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Given a linear relationship between two continuous random variables X and Y that may
be moderated by a third, Z, the extent to which the correlation ρ is (un)moderated by Z is
equivalent to the extent to which the regression coefficients βy and βx are (un)moderated
by Z iff the variance ratio 2 2σy /σx is constant over the range or states of Z. Otherwise,
moderation of slopes and of correlations must diverge. Most of the literature on this issue
focuses on tests for heterogeneity of variance in Y, and a test for this ratio has not been
investigated. Given that regression coefficients are proportional to ρ via this ratio, accurate
tests, and estimations of it would have several uses.This paper presents such a test for both
a discrete and continuous moderator and evaluates its Type I error rate and power under
unequal sample sizes and departures from normality. It also provides a unified approach
to modeling moderated slopes and correlations with categorical moderators via structural
equations models.
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INTRODUCTION
Let X and Y have a bivariate normal distribution, X ∼ N (µx , σ 2

x ),
and Y ∼ N (µy , σ 2

y ). Suppose also that the correlation between X
and Y is a function of a moderator variable Z. Under homogeneity
of variance (HoV),moderation of correlations implies moderation
of regression coefficients (or means, in ANOVA), and vice versa.
For example, establishing the existence of a moderator effect from
Z in a linear regression model with X and Z predicting Y by
finding a significant regression coefficient for the product term
X ×Z suffices to infer a corresponding moderator effect of Z on
the correlation between X and Y.

Heterogeneity of variance (HeV) due to Z, however, can alter
moderator effects so that correlation and regression coefficients are
not equivalently moderated. We may have moderation of slopes,
for instance, without moderation of correlations, moderation of
correlations with no moderation of slopes, moderation of slopes
and correlations in opposite directions, or even moderation of
regression coefficients in opposite directions (e.g., what appears
to be a positive moderator effect when X predicts Y becomes a
negative effect when Y predicts X).

Although some scholars have warned about the impacts of het-
eroscedasticity on the analysis of variance (e.g., Grissom, 2000)
and linear regression, most contemporary textbook advice and
published evidence on this matter comforts researchers with the
notion that ANOVA and regression are fairly robust against it.
Howell (2007, p. 316), for instance, states that despite Grissom’s
pessimistic outlook “the homogeneity of variance assumption
can be violated without terrible consequences” and advises that
for symmetrically distributed populations and equal numbers of
participants in each cell, the validity of ANOVA is likely if the
ratio of the largest to the smallest variance is no greater than
4. Tabachnick and Fidell (2007, pp. 121–123) are even more

relaxed, recommending an upper limit on this ratio of 10 before
raising an alarm. A recent investigation into the robustness of
one-way ANOVA against violations of normality (Schmider et al.,
2010) also is relatively reassuring on that count. A fairly recent
comparison of several tests of homogeneity of variance (Cor-
rea et al., 2006) generally finds in favor of the Levene test but
leaves the issue of the impact of HoV on moderator effects
unexamined.

Nevertheless, this problem is well-known. Arnold (1982) drew
a distinction between the“form”and“degree”of moderator effects,
whereby the “form” is indexed by moderation of slopes (or means,
in ANOVA) whereas the “degree” is indexed by moderation of
correlations. He argued from first principles and demonstrated
empirically that it is possible to find a significant difference
between correlations from two independent-samples but fail to
find a corresponding significant regression interaction term, and
vice versa. A related treatment was presented independently by
Sharma et al. (1981), who referred to “degree” moderators as
“homologizers” (a term taken from Zedeck, 1971). They pointed
out that homologizers that act through the error-term in a
regression instead of through the predictor itself.

Stone and Hollenbeck (1984) dissented from Arnold (1982),
arguing that only moderated regression is needed to assess mod-
erating effects, regardless of whether they are of form or degree.
Their primary claims were that moderated slopes also can be
interpreted as differing strengths of relationship, and that the
subgrouping method advocated by Arnold raises concerns about
how subgroups are created if the moderator is not categorical.
Arnold (1984) rebutted their claim regarding the slope as a mea-
sure of relationship strength, reiterating the position that slopes,
and correlations convey different types of information about such
relationships. He also declared that both moderated regression
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and tests of differences between correlation coefficients are essen-
tially “subgroup” methods. At the time there was no way to unify
the examination of moderation of correlations and slopes. The
present paper describes and demonstrates such an approach for
categorical moderators, via structural equations models.

