENRlncRNAs and survival in patients with HCC, a univariate Cox 
regression analysis was performed using the survival package of the R language. In the following steps, LASSO regression analysis was 
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carried out using the R software package glmnet, and the best λ value was taken to determine the optimal risk prediction characteristics, 
which had a 0.05 P-value and tenfold cross-validation. Based on the LASSO analysis results, multivariate regression analysis was 
performed, and the variables for prognostic models were obtained. 

Using the DENRlncRNAs and their coefficients previously determined, each HCC patient’s risk score was calculated. The score was 
determined as: 

Risk score=
∑n

i=1
Coefi × xi 

Coefi is the coefficient and the value of xi represents the expression value of each DENRlncRNA selected. Patients with HCC were 
assigned a risk score based on this formula. According to the median risk score, patients in the training group were divided into high- 
and low-risk groups. Kaplan-Meier (KM) survival analysis was used to compare the overall survival (OS) rates. Receiver operating 
characteristic (ROC) curves were established for 1-, 3-, and 5-year OS, from which the areas under the curves (AUCs) could be ob-
tained. PCA (Principal component analysis) analysis and t-SNE (T-distributed stochastic neighbor embedding) analysis were applied 
for dimensionality reduction. The results were validated using the testing group and the entire dataset. 

2.3. Validation of prognostic signatures in clinical characteristics 

To examine prognostic signature and clinical characteristics independently, univariate (P < 0.05) and multivariate (P < 0.05) Cox 
regression analyses were conducted. Furthermore, a stratified analysis of variables of clinical characteristics was performed, which 
included stage, gender, grade and T stage. Then KM survival analysis was performed to analyze and compare OS between high-risk and 
low-risk HCC patients. 

2.4. An integrated nomogram based on clinical features and risk score 

According to the clinical characteristics of the stage, T stage, age, and risk scores, the nomogram was constructed by Cox regression 
analysis to evaluate the 1-, 3-, and 5-year survival rate of the HCC patients. The agreement between actual OS and nomogram-predicted 
OS was assessed by calibration curves. To assess the clinical utility of the nomogram, a decision curve analysis (DCA) and ROC analysis 
were conducted. 

2.5. A network of DENRlncRNAs-NRGs (necroptosis gene), and functional analysis 

The Cytoscape was used to investigate co-expression networks of NRGs and lncRNAs in prognostic signatures. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of the NRGs in co-expression network were performed using the 
clusterProfiler package [24]. 

To identify the potential functional pathways involving the necroptosis-related lncRNA signature, Gene Set Enrichment Analysis 
(GSEA) was conducted [25]. This analysis was carried out with Java GSEA v. 4.0.3 on the KEGG dataset, c2.cp.kegg.v7.5.1.symbols. 
gmt, to identify enriched pathways between the high- and the low-risk groups. Statistical significance was determined by |NES| >1 and 
P < 0.05. 

2.6. Infiltrating immune cells analysis 

Immune Cell Infiltration Dataset was downloaded from TIMER2.0 (http://timer.cistrome.org). To evaluate immune cell compo-
nents or cellular immune responses between high-risk and low-risk groups based on necroptosis-related lncRNA signatures, numerous 
algorithms were adapted, including xCELL, CIBERSORT, TIMER, QUANTIseq, MCP-counter and EPIC. And a heatmap diagram and 
correlation dot plot were drawn to show the difference in the infiltrating inmmue cells using different algorithms. Moreover, ssGSEA 
(Single-sample GSEA) was performed to quantify the subgroup of infiltrating immune cells and estimate their immunity function in 
both groups. The differential expression of the potential immune checkpionts collected from precious literature was evaluated between 
the two groups. 

2.7. Estimation of tumor microenvironment (TME) 

ESTIMATE (Estimation of Stromal and Immune cells in Malignant Tumors using Expression data) is a profiling algorithm for TME, 
which infers the presence of stromal and immune cells in tumors and determines the purity of tumors by analyzing the expression of 
specific genes [26,27]. The Estimate package in R software was performed to simulate the ratio of the immune and the matrix com-
ponents in the TME for each sample, presented in the form of three scores: ImmuneScore, StromalScore, and ESTIMATEScore, which 
were positively correlated with immune, matrix, and the sum of them, respectively. An overall high score is associated with a higher 
ratio in the TME component corresponding to the score. Moreover, the TME components were compared between groups with high or 
low risk. 
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2.8. Assessing the enrichment of NRGs in immune cell subsets using single-cell RNA sequencing data 

