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Background: Diet is one of the most important modifiable lifestyle factors in human

health and in chronic disease prevention. Thus, accurate dietary assessment is essential

for reliably evaluating adherence to healthy habits.

Objectives: The aim of this study was to identify urinary metabolites that could serve

as robust biomarkers of diet quality, as assessed through the Alternative Healthy Eating

Index (AHEI-2010).

Design: We set up two-center samples of 160 healthy volunteers, aged between 25

and 50, living as a couple or family, with repeated urine sampling and dietary assessment

at baseline, and 6 and 12 months over a year. Urine samples were subjected to large-

scale metabolomics analysis for comprehensive quantitative characterization of the food-

related metabolome. Then, lasso regularized regression analysis and limma univariate

analysis were applied to identify those metabolites associated with the AHEI-2010, and

to investigate the reproducibility of these associations over time.

Results: Several polyphenol microbial metabolites were found to be positively

associated with the AHEI-2010 score; urinary enterolactone glucuronide showed a

reproducible association at the three study time points [false discovery rate (FDR):

0.016, 0.014, 0.016]. Furthermore, other associations were found between the AHEI-

2010 and various metabolites related to the intake of coffee, red meat and fish,

whereas other polyphenol phase II metabolites were associated with higher AHEI-

2010 scores at one of the three time points investigated (FDR < 0.05 or β 6= 0).
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Conclusion: We have demonstrated that urinary metabolites, and particularly

microbiota-derived metabolites, could serve as reliable indicators of adherence to healthy

dietary habits.

Clinical Trail Registration: www.ClinicalTrials.gov, Identifier: NCT03169088.

Keywords: Alternative Healthy Eating Index (AHEI-2010), metabolomics, diet quality, microbiota, dietary

assessment

INTRODUCTION

Diet (with exercise) is recognized nowadays as one of the most
important modifiable lifestyle factors in human health and in the
prevention of chronic diseases (1). Moreover, a suboptimal diet
quality has been described as a leading cause of death and a well-
established risk factor for many diseases, such as coronary heart
disease, type 2 diabetes and multiple types of cancer (2–4). In
nutritional research, dietary assessment is often conducted via
self-reporting methods, such as food frequency questionnaires
(FFQs) and dietary recalls (5). Furthermore, several scores have
been validated in associating food intake data with overall dietary
patterns and with adherence to healthy dietary habits (6). Among
these scoring methods, the Alternative Healthy Eating Index
(AHEI-2010) has been validated in different populations as one
of the most powerful indexes in predicting the risk of chronic
disease related to dietary behavior (7).

The growing field of metabolomics has enabled in-
depth exploration of the food-related metabolome and the
identification of potential food intake biomarkers (8). Biomarkers
enable accurate and objective dietary assessment, which can
mitigate the inherent misreporting errors of traditional self-
reported methods, and thus provide a closer and more reliable
overview of the interplay between diet and health. Nevertheless,
although numerous studies have previously investigated the
association between circulatingmetabolites and the consumption
of particular food groups, only a few have focused on the
identification of biomarkers of overall healthy dietary patterns.
In this respect, various authors have recently addressed the
identification of candidate metabolomic markers of the AHEI-
2010 in blood serum/plasma samples from different populations
(9–12). The majority of the metabolites that were identified as
being significantly associated with the AHEI-2010 score were
lipids, and to a lesser extent amino acids and other endogenous
metabolite classes, most of which can be regarded as biomarkers
of effect rather than real biomarkers of exposure (13). This bias
toward the endogenous metabolome could be largely due to the
investigation of blood as the biological matrix under study, since
this biofluid contains considerably lower concentrations of food-
related metabolites than urine, which is the preferred sample for
reflecting the human metabolism at the end of the Absorption,
Distribution, Metabolism and Excretion (ADME) process (8).
Furthermore, it should be noted that all these studies relied on
the application of untargeted metabolomics approaches, which
usually hinders the detection of minor exogenous metabolites
derived from diet and other lifestyle habits. As an alternative, the
application of multi-targeted urinary metabolomics platforms

has demonstrated increased sensitivity, reproducibility and
coverage for comprehensive and quantitative analysis of the
food metabolome (14), which could provide new insights into
the characteristic metabolomics signatures associated with
adherence to healthy dietary habits.