In a later paper, Stone and Hollenbeck (1989) reprised this
debate and recommended variance-stabilizing and homogenizing
transformations as a way to eliminate the apparent disagreement
between moderation of correlations and moderation of slopes.
These include not only transformations of the dependent vari-
able, but also within-groups standardization and/or normaliza-
tion. They also, again, recommended abandoning the distinction
between degree and form moderation and focusing solely on form
(i.e., moderated regression). The usual cautions against routinely
transforming variables and objections to applying different trans-
formations to subsamples aside, we shall see that transforming the
dependent variable is unlikely to eliminate the non-equivalence
between moderation of slopes and correlations. Moreover, other
investigators of this issue do not arrive at the same recom-
mendation as Stone and Hollenbeck when it comes to a “best”
test.

Apparently independently of the aforementioned work, and
extending the earlier work of Dretzke et al. (1982), Alexander and
DeShon (1994) demonstrated severe effects from heterogeneity of
error-variance (HeEV) on power and Type I error rates for the
F-test of equality of regression slopes. In contrast to Stone and
Hollenbeck (1989), they concluded that for a categorical modera-
tor, the “test of choice” is the test for equality of correlations across
the moderator categories, provided that the hypotheses of equal
correlations and equal slopes are approximately identical.

These hypotheses are equivalent if and only if the ratio of the
variance in X to the variance in Y is equal across moderator cat-
egories (Arnold, 1982; Alexander and DeShon, 1994). The reason
for this is clear from the textbook equation between correlations
and unstandardized regression coefficients. For the ith category of
the moderator,

βyi = ρi
σyi

σxi
(1)

For example, a simple algebraic argument shows that if the
σ yi/σ xi ratio is not constant for, say, i= 1 and i= 2 then
β1=β2⇒ ρ1 6= ρ2, and likewise ρ1= ρ2⇒β1 6=β2. More gen-
erally,

σy1σx2

σx1σy2
> (<) 1⇔

∣∣∣∣β1

β2

∣∣∣∣ > (<)

∣∣∣∣ρ1

ρ2

∣∣∣∣ . (2)

The condition for correlations and slopes to be moderated in
opposite directions follows immediately: β1>β2 but ρ2>ρ1 if
when ρ2>ρ1, it is also true that

σy1σx2

σx1σy2
>
ρ2

ρ1
.

The same implication holds if the inequalities are changed from
> to<.

The position taken in this paper is that in multiple linear regres-
sion there are three distinct and valid types of moderator effects.
First, in multiple regression equation (1) generalizes to a ver-
sion where standardized regression coefficients replace correlation
coefficients:

βyi = Byi
σyi

σxi
(3)

where Byi is a standardized regression coefficient. Thus, we have
moderation of unstandardized versus standardized regression
coefficients (or correlations when there is only one predictor),
which are equivalent if and only if the aforementioned variance
ratio is equal across moderator categories. Otherwise, the assump-
tion that moderation of one implies equivalent moderation of the
other is mistaken. This is a simple generalization of Arnold’s (1982)
and Sharma et al.’s (1981) distinction.

Second, the semi-partial correlation coefficient, νxi, is a sim-
ple function of Byi and tolerance. In the ith moderator category,
the tolerance of a predictor, X, is Txi = 1 − R2

xi , where R2
xi is the

squared multiple correlation for X regressed on the other predic-
tors included in the multiple regression model. The standardized
regression coefficient, semi-partial correlation, and tolerance are
related by

νxi = Byi

√
Txi .

Equation (3) therefore may be rewritten as

βyi = νxi
σyi

σxi
√

Txi
. (4)

Thus, we have a distinction between the moderation of the unique
contribution of a predictor to the explained variance of a depen-
dent variable and moderation of regression coefficients (whether
standardized or not). Equivalence with moderation of standard-
ized coefficients (or simple correlations) hinges on whether tol-
erance is constant across moderator categories (an issue not dealt
with in this paper), while equivalence with moderation of unstan-
dardized coefficients depends on both constant tolerance and
constant variance ratios.

In a later paper, DeShon and Alexander (1996) proposed alter-
native procedures for testing equality of regression slopes under
HeEV, but they and both earlier and subsequent researchers appear
to have neglected the idea of testing for equal variance ratios (EVR)
across moderator categories. This is understandable, given that
HeEV is a more general concern in some respects and the primary
object of most regression (and ANOVA) models is prediction.