We downloaded single-cell RNA sequencing data GSE166635 [28] for HCC from the GEO database and performed data quality 
control and analysis through the Seurat, dplyr, and harmony packages in R software. Samples with feature values greater than 200 and 
less than 10,000 were selected, and samples with mitochondrial gene percentage greater than 10 were excluded. Data normalization 
was performed using the NormalizeData function and 2000 genes with high variation coefficients between cells were extracted. Data 
batch correction was done via the harmony package. And PCA and tSNE analysis were performed for data dimensionality reduction and 
cluster analysis. Cells were divided into multiple distinct subpopulations by combining the SingleR package and manual annotation. 

Further, the genes in the lncRNA-gene network constructed in section 2.5 were used as the apoptotic gene set, and the AUCell, UCell 
and singscore algorithms were used to analyze the enrichment of the apoptotic gene set in the immune cell subsets in the single-cell 
RNA sequencing data. The R packages used in this part of the analysis mainly included irGSEA, Ucell and GSEABase. Finally, GO and 
KEGG functional analysis were performed on the significantly enriched cell clusters using their top 200 highly variable genes by 
clutserProfiler package [24]. 

2.9. Quantitative real-time PCR (qRT-PCR) of human liver cancer tissues and cell lines 

Three human liver cancer tissue samples and three normal liver tissue samples were obtained from the sample bank of Shuguang 
Hospital Affiliated to Shanghai University of Traditional Chinese Medicine. PLC-5 and HepG2 are human HCC cell lines, and L02 is the 
human normal liver cell line. Both lines originated from the Cell Bank of the Chinese Academy of Sciences, China. The human normal 
liver WRL68 cell line was purchased from Dalian Meilun Biotechnology Co., Ltd (PWE-HU129, meilunbio). In culture, cells were 
incubated with DMEM (Gibco, USA) supplemented with 10 % FBS (Gibco, USA) and 1 % streptomycin/penicillin (Cellgro, USA). The 
Total RNA Extraction Reagent (R401, Vazyme, China) was used to isolate total RNA from liver tissue samples and cells. For each 
sample, the reverse transcription of 1 μg of total RNA to cDNA was performed using HiScript® II Q RT SuperMix for qPCR (+gDNA 
wiper) (R223, Vazyme, China). ChamQ Universal SYBR qPCR Master Mix (Q711, Vazyme, China) was used for qRT-PCR. The levels of 
expression of the target lncRNAs were normalized by GAPDH. Table 1 shows the primer sequences used in this study. 

2.10. Statistical analysis 

In this study, all statistical analyses were performed using R software (version 4.2.1) and its appropriate packages. P values less 
than 0.05 were considered statistically significant. Lasso-Cox regression model was used to determine which DENRlncRNA was 
significantly correlated with OS, and multivariate COX regression analysis was performed to calculate HR, 95%CI and P values to 
construct a prognostic risk model. In addition, the role of risk scores and other clinical indicators as independent prognostic indicators 
was also assessed by univariate and multivariate COX regression analyses. Single cell RNA sequencing data were analyzed by Seurat 
package. The independent-samples t-test was performed to analyze the quantitative variables. 

3. Results 

3.1. Data collection and NRlncRNAs identification 

The workflow of this study is shown in workflow diagram. After screening for samples with complete survival records and lncRNA 
expression data downloaded from TCGA database, a total of 371 HCC cases and 50 normal tissue samples were included. Based on 159 
necroptosis genes (Supplementary Table 1), a total of 977 NRlncRNAs were obtained, including 425 DENRlncRNAs. A heatmap 
(Fig. 1A) of the top 50 DENRlncRNAs was built based on these data. 

3.2. Construction of the NRlncRNA signature 

Randomly, 371 samples were assigned to training and testing groups in a ratio of seven to three. The training group consisted of 260 
participants, while the testing group consisted of 111 participants. Using univariate Cox regression to analyze these 425 DENRlncRNAs 
to screen the NRlncRNA associated with OS in train group, and the results showed that a total of 45 DENRlncRNAs were significantly 

Table 1 
The primers used for qRT-PCR.  