In this study, we aimed to identify urinary metabolites
associated with the AHEI-2010 score, which could thus serve
as biomarkers of adherence to healthy dietary patterns. For this
purpose, a large-scale quantitative metabolomics platform was
employed for comprehensive analysis of almost 350 urinary food-
related and microbiota-derived metabolites (15, 16). To validate
the robustness of these associations, repeated urine sampling and
dietary assessment were performed at three study time points
over the course of a year in a multi-center study.

MATERIALS AND METHODS

Study Design
A total of 160 free-living healthy subjects were enrolled
in a population of healthy volunteers followed for 1 year
(ClinicalTrials.gov Identifier: NCT03169088). The recruitment
was conducted between 2016 and 2018 in two different study
centers: Université Grenoble Alpes (France, n = 100) and
Aberystwyth University (Wales, United Kingdom, n = 60). The
inclusion criteria were as follows: healthy people living as a
couple or family and involved in organizing and cooking meals
in the household, ages ranging from 25 to 50, non-smokers,
body mass index (BMI) ≥25, <30 (representative of the French
and Welsh populations), and no chronic use of medications that
may influence metabolism, gut microbiota or dietary behavior.
All the participants were advised to adhere to healthy dietary
habits in accordance with general nutritional recommendations:
“The Eatwell Guide” 2016 for the UK population; https://
www.gov.uk/government/publications/the-eatwell-guide,
and Mangerbouger, Programme National Nutrition Sante,
https://www.mangerbouger.fr/ the “Programme National
Nutrition Santé” for the French population; https://solidarites-
sante.gouv.fr/prevention-en-sante/preserver-sa-sante/le-
programme-national-nutrition-sante/article/programme-
national-nutrition-sante-pnns-professionnels, respectively).
Over a year, anthropometric variables (i.e., weight, BMI)
and vital signs were assessed at baseline and at 12 months
(Supplementary Table S1), to confirm that the subjects were
healthy. Furthermore, dietary intake data and urine samples
were collected at each time point, as detailed below. The study
was performed in accordance with the principles contained in
the Declaration of Helsinki and the recommendations for Good
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Clinical Practice. The French Ethics Committees (CPP Sud-Est V
and ANSM) and the Aberystwyth University Ethics Committee
approved the study protocol, and all the participants provided
written informed consent.

Dietary Assessment
Dietary intake was assessed at each study point over a year
(i.e., M0, M6, and M12) using validated country-specific food
frequency questionnaires (FFQs), which were composed of 118
and 135 food items for the French and UK populations (17, 18),
respectively. The FFQ data were then employed to calculate the
updated AHEI-2010 score as described by Chiuve et al. (7).
The AHEI-2010 consists of 11 components, namely vegetables,
fruits, whole grains, sugar-sweetened beverages and fruit juices,
nuts and legumes, red/processed meats, trans fats, long-chain n-
3 fatty acids, polyunsaturated fatty acids, sodium, and alcohol.
Among these components, higher intakes of sugar-sweetened
beverages and fruit juices, red/processed meats, trans fats and
sodium are associated with lower scores, while vegetables, fruits,
whole grains, nuts and legumes, long-chain n-3 fatty acids and
polyunsaturated fatty acids contribute positively to the AHEI-
2010. With regard to alcohol, the highest score is assigned to
moderate, and the lowest score to high, alcohol consumers. The
score for each of the 11 components ranged from 0 (lowest) to
10 (highest) points, so that the overall AHEI-2010 score ranged
from 0 to 110 points, with higher scores denoting a healthier diet.
In this study, a slight modification of the original AHEI-2010
method was applied because French food composition tables do
not include trans fatty acid analysis. Accordingly, the AHEI-2010
score was calculated on the basis of the 10 remaining components
(Supplementary Table S2), as previously reported (19).

Urine Collection and Preparation
The 160 subjects enrolled in the population-based cohort first
provided morning void urine samples at M0, M6, and M12 over
a year. At each time point, a total of nine spot urine samples
were collected on three random days during a week in three
different weeks over a five-week period. Samples were collected at
home using vacuum transfer technology (20), stored at−20◦C in
the participants’ domestic fridges until the end of each sampling
period (i.e., M0, M6, and M12), and then transported to the
research facilities to be made acellular and then for long-term
storage at−80◦C (20).