Nevertheless, it is possible for HeEV to be satisfied when EVR is
not. An obvious example is when there is HoV for Y and equality
of correlations across moderator categories but HeV for X. These
conditions entail HeEV but also imply that slopes cannot be equal
across categories. This case seems to have been largely overlooked
in the literature on moderators. More generally, HeEV is ensured
when, for all i and j,

σ 2
yi

σ 2
yj

=

1− ρ2
j

1− ρ2
i

, (5)
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which clearly has no bearing on whether EVR holds or not.
Thus, a test of EVR would provide a guide for determining

when equality of slopes and equality of correlations are equivalent
null hypotheses and when not. Given that it is not uncommon
for researchers to be interested in both moderation of slopes (or
means) and moderation of correlations, this test could be a useful
addition to data screening procedures.

It might seem that if researchers are going to test for both mod-
eration of slopes and correlations, a test of EVR is superfluous.
However, the joint outcome of the tests of equal correlations and
equal slopes does not render the question of EVR moot or irrele-
vant. The reason this should interest applied researchers is that the
tests of equal correlations and equal slopes will not inform them
of whether the moderation of slopes is equivalent to the modera-
tion of correlations, whereas a test of EVR would do exactly that.
Suppose, for example, the test for equality of slopes yields p= 0.04
(so we reject the null hypothesis) whereas the corresponding test
for correlations yields p= 0.06 (so we fail to reject). An EVR test
would tell us whether these two outcomes are genuinely unequal
or whether their apparent difference may be illusory. Thus, an EVR
test logically should take place before tests of equality of slopes or
correlations, because it will indicate whether both of the latter tests
need to be conducted or just one will suffice.

Furthermore, an estimate of the ratio of the variance ratios
along with its standard error provides an estimate of (and poten-
tially a confidence interval for) a ratio comparison between moder-
ation of slopes and moderation of correlations. From equations (1)
and (2), for the ith and jth moderator categories, we immediately
have

σyi/σxi

σyj/σxj
=
βyi/βyj

ρi/ρj
. (6)

Finally, equation (3) tells us that an EVR test can be used to
assess the equivalence between the moderation of standardized
and unstandardized regression coefficients, thereby expanding its
domain of application into multiple regression.

All said and done, it is concerning that numerous articles in the
foremost journals in psychology routinely report tests of interac-
tions in ANOVAs, ANCOVAs, and regressions with no mention
of prior testing for either HeV or HeEV. Moreover, reviews of the
literature on metric invariance by Vandenberg and Lance (2000)
and DeShon (2004) indicated considerable disagreement on the
importance of HeEV for assessments of measurement invariance
across samples in structural equations models. Researchers are
unlikely to be strongly motivated to use a test for EVR unless it
is simple, readily available in familiar computing environments,
robust, and powerful. We investigate such a test with these criteria
in mind.

A TEST OF EVR FOR CATEGORICAL MODERATORS
An obvious candidate for a test of EVR is a parametric test based
on the log-likelihood of a bivariate normal distribution for X and
Y conditional on a categorical moderator Z. We employ submod-
els for the standard deviations using the log link. Using the first
category of the moderator as the “base” category, the submodels

may be written as

σxi = exp

(∑
i

ziδxi

)
, (7)

σyi = exp

(∑
i

ziδyi

)
,

where z1= 1 and for i> 1 zi is an indicator variable for the ith cat-
egory of Z, and the δ parameters are regression coefficients. Under
the hypothesis that EVR holds between the ith and first categories,
the relevant test statistic is

θi = δyi − δxi , (8)

for i> 1, with

var(θi) = var(δyi)+ var(δxi)− 2cov(δyi , δxi), (9)

and the assumption that δyi and δyi are asymptotically bivariate
normally distributed. Immediately we have a confidence interval

for θ i, namely θ̂i ± tα/2

√
vâr(θi), where tα/2 is the 1−α/2 quantile

of the t distribution with the appropriate degrees of freedom for
an independent-samples test. We also have

exp (θi) =
βyi
/
βy1

ρi
/
ρ1

, (10)

and we may exponentiate the limits of this confidence interval
to obtain a confidence interval for the right-hand expression in
this equation, i.e., for the ratio comparison between the ratio
of moderated regression coefficients and the ratio of moderated
correlations.