Genes (Human) Forward primer (5′-3′) Reverse primer (5′-3′) Efficiency 

PRRT3-AS1 TTCAGAAATGCCTTGCAGTG CACCTCTTTGCTCTGCTCCT 99.3 % 
AL928654.1 AGAGAACTGACTGCTGGAGTGGAG GAGTATGGGTCGGCTGGAGGAG 106.4 % 
MKLN1-AS GCACTTACTCGGGAAGCCACTG CGTCCACCTGATGAGACTTCTGAAG 94.3 % 
LUCAT1 GCTCGGATTGCCTTAGACAG GGGTGAGCTTCTTGTGAGGA 102.2 % 
POLH-AS1 GGCAGGTGGATCATTTGAGGTCAG TGAGATGGAGCGTCACTCTGTCG 105.3 % 
AL031985.3 CCCTGTCACACCTATTCAACTTCCC AGCCCTTGAGCCAAACGAAACC 97.8 % 
AC040970.1 AACATCTGCCTTTCCTGGTGACAC TCTCCACCTCGTATCTCCAAACCC 94.5 % 
LINC01224 CTCACTACAGCCTCTGCCTCCTAG AGACACATATCACCTTGGCGTTGG 94.5 %  
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associated with OS (P < 0.01, Fig. 1B). Next, LASSO regression analysis was performed for further selection of the resulting variables. 
And 13 necroptosis-related lncRNAs were obtained by LASSO regression analysis. Subsequently, multivariate Cox regression analysis 
was carried out to determine prognostic necroptosis-lncRNAs. Eight DENRlncRNAs associated with necroptosis (LINC01224, 
AL031985.3, MKLN1-AS, AC040970.1, AL928654.1, POLH-AS1, LUCAT1, PRRT3-AS1) were identified and considered prognostic 
indicators (Fig. 1C–E). A predictive signature in the training group based on these 8 necroptosis-related lncRNAs was constructed. 

Fig. 1. Construction of a risk score prognostic model based on 8 necroptosis-related lncRNAs. (A) The heatmap of the top 50 DENRlncRNA 
expression profiles. (B) Univariate analysis of the DENRlncRNAs in HCC. (C, D) LASSO regression analysis. The 45 prognosis-related lncRNAs 
obtained by Univariate regression analysis were further analyzed by LASSO regression. The coefficient profile is generated by comparing with the 
log (λ) sequence. Eight predictors of non-zero coefficients were obtained after selecting the optimal λ value (also known as the minimum λ value). 
(E) Multivariate Cox regression analysis identified 8 necroptosis-related lncRNAs and corresponding coefficients. 
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3.3. Survival analysis and the validation of prognostic signature 

The prognostic signature based on the 8 DENRlncRNAs was used to perform risk assessment on the samples in the training group. As 
determined by the median score for each of the HCC patients in the training group, a high-risk group and a low-risk group were formed 
(Fig. 2A). The distribution of survival status of HCC patients is shown in Fig. 2B. KM survival analysis demonstrated that high-risk 
participants had a significantly lower OS time than low-risk participants (Fig. 2C). The differential expression of 8 DElncRNAs in 
the training group are shown in Fig. 2D and a high level of expression was observed for all eight DENRlncRNAs in the high-risk group. 

Additionally, the performance of the signature has been evaluated using ROC curves for 1-year, 3-year, and 5-year OS, respectively. 
And the AUCs at these time points were 0.777, 0.768, and 0.707, respectively (Fig. 2E). In addition, the PCA and t-SNE analyses 
indicated that low-risk and high-risk groups were significantly different (Fig. 2F and G). Prognostic signatures can be used to 
distinguish high-risk from low-risk groups, according to these results. To verify the accuracy of the prognostic signatures, the testing 
group and the entire TCGA dataset were used for validation, which also showed the same results as the training set (Supplementary 
Fig. 1 and Fig.2). 