The nine spot urine samples collected within each sampling
period were normalized by refractive index and pooled to create
a single sample per person that reflected the individuals’ habitual
diet at M0, M6, and M12 (21). For this purpose, the urine
samples were thawed at 4◦C, vigorously vortexed and centrifuged
at 10,000 ×g for 10min at 4◦C. Then, 200 µl of the supernatants
were transferred to a refractometer to record the specific gravity
(OPTi Digital Handheld Refractometer, Bellingham & Stanley,
UK). Using these data, the specific gravity correction factors were
calculated as a fold change of each urine specific gravity to the
lowest urinary specific gravity measured for that participant at
each time point. In accordance with these correction factors,
urine samples were aliquoted and supplemented with ultra-pure
water to make a total volume of 500 µl, thereby ensuring that

all samples had the same refractive index. Finally, equal volumes
of the nine diluted urine samples per time point were pooled for
metabolomics analysis.

Metabolomics Analysis of Urine Samples
Urine samples were subjected to large-scale metabolomics
analysis for comprehensive quantification of almost 350 food
metabolites and their host and microbial derivatives, following
the methodology developed by González-Domínguez et al.
(15, 16). To this end, solid-phase extraction with Oasis R©

HLB extraction plates (Waters, Milford, MA, USA) was
applied in order to extract and pre-concentrate urinary
polyphenols and other food-related compounds, as well
as their biotransformed metabolites (i.e., phase I/II and
microbiota derivatives). Furthermore, urine samples were also
subjected to tenfold dilution to analyse highly concentrated
and polar metabolites. A set of internal standards was
added to the samples for quantification and quality control
assessment (15). Analyses were then carried out by ultra-
high performance liquid chromatography coupled to tandem
mass spectrometry (UHPLC-MS/MS) using the operating
conditions described elsewhere (15, 16). Metabolomics results
were normalized in reference to the urinary refractive index to
account for inter-individual differences in hydration status and
micturition frequency.

Quality Control Assessment
Metabolomics data were subjected to quality control
assessment prior to statistical analysis using a standardized
protocol developed in-house and implemented in the POMA
R/Bioconductor package (22). For each of the three data
blocks (i.e., M0, M6, and M12), an independent quality
control assessment and data preprocessing were performed as
follows. First, data were log-transformed and Pareto-scaled,
and Euclidean distances to the group centroid were computed
to remove outliers from the data matrix (±3×IQR). Then, the
concentrations of metabolites known to be influenced by pre-
analytical factors (e.g., improper handling/storage of samples)
were inspected to check for the absence of abnormal values
(±3×IQR). Finally, the coefficients of variation for peak areas,
retention times and peak widths of the internal standards were
computed for evaluating the analytical reproducibility (<15%
for peak areas and widths, <2% for retention times) (14).

Statistical Analysis
Least Absolute Shrinkage and Selection Operator (LASSO)
regression was first used to select those metabolites with the
highest predictive capacity for predicting the AHEI-2010 at each
of the three time points (i.e., M0, M6, and M12). In this process,
the continuous variable AHEI-2010 was used as the response
and the whole metabolomics matrix as predictors. In addition,
a limma (linear models for microarray data) univariate approach
was employed to complement and validate the results uncovered
by LASSO regression. The limma models were adjusted for the
study center (i.e., France or UK), and the resulting metabolites
were selected according to a false discovery rate (FDR) adjusted
p < 0.05.
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TABLE 1 | AHEI-2010 scores of the study population at the three study time

points (M0, M6 and M12), divided by center and sex.

Time Center Sex n AHEI-2010 score

M0 Center 1 Men 40 49.9 ± 10.3

Women 57 52.0 ± 10.7

Center 2 Men 20 50.8 ± 11.4

Women 40 51.2 ± 7.1

Total M0 157 51.2 ± 9.8

M6 Center 1 Men 37 51.4 ± 10.6

Women 54 54.4 ± 12.4

Center 2 Men 15 52.0 ± 9.8

Women 29 51.8 ± 8.2

Total M6 135 52.8 ± 10.8

M12 Center 1 Men 31 52.6 ± 10.7

Women 50 55.2 ± 11.9

Center 2 Men 15 51.1 ± 9.3

Women 31 54.0 ± 5.8

Total M12 127 53.8 ± 10.1

AHEI-2010 scores are presented as mean ± SD.