The hypothesis that θ i= 0 is equivalent to a restricted model
in which, for i> 1, δxi= δyi. The modeling approaches outlined
later in this paper make use of this equivalence. More complex
EVR hypotheses may require different design matrices from the
setup proposed in this introductory treatment. First, however, we
shall examine the properties of θ , including Type I error rates and
power under unequal sample sizes, and the effects of departures
from normality for X and Y.

ASSESSING TYPE I ERROR ACCURACY AND POWER
We begin with simulations testing null hypothesis rejection rates
for EVR when the null hypotheses of EVR and unmoderated cor-
relations and slopes are true. Simulations using a two-category
moderator (20,000 runs for each condition) were based on DeShon
and Alexander, 1996; Table 1), with constant variance ratio of 2,
ρxy = 1/

√
2, and βy= 1 for both categories. Three pairs of sample

sizes were used (again based on DeShon and Alexander, 1996): 70
for both samples, 45 for one and 155 for the second, and 90 for one
and 180 for the second. Three pairs of variances also were used, to
ascertain any impact from the sizes of the variances. All runs used
a Type I error criterion of α= 0.05.

The top half of Table 1 shows the EVR rejection rates for ran-
dom samples from normally distributed X and Y. Unequal sample
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Table 1 |Type I error: two-groups simulations.

Skew N1 N2 σ xi = 1,1 σ xi = 1,2 σ xi = 1,4

σ yi = 2,2 σ yi = 2,4 σ yi = 2,8

NORMAL

0 70 70 0.0518 0.0532 0.0511

0 45 155 0.0578 0.0553 0.0547

0 90 180 0.0513 0.0531 0.0503

SKEWED

2 70 70 0.0710 0.0704 0.0680

4 70 70 0.0768 0.0767 0.0713

2 45 155 0.0681 0.0686 0.0687

4 45 155 0.0778 0.0776 0.0774

2 90 180 0.0679 0.0708 0.0714

4 90 180 0.0755 0.0728 0.0723

sizes have little impact on rejection rates, with the effect appearing
to diminish in the larger-sample (90–180) condition. The rates
are slightly higher than 0.05, but are unaffected by the sizes of the
variances.

The lower half of Table 1 shows simulations under the same
conditions, but this time with X and Y sampled from the Azza-
lini skew-normal distribution (Azzalini, 1985). The standard
skew-normal pdf is

f (x , λ) =
e−x2

/
2

√
2π

(
1+ Erf

[
λx
√

2

])
.

The simulations had the skew parameter λ set to 2 and 4, the pdfs
for which are shown in Figure 1. Skew increased the rejection rates
to 0.068–0.078, rendering the test liberal but not dramatically so.

We now turn to investigating the power of the EVR test. Sim-
ulations testing its power were conducted for two situations:
moderated slopes but unmoderated correlations, and moderated
correlations but unmoderated slopes. Both batches of simulations
were run with four combinations of sample sizes (70–70, 40–140,
140–140, and 80–280) and three variance ratio combinations (1–
1.5, 1–2, 1–4). In the unmoderated correlations setup ρ= 0.5 for
all conditions, and in the unmoderated slopes setup βy= 0.5 for
all conditions. These tests also require modeling the moderation
of correlations. The correlation submodel uses the Fisher link, i.e.

log

(
1+ ρi

1− ρi

)
=

∑
i

wiδri . (11)

Note that we allow a different set of predictors for the correlation
from those in equation (7). However, in this paper we will impose
the restriction wi= zi.

Table 2 shows the simulation results for unequal variance ratios
with unmoderated correlations. The table contains rejection rates
of the EVR and moderation of correlation null hypotheses. The
resultant moderated slopes and error-variances are displayed for
each condition. Note that HeV and HeEV do not have discernible
effects on either of the rejection rates. As in the preceding sim-
ulations, the rejection rates for the unmoderated correlations are

only slightly above the 0.05 criterion. The rejection rates for the
EVR test l and in the 0.85–1.0 range in the conditions where the
combined sample sizes are 280 and the ratio of the variance ratios
is 2:1 or for both combined sizes when the ratio is 4:1.

Table 3 shows the rejection rates of the EVR and moderation of
correlation null hypotheses when there are unequal variance ratios
and moderated correlations. The resultant moderated correlations
and error-variances are displayed for each condition. As before,
HeV and HeEv do not affect either of the rejection rates. Likewise,
as expected, the EVR rejection rates are very similar to those in
Table 2. It is noteworthy that rejection rates for the unmoderated
correlations hypothesis are considerably smaller than those for
the EVR hypothesis, even though the correlations differ fairly sub-
stantially. It is well-known that tests for moderation of slopes and
correlations have rather low power. These results, and the fact that
the ratios of the variance ratios do not exceed Howell’s benchmark
of 4:1, suggest that the EVR test has relatively high power.