3.4. Independent prognostic analysis of prognostic signature and clinical characteristic variables 

The entire TCGA dataset was used to perform independent prognostic analyzes on the clinical characteristic variables. Univariate 
Cox regression showed that the HR of the riskScore was 1.165 and the 95 % CI was 1.118–1.215 (P < 0.001, Fig. 3A). And multivariate 
Cox regression showed that the HR of the riskScore was 1.160 and the 95 % CI was 1.108–1.214(P < 0.001, Fig. 3B). The prognostic 
signature based on 8 DENRlncRNAs was found to be a significant independent prognostic factor for patients with HCC in both 

Fig. 2. Risk score prognostic model based on 8 necroptosis-related lncRNAs in the training group. (A, B) Distribution of risk scores and survival 
status of HCC patients in the training group (The dashed line in the middle represents the median risk score, increasing from left to right). (C) 
Kaplan–Meier (KM) Survival Analysis of High and Low Risk Groups Grouped by Median Risk Scores in the Training Group. (D) Heatmap showing the 
expression levels of 8 lncRNAs for each patient in the training group. (E) ROC curves for predicting 1, 3, and 5-year survival of HCC patients in the 
training group. (F, G) The PCA analysis and tSNE analysis showing the distribution status of high- and low-risk HCC patients in the training group. 
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univariate and multivariate regression analyses. 
Among the variables of clinical characteristics, univariate analysis showed that stage (P < 0.001, HR:1.669, CI:1.357–2.053) and T 

stage (P < 0.001, HR:1.649, CI:1.354–2.009) were independent prognostic factors for patients with HCC. 
Survival analysis of stratified clinical variables was performed. The results showed that there was a worse prognosis for high-risk 

patients than for low-risk patients in different strata of multiple clinical characteristic variables including gender, stage, T stage and 
grade (Fig. 3C–F). 

3.5. Building and validating a nomogram 

A nomogram was developed to predict HCC patients’ prognosis at different stages of the disease (Fig. 4A). When combined with the 
scores of various factors in Nomogram, it is possible to predict the survival probability of HCC patients. In the calibration curve, 
predictions for 1-, 3-, and 5-year survival rates closely matched observations (Fig. 4B and C). Further, the DCA curve demonstrated 
positive clinical predictive value for HCC patients based on the Nomogram (Fig. 4D). 

3.6. DENRlncRNAs-NRGs network map and functional analysis 

The GSEA analysis results of the high- and low-risk groups showed that 16 pathways were enriched in the high-risk group, mainly 
including cell cycle, homologous recombination, spliceosome, ubiquitin mediated proteolysis, DNA replication and so on. In the low- 
risk group, 12 pathways were enriched, which was mainly involving in substance metabolism, including complement and coagulation 
cascades, primary bile acid biosynthesis, tryptophan metabolism, fatty acid metabolism, valine leucine and isoleucine degradation, 
retinol metabolism and so on (Fig. 4E). 

Fig. 3. Independent prognostic analysis of clinical characteristics and risk scores. (A) Univariate regression analysis of clinical characteristics and 
risk scores. (B) Multivariate regression analysis of clinical characteristics and risk scores. KM analysis of stratified clinical characteristics, including 
(C) gender, (D) T stage, (E) G stage, (F) stage. 

R. Zhang et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e22083

8

(caption on next page) 

R. Zhang et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e22083

9

A network was constructed to show the relationship between 8 DENRlncRNAs and NRGs. The results showed that 8 DENRlncRNAs 
were associated with 19 NRGs (Fig. 4F). According to co-expression analysis of genes and lncRNAs, AL031985.3 has a co-expression 
relationship with TRAF5, CASP8, MAPK8, FAF1, IFNAR2 and PARP1. POLH-AS1 has a co-expression relationship with DNM1L and 
USP21. AC040970.1 has a co-expression relationship with CHMP4C. AL928654.1 has a co-expression relationship with RNF31. GO 
and KEGG enrichment analysis on these 19 NRGs were performed and finally 178 biological processes (BP), 24 molecular functions 
(MF), 11 cellular components (CC) and 34 pathways (P < 0.05, Supplementary Table 2 and Table 3) were obtained. Through the GO 
biological function and KEGG pathway enrichment analysis of these co-expressed genes, the results showed that the main pathways 
involved in these genes are not only the necroptosis pathway, but also the IL-17 signaling pathway, Th1 and Th2 cell differentiation, 
virus infection, and other immune-related pathways. Dot charts were drawn to show the top 10 items of BP, CC, MF in GO analysis 
(Fig. 4G) and the top 30 pathways of KEGG pathway analysis (Fig. 4H), respectively. 