STRUCTURAL EQUATIONS MODEL APPROACH
When the moderator variable is categorical, the EVR test can be
incorporated in a structural equations model (SEM) approach that
permits researchers not only to compare an EVR model against
one that relaxes this assumption, but also to test simultaneously
for HeV, HeEV, moderation of correlations and moderation of
slopes. Figure 2 shows the regression (left-hand side) and corre-
lation (right-hand side) versions of this model. The latter follows
Preacher’s (2006) strategy for a multi-group SEM for correlations.
The regression version models the error-variances σ 2

ei rather than
the variances σ 2

yi . Instead,σ 2
yi is modeled in the correlation version.

The only addition to the correlation SEM required for incorpo-
rating EVR tests is to explicitly model variance ratios for each
of the moderator variable categories. Two SEM package that can
do so are lavaan (Rosseel, 2012) in R and MPlus (Muthén and
Muthén, 2010). Examples in lavaan and MPlus are available at
http://dl.dropbox.com/u/1857674/EVR_moderator/EVR.html, as
are EVR test scripts in SPSS and SAS.

Simulations were run using lavaan in model comparisons for
samples with moderated slopes but unmoderated correlations, and
samples with moderated correlations but unmoderated slopes. As
before, each simulation had 20,000 runs.
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FIGURE 1 | Azzalini Skew-normal distributions with λ= 0,2,4.

Table 2 | Power: moderated slopes and unmoderated correlations.

N1 N2 σ 2
x = 2 σ 2

x = 2 σ 2
x = 2 σ 2

x = 2 σ 2
x = 2 σ 2

x = 2

σ 2
y = 2 σ 2

y = 3 σ 2
y = 2 σ 2

y = 4 σ 2
y = 2 σ 2

y = 8

σ xy = 1 σxy =
√

3/2 σ xy = 1 σxy =
√

2 σ xy = 1 σ xy = 2

σ 2
e = 1.5 σ 2

e = 2.25 σ 2
e = 1.5 σ 2

e = 3 σ 2
e = 1.5 σ 2

e =
√

8/2

βy = 0.5 βy =
√

3/8 βy = 0.5 βy =
√

2/2 βy = 0.5 βy = 1

δr θ δr θ δr θ

70 70 0.0556 0.2810 0.0603 0.6321 0.0576 0.9939

40 100 0.0566 0.2478 0.0569 0.5706 0.0566 0.9875

140 140 0.0549 0.4841 0.0532 0.9032 0.0537 1.000

80 200 0.0529 0.4311 0.0497 0.8524 0.0522 0.9999

Table 3 | Power: unmoderated slopes and moderated correlations.

N1 N2 σ 2
x = 2 σ 2

x = 2 σ 2
x = 2 σ 2

x = 2 σ 2
x = 2 σ 2

x = 2

σ 2
y = 2 σ 2

y = 3 σ 2
y = 2 σ 2

y = 4 σ 2
y = 2 σ 2

y = 8

σ xy = 1 σ xy = 1 σ xy = 1 σ xy = 1 σ xy = 1 σ xy = 1

σ 2
e = 1.5 σ 2

e = 2.5 σ 2
e = 1.5 σ 2

e = 3.5 σ 2
e = 1.5 σ 2

e = 6

ρxy = 0.5 ρxy = 1
/√

6 ρxy = 0.5 ρxy = 1
/√

8 ρxy = 0.5 ρxy = 0.25

δr θ δr θ δr θ

70 70 0.0944 0.2635 0.1525 0.5925 0.3426 0.9864

40 100 0.0992 0.2394 0.1700 0.5476 0.3558 0.9826

140 140 0.1296 0.4575 0.2483 0.8771 0.5844 1.000

80 200 0.1444 0.4201 0.2878 0.8326 0.6036 0.9999

Simulations from bivariate normal distributions with
ρxy= 0.05 for both groups (Table 4) indicated that moderately
large samples and slope differences are needed for reasonable

power. However, there was little impact on power from unequal
group sizes. Rejection rates for the unmoderated correlations
hypothesis were at appropriate levels, 0.0493–0.0559.
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Likewise, simulations from bivariate normal distributions with
βy= 0.5 for both groups (Table 5) indicated that moderately large
samples and correlation differences are needed for reasonable
power. There was a slight to moderate impact from unequal group
sizes, somewhat greater than the impact in Table 4. Rejection
rates for the unmoderated slopes hypothesis were appropriately
0.0484–0.0538.

SEM EXAMPLE
Consider a population with two normally distributed variables
X, political liberalism, and Y, degree of belief in global warming.
Suppose that they are measured on scales with means of 0 and
standard deviations of 1, and the correlation between these two
scales is ρ= 0.45. Suppose also that if members of this population
are exposed to a video debate highlighting the arguments for and
against the reality of global warming, it polarizes belief in global

FIGURE 2 | Moderated regression and correlation structural equations
models.

warming by increasing the degree of belief of those who already
tend to believe it and decreasing the degree of belief of those who
already are skeptical. Thus, the standard deviation doubles from 1
to 2. However, the mean remains at 0 and the correlation between
belief in global warming and political liberalism also is unchanged,
remaining at 0.45.

In a two-condition experiment with half the participants from
this population assigned to a condition where they watch the video
and half to a “no-video” condition, the experimental conditions
may be regarded as a two-category moderator variable Z. We have
ρ= 0.45 and σ x= 1 regardless of Z, and σ y1= 2 whereas σ y2= 1.
It is also noteworthy that when X predicts Y HeEV is violated
whereas when Y predicts X it is not.

We randomly sample 600 people from this population and
randomly assign 300 to each condition, representing the video
condition with Z = 1 and the no-video condition with Z =−1.
As expected, the sample correlations in each subsample do not
differ significantly: r1= 0.458, r2= 0.463, and Fisher’s test yields
z = 0.168 (p= 0.433). However, a linear regression with Y pre-
dicted by X and Z that includes an interaction term (Z ×X)
finds a significant positive interaction coefficient (z = 3.987,
p< 0.0001). Taking the regression on face value could mislead us
into believing that because the slope between X and Y differs sig-
nificantly between the two categories of Z, Z also moderates the
association between X and Y. Of course, it does not. Seemingly
more puzzling is the fact that linear regression with Y predict-
ing X yields a significant negative interaction term (Z ×Y ) with
z =−3.859 (p= 0.0001). So the regression coefficient is moder-
ated in opposite directions, depending on whether we predict Y or
X.

The scatter plots in Figure 3 provide an intuitive idea of what
is going on. Clearly the slope for Y (belief in global warming) pre-
dicted by X (liberalism) appears steeper when Z = 1 than when
Z =−1. Just as clearly, the slope for X predicted by Y appears
less steep when Z = 1 than when Z =−1. The oval shapes of the

Table 4 | Moderated regression coefficients.

N1 N2 βy = 0.50 βy = 0.50 βy = 0.50

βy = 0.61 βy = 0.71 βy = 1.00

70 70 0.1086 0.2030 0.5659

40 100 0.1012 0.2026 0.6031

140 140 0.1633 0.3668 0.8566

80 200 0.1499 0.3549 0.8875

Table 5 | Moderated correlations.

N1 N2 ρxy = 0.50 ρxy = 0.50 ρxy = 0.50 ρxy = 0.50

ρxy = 0.41 ρxy = 0.35 ρxy = 0.25 ρxy = 0.17

70 70 0.1159 0.1984 0.4406 0.6390

40 100 0.1031 0.1728 0.3610 0.5487

140 140 0.1760 0.3521 0.7215 0.9008

80 200 0.1541 0.2960 0.6312 0.8395
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FIGURE 3 | Scatter plots for the two-condition experiment.

data distribution in both conditions appear similar to one another,
giving the impression that the correlations are similar.

We now demonstrate that the SEM approach can clarify
and validate these impressions, using Mplus 6.12. We begin
with the moderation of slopes models. Because σ x1= σ x2 (i.e.,
X has HoV) we may move from the saturated model to one
that restricts those parameters to be equal. The model fit is
χ2(1)= 0.370 (p= 0.543). This baseline model also reproduces
the slopes estimates in OLS regression. Now, a model removing
HoV for X and imposing the EVR restriction yieldsχ2(1)= 82.246
(p< 0.0001), so clearly we can reject the EVR hypothesis. Fitting
another model with HoV in X and HeV in Y but where we set
βy1=βy2, the fit is χ2(2)= 15.779 (p= 0.0004), and the model
comparison test is χ2(1)= 15.779− 0.370= 15.409 (p< 0.0001).
We conclude there is moderation of slopes but EVR does not
hold, so we expect that the moderation of correlations will dif-
fer from that of the slopes, and the moderation of slopes will
differ when X predicts Y versus when Y predicts X. Indeed,
if we fit models with Y predicting X we also can reject the
equal slopes model, and the slopes differ in opposite direc-
tions across the categories of Z. When X predicts Y βy1= 0.496
and βy2= 0.978, whereas when Y predicts X βx1= 0.219 and
βx2= 0.423.