3.7. Immune infiltration analysis and estimation of tumor microenvironment (TME) 

The correlation between risk scores and tumor-infiltrating immune cells was examined using several algorithms (Fig. 5A), and the 
results indicated that infiltrating immune components were strongly associated with risk scores (Fig. 5B), including T cell CD4+ Th2 
(Cor = 0.482, P < 0.001), Macrophage (Cor = 0.416, P < 0.001), Monocyte (Cor = 0.366, P < 0.001), Endothelial cell (Cor = − 0.555, 
P < 0.001), stroma score (Cor = − 0.535, P < 0.001) and so on. The heatmap and correlation dot chart of the relationship between high- 
and low-risk groups and infiltrating immune components is shown in Fig. 5. 

Patients at high risk had a low level of immune cell infiltration as determined by immune cell infiltration analysis. An analysis of 
differential expression of immune checkpoints revealed that the expression levels of multiple immune checkpoints were significantly 
higher in the high-risk group than in the low-risk group (P < 0.05, Fig. 6A). TME analysis of different risk groups revealed significantly 
lower StromalScores (P < 0.001) and EstimateScores (P < 0.01) in high-risk groups compared to low-risk groups, although the immune 
score did not differ significantly (P > 0.05, Fig. 6D–F). 

Immune cell (Fig. 6B) and related functions (Fig. 6C) based on ssGSEA revealed that there were significant differences in immune 
cell (activated dendritic cells (aDCs), NK cells, pDCs, Treg) and related function molecules (MHC class I, cytolytic activity, type I, and 
type II IFN) between high- and low-risk groups. 

3.8. Enrichment of necroptosis-related gene sets in immune cell subsets in single-cell RNA sequencing data 

A total of 2 single-cell RNA sequencing data samples were obtained for HCC in GSE166635 from the GEO database, and after data 
quality control (Supplementary Fig. 3-Fig.6), the top 2000 highly variable genes were used for subsequent PCA analysis (Fig. 7A). 
According to Elbow plot (Fig. 7B), the first 17 principal components (PC) were selected for tSNE cluster analysis. As a result, the cells 
were divided into 13 clusters (Fig. 7C and D). Though using the SingleR package and manual review, finally the cells were divided into 
8 types, namely macrophages, monocytes, hepatocytes, Th2 cells, T cells, myofibroblasts, B cells and endothelial cells (Fig. 7E). Then 
the 19 genes in the lncRNA-gene network were used as a gene set to evaluate the enrichment of the gene set among various cell clusters. 
According to the results, 19 NRGs were primarily enriched in macrophages, hepatocytes, and monocytes (Fig. 7F). And the results of 
functional analysis of monocyte clusters (Fig. 7G– H) and macrophage clusters (Fig. 7I– J) with higher enrichment scores showed that 
the functions involved were mainly in the regulation of T cell activation, antigen processing and presentation, and cell adhesion 
(Supplementary Table 4 – Table 7). 

3.9. Expression of necroptosis gene-related lncRNAs in human liver cancer tissue cell lines 

The expression levels of these 8 lncRNAs (LINC01224, AL031985.3, MKLN1-AS, AC040970.1, AL928654.1, POLH-AS1, LUCAT1, 
PRRT3-AS1) in liver cancer tissues were higher than those in normal liver tissues, and 3 of them (LINC01224, AL928654.1 and MKLN1- 
AS) had statistically significant differences (P < 0.05, Fig. 8A- Fig. 8G). 

Besides, the results of the expression levels of eight lncRNAs in human normal liver cell lines (L02, WRL68) and human HCC cell 
lines (PLC-5, HepG2) showed that, the expression levels of LUCAT1, POLH-AS1 and AL928654.1 in HepG2 and PLC-5 lines were 
significantly higher than that in L02 cell lines (Fig. 9A). The expression levels of POLH-AS1 and LINC01224 in HepG2 and PLC-5 lines 
were significantly higher than that in WRL68 cell lines (Fig. 9B). 

4. Discussion 

Globally, liver cancer ranks fourth in cancer-related deaths and sixth in incidence [29]. The diagnosis of liver cancer mainly relies 