Turning to correlations, we start with a model that sets
σ x1= σ x2 (i.e., assuming that X has HoV) and leaves all other
parameters free. The fit is χ2(1)= 0.370 (p= 0.543), identical
to the equivalent baseline model described above. This model
closely reproduces the sample correlations (the parameter esti-
mates are 0.452 and 0.469, versus the sample correlations 0.458
and 0.463). Moreover, a model adding the EVR restriction yields
χ2(1)= 82.246, again identical to the equivalent regression model.
Now if we set ρ1= ρ2, the fit is χ2(2)= 0.453 (p= 0.797) and the
model comparison test is χ2(1)= 0.083 (p= 0.773). Thus, there
is moderation of slopes but not of correlations.

CONTINUOUS MODERATORS
Continuous moderators pose considerably greater challenges than
categorical ones, because of the many forms that HeV and HeEV
can take. Arnold (1982) sketched out a treatment of this problem

that is not satisfactory, namely correlating correlations between X
and Y with values of the continuous moderator Z. In an inno-
vative paper, Allison et al. (1992) extended a standard approach
to assessing heteroscedasticity to test for homologizers when the
moderator variable, Z, is continuous. Their technique is simply to
compute the correlation between Z and the absolute value of the
residuals from the regression equation that already includes both
the main effect for Z and the interaction term. This is a model of
moderated error, akin to modeling error-variance, which is useful
in itself but not equivalent to testing for EVR. In their approach
and the simulations that tested it, Allison et al. assumed HeV for
their predictor, thereby ignoring the fact that EVR can be violated
even when HeEV is satisfied.

The approach proposed here generalizes the model defined by
equations (7) and (11),with the zi now permitted to be continuous.
This model is

log (σx ) =
∑

i

ziδxi ,

log
(
σy
)
=

∑
i

ziδyi ,

log

(
1+ ρxy

1− ρxy

)
=

∑
i

ziδri

(12)

where z1= 1 and for i> 1 the zi are continuous random variables.
The δxi,δyi, and δri coefficients can be simultaneously estimated via
maximum likelihood, using the likelihood function of a bivariate
normal distribution conditioned by the zi. Scripts for maximum
likelihood estimation in R, SPSS, and SAS are available via the link
cited earlier. This model can be made more flexible by introducing
polynomial terms in the zi, but we do not undertake that extension
here.

To begin, simulations (20,000 runs each) for a single-moderator
model took samples for Z from a N (0, 1) population. X and Y
were sampled from bivariate normal distributions with δr1= 0,
δx1= δy1= {0, 0.5, 1.0}, and δr0= {0, 0.5, 1.0}. Table 6 displays
their results. Rejection rates are somewhat too high for δr1 but
only slightly too high for θ1 unless sample sizes are over 200 or so.
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Simulations also were run under the same conditions as Table 6
but with samples from a skew-normal distribution with skew para-
meter λ= 2. These results are shown in Table 7. There, it can be
seen that Type I error rates are inflated by skew almost indepen-
dently of sample size, much more so for δr1 than θ1. Both are
affected by size of the correlation’s moderation effect.

To investigate power, simulations were run with δr1= {0,
0.2007, 0.6190, 1.0986, 1.7346} (correlation differences of
{0,0.1,0.3,0.5,0.7} when z = 1) and θ1= {0.1116, 0.2027, 0.3466,
0.5493, 0.6931, 0.8047} (variance ratios of {1.25, 1.5, 2, 3, 4,
5} when z = 1). Thus, there were 30 simulations for each of
three sample sizes (70,140, and 280). The results are displayed

Table 6 | Unmoderated continuous moderator simulations.