Fig. 4. Nomogram of clinical characteristics and risk scores. (A) Nomogram (B) Using ROC curve to show the AUC value of risk score and clinical 
characteristics predicting 1-year survival in HCC patients. (C, D) The calibration curve and DCA curve demonstrated positive clinical predictive 
value for HCC patients based on the Nomogram. (E) GSEA analysis for necroptosis-related lncRNAs based on TCGA entire setentire (The pathway 
above the horizontal axis was active in the high-risk group, and the pathway below the horizontal axis was inhibited in the high-risk group). (F) The 
co-expression network of 8 necroptosis-related lncRNAs and 19 necroptosis-related genes (The correlation between genes and lncrnas can be ob-
tained by the lines in the figure). (G, H) The GO and KEGG analysis of 19 necroptosis-related genes. 
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Fig. 5. Heatmap (A) and correlation dot plot (B) for immune infiltration based on TIMER, xCELL, quanTIseq, MCP-counter, CIBERSORT and EPIC 
algorithms among high- and low-risk groups. 
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on imaging, serum markers and pathological biopsy. Currently, liver cancer is treated primarily through surgery, hepatic arterial 
chemoembolization, radiofrequency ablation, molecular targeted therapy, and immunotherapy [30]. Although comprehensive ther-
apeutic strategies have made great progress in the treatment of HCC, the molecular complexity and heterogeneity of HCC make the 
current therapeutic effects of HCC unsatisfactory [31,32]. 

A growing body of research evidence shows that there are significant differences in the clinical characteristics and prognosis of HCC 
patients with different molecular subtypes [33–35]. Necroptosis, a caspase-independent programmed cell death, plays an important 
role in liver cancer [36]. The necroptosis process, on the other hand, inhibits tumor development by killing tumor cells [21]. However, 

Fig. 6. Analysis of tumor-infiltrating microenvironment. (A) Expression levels of immune checkpoints between high- and low-risk groups. (B, C) 
ssGSEA for the association between immune cell subpopulations and related functions. The ESTIMATE analysis of (D) ESTIMATEScore, (E) Stro-
malScore, (F)ImmuneScore. (The lower the ESTIMATES score, the more obvious the immunosuppressive effect, *P < 0.05, **P < 0.01, ***P 
< 0.001). 
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necroptosis suppresses the immune system, and the cytokines that are released by necrotic cells promote inflammation that leads to the 
growth of tumors [37]. With increasing research on necroptosis, targeting necroptosis may become a new strategy for the treatment of 
HCC [38,39]. 

Fig. 7. Single-cell RNA sequencing data analysis of HCC. (A) high variation coefficients between cells. (B) Elbow plot of the PC. (C) Heatmap of the 
cell clusters. (D) tSNE analysis divides cells into 13 clusters. (E) Cell types of different clusters. (F) Enrichment of necroptosis-related genes in cell 
clusters. GO and KEGG enrichment analysis of the top 200 highly variable genes in monocyte cluster (G–H) and macrophages cluster (I–J). 

R. Zhang et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e22083

13

In our analysis of necroptosis-related lncRNAs in HCC patients, we found that they significantly impacted the prognosis of patients 
with HCC. The study investigated 159 NRGs and identified eight necroptosis-related lncRNAs (including LINC01224, AL031985.3, 
MKLN1-AS, AC040970.1, AL928654.1, POLH-AS1, LUCAT1, PRRT3-AS1) to develop a prognostic model. We found that patients with 
HCC have poor prognoses based on the high expression of these 8 lncRNAs in our analysis. Through RT-PCR experiments, we also 
confirmed that the expression of these 8 lncRNAs was significantly increased in liver cancer tissue. Studies have shown that over-
expression of MKLN1-AS can promote the proliferation and epithelial-mesenchymal transition (EMT) of HCC [40], and knockdown of 
MKLN1-AS significantly inhibits the metastasis and growth of HCC cells in vitro and in vivo. Furthermore, knockdown of MKLN1-AS 
enhanced the pro-apoptotic effect of lenvatinib [41]. LUCAT1 inhibits the phosphorylation of annexin A2 (ANXA2) and promotes the 
secretion of plasmin, leading to the activation of metalloproteinase proteins [42]. Upregulation of LUCAT1 expression promotes the 
development and metastasis of HCC. In addition, the stroma scores for the high-risk group were significantly lower than those for the 
low-risk group based on the TME analyses on the TCGA dataset. The effect on stromal components in the TME may be one of the 
mechanisms by which necroptosis-related lncRNAs participate in the incidence and development of HCC. There is evidence that 
lncRNAs including LINC01224, PRRT3-AS1, AL031985.3 and POLH-AS1 are up-regulated in HCC [43,44], but the specific mechanism 
is unclear. Furthermore, various studies have demonstrated that these lncRNAs regulate specific microRNAs and promote tumor 
proliferation and metastasis in the gastrointestinal tract [45,46]. 

Immunotherapy is one of the effective means of treating cancer. Further studies on the TME will help to develop new and more 
effective tumor immunotherapy strategies. In this study, there was a strong positive correlation between the risk score and macro-
phages, neutrophils, and Th2 cells, whereas a negative correlation was identified with endothelial cells and stroma. Overall, our 
prognostic model indicates poor levels of immune infiltration in patients at high risk. When combined with single-cell sequencing data, 
necroptosis-related lncRNAs are associated with macrophages in a significant way. There is potential for an exciting new perspective 
on the immune regulation of lncRNAs that are related to necroptosis in liver cancer due to this finding. 

Several types of macrophages inhabit the liver, including yolk sac-derived resident macrophages (Kupffer cells) and peripheral 
blood mononuclear cells-derived infiltrating macrophages [47]. By utilizing innate immunity, macrophages destroy and eliminate 
diseased cells. However, macrophages are highly plastic and can be rapidly transformed into tumor-associated macrophages (TAMs) 
under the influence of the TME. TAMs usually exhibit different functional phenotypes, which are mainly divided into M1-like TAMs 
and M2-like TAMs. Current studies mainly believe that M1-like TAMs have pro-inflammatory and anti-tumor activities, while M2-like 
TAMs have anti-inflammatory, immune-suppressing, and tumor-promoting effects [48–50]. Promoting TAM polarization to M1 can 
activate CD8+ T cell immune responses to suppress HCC [51]. The polarization of TAM to M2 can induce the imbalance of 
TGF-β1/BMP-7 pathway and promote HCC progression. In addition, M2 macrophages can alter miR-149-5p, which in turn increases 
the expression of MMP9 in HCC cells, thereby promoting HCC invasion and metastasis [52]. Until now, a few studies have investigated 

Fig. 8. Expression levels of 8 lncRNAs in human liver cancer tissue and normal liver tissue (Fig.8A–G show the relative expression levels of 
LINC01224, AL928654.1, MKLN1-AS, AC040970.1, LUCAT1, AL031985.3, POLH-AS1, PRRT3-AS1, respectively; ns, no significance; *, P < 0.05; **, 
P < 0.01). 
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the effects of necroptosis-related lncRNAs on macrophages in liver cancer. However, there is evidence to suggest that a parallel 
network of necrotic apoptosis-induced CXCL1 and Mincle signals promote macrophage-induced adaptive immunosuppression, thereby 
promoting pancreatic ductal adenocarcinoma progression [53]. Furthermore, The lncRNA is also involved in the regulation of 
macrophage polarization in liver cancer [13]. The involvement of necroptosis-related lncRNAs in macrophage polarization may 
contribute to the immune regulation of liver cancer. 

TME is the internal environment of tumor cell occurrence and survival, which includes not only tumor cells themselves, but also 
surrounding fibroblasts, immune and inflammatory cells, stromal cells, microvessels and biomolecules therein. There are a large 
number of cytokines and growth factors secreted by tumor cells or stromal cells in the TME that contribute to tumor cell growth, 
angiogenesis, cell metastasis, and resistance to drugs [54]. Studies have shown that the transduction of YAP/TAZ signaling in the TME 
contributes to the activation of the liver stroma, which in turn promotes anti-cancer drug penetration into the tumor [55]. The in-
fluence of stromal components on cancer cells and TME suggests its potential value in anticancer [56,57]. 

In conclusion, based on eight necroptosis-related long noncoding RNAs, a novel prognostic signature was developed. Our study 
shows that the necroptosis-related lncRNA risk prognostic model can be used to predict the OS in patients with HCC and is correlated 
with the characteristics of immune infiltration. Our systematic study of necroptosis-related lncRNAs will serve as a tried effort to 
understand the role and value of necroptosis-related lncRNAs in HCC. However, it is important to note that the necroptosis-related 

Fig. 9. Expression of eight lncRNAs in different liver cell lines (ns, no significance; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). (A) 
L02, PLC-5 and HepG2 cell lines; (B) WRL68, PLC-5 and HepG2 cell lines. 
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lncRNA prognostic model needs to be validated by more external cohorts to clarify its clinical significance. As well, the role of 
necroptosis-related lncRNA in liver cancer remains unclear, particularly its regulation of immune cells such as macrophages, which 
needs to be further explored in vivo and in vitro. 
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