N δr0 = 0.0 δr0 = 0.5 δr0 = 1.0

δr1

70 0.0715 0.0712 0.0685

140 0.0619 0.0589 0.0571

280 0.0543 0.0554 0.0545

θ1

70 0.0610 0.0627 0.0616

140 0.0548 0.0564 0.0556

280 0.0533 0.0536 0.0528

Table 7 | Simulations from Azzalini distribution with λ=2.

N δr0 = 0.0 δr0 = 0.5 δr0 = 1.0

δr1

70 0.0724 0.0874 0.1001

140 0.0682 0.0801 0.0925

280 0.0665 0.0767 0.0930

θ1

70 0.0554 0.0673 0.0679

140 0.0519 0.0689 0.0645

280 0.0514 0.0676 0.0636

in Figure 4. Power for θ1 attains high levels even for moder-
ate sample sizes when the variance ratio is 2 or more. However,
power also is higher the more strongly correlations are moder-
ated, whereas power for δr1 is unaffected by moderation of the
variance ratio. Power for δr1 does not become high unless cor-
relations differ by at least 0.3, and the results for a correlation
difference of 0.1 are in line with those for categorical moderators
(see Table 3).

The simulation results were examined for evidence of estima-
tion bias. Both δ̂r1 and θ1 were slightly biased upward, and most
strongly for smaller samples and larger effect-sizes. The maximum
average bias for δ̂r1 and θ̂1 was 0.04 and 0.03 respectively. For both
estimators,doubling the sample size approximately halved the bias.

DISCUSSION
This paper has introduced a simple test of equal variance ratios
(EVR), whose purpose is to determine when moderation of cor-
relations and slopes are not equivalent. The test can be inverted
to produce an approximate confidence interval for the ratio com-
parison of these two kinds of moderator effects. This test also
may be extended easily to assessing whether the moderation
of standardized and unstandardized regression coefficients are
unequal.

Simulation results indicated that when EVR holds, Type I error
rates are reasonably accurate but slightly high. Skew inflates Type
I error rates somewhat, but not dramatically. When EVR does not
hold, moderately large samples and effect-sizes are needed for high
power, but HeV, HeEV, and unequal group sizes are not problem-
atic for testing EVR or modeling the moderation of variance ratios.
There is evidence that the EVR test has fairly high power, relative
to the power to detect moderator effects.

Variance ratios for continuous moderators can be modeled via
maximum likelihood methods, although no single model can deal
with all forms of variance ratio moderation or HeV. The model
presented here uses the log link for the standard deviation sub-
model and the Fisher link for the correlation submodel, with
possibly different predictors in each submodel and, potentially,
polynomial terms for the predictors. Bayesian estimation methods
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FIGURE 4 | Power for δr1 and θ r1.
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also may be used, but that extension is beyond the scope of this
paper. When EVR holds and correlations are unmoderated, Type I
error rates are somewhat too high for δr1 and slightly too high for
θ1 unless sample sizes are over 200 or so. Skew inflates Type I error
rates for δr1 but only slightly for θ1. For moderated variance ratios
and correlations, maximum likelihood estimates are only slightly
upward-biased for both δr1 and θ1, and in the usual fashion this
bias decreases with increasing sample size. Moderately large sam-
ples and effect-sizes are needed for high power, but apparently no
more so than for categorical moderators.

Tests of EVR for categorical moderators can be entirely dealt
with using multi-groups SEM, and Mplus and the lavaan pack-
age in R are able to incorporate these tests via appropriate model
comparisons. It also is possible to fit such models via scripts
in computing environments such as SAS and SPSS possessing
appropriate inbuilt optimizers. The SEM approach makes it pos-
sible to test complex hypotheses regarding the (non)equivalence
of moderation of slopes and correlations, and to obtain a clear
picture of both kinds of moderator effects. The online supplemen-
tary material for this paper includes a four-category moderator

example where EVR holds for two pairs of categories but not for
all four. In fact, the SEM approach elaborates conventional mod-
erated regression into a combination of models for moderated
slopes and moderated correlations. In principle it may be extended
to incorporate tests for equality of tolerance across groups,
which would enable modeling the moderation of semi-partial
correlations.

All told, for categorical moderators the EVR test comes rea-
sonably close to fulfilling the criteria of simplicity, availability,
robustness and power. Considerable work remains to be done
before the same can be said for continuous moderators. Never-
theless, the EVR test proposed here is highly relevant for both
experimental and non-experimental research in mainstream psy-
chology, and would seem to be a worthy addition to the researcher’s
toolkit.
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