RESULTS

Characteristics of the Population-Based
Cohort
From the 160 participants initially enrolled in our population
of healthy volunteers, several dropouts emerged over a year,
including subjects who withdrew from the study or did not
provide complete urine samples and/or dietary intake data at
all of the three study time points (Supplementary Figure S1).
At baseline, the participants’ ages ranged between 25 and 50,
and the proportion of women was slightly higher than that of
men (61%). The calculated AHEI-2010 scores were in the range
51.2–53.8 across the three study time points, in line with the
values reported for the normal population in previous studies
(7). The AHEI-2010 scores of the study population at the three
study time points divided by center and sex are shown in Table 1.
Additionally, the AHEI-2010 individual component scores at the
three study time points also divided by center and sex are shown
in Supplementary Table S3. It is worth noting that women had
slightly higher average AHEI-2010 scores than men, and a small
increase of 2.6 points was observed over the 1-year period in the
overall population.

Identification of Urinary Metabolites
Associated With the AHEI-2010 Score
A large-scale metabolomics platform was applied for
comprehensive and quantitative analysis of the urinary food
metabolome, encompassing polyphenols and other food-origin
compounds, metabolites derived from the host metabolism (i.e.,
phase I/II metabolism) and microbiota derivatives (15, 16).

The use of LASSO regression enabled us to reduce the
number of metabolites considerably from almost 350 features
to 45 compounds with predictive capacity at a minimum
of one of the three study points. Then, limma univariate

analysis was employed to complement and validate the
findings from the LASSO multivariate approach. Additionally,
Pearson’s correlation between the AHEI-2010 and those selected
metabolites was also computed. As shown in Table 2, most of
the metabolites that were identified as being associated with the
AHEI-2010 (Figure 1) were microbiota-derived compounds,
including enterolignans, urolithins and various classes of
phenolic acids (e.g., hydroxybenzoic, hydroxyphenylacetic
and hydroxycinnamic acids) and derivatives (e.g., pyrogallol
derivatives). As shown in Figure 1, these microbial metabolites
were positively associated with the AHEI-2010 score, but
only enterolactone glucuronide was consistently replicated
at the three study points investigated here. Similarly, several
polyphenol phase II metabolites were also associated with
higher AHEI-2010 scores, including stilbenes, furanocoumarins,
anthocyanins, flavanones, phenylethanoids and flavonols, which
can serve as markers of the consumption of red wine, grapefruit,
berries, citrus, olive oil and plant foods, respectively (23).
However, none of these associations were replicated at the three
time points. A reproducible positive association was observed
between urinary 5-(hydroxymethyl-2-furoyl) glycine (5-HMFG)
and the AHEI-2010 over a year, which was accompanied by a
positive association with 2-furoylglycine (2-FG) at M6 and with
trigonelline at M0 and M12, thus providing strong evidence
of an association between coffee consumption and healthy
dietary habits. Although not corroborated at baseline, a robust
association was also found with various metabolites related to
red meat (i.e., L-carnitine and carnosine, negative association)
and fish (i.e., trimethylamine N-oxide and arsenobetaine,
positive association) intake. Finally, a few other metabolites
were identified only at M12, including 4-hydroxyproline betaine
(i.e., citrus metabolite) and ergothioneine (i.e., mushroom
metabolite), which were positively associated with the AHEI-
2010, whereas α-chaconine (i.e., potato metabolite) and
nicotine-derived compounds (i.e., tobacco metabolites) showed
an inverse association (Figure 1).

DISCUSSION

Metabolomics has demonstrated great potential for discovering
candidate biomarkers reflecting the consumption of particular
foods and adherence to complex dietary patterns (8, 24).
However, adequate replication studies to evaluate the robustness
of these potential markers are still required, especially
considering the high intra- and inter-individual variability
of the human metabolome (25). In this study, we aimed to
identify urinary metabolites associated with healthy dietary
habits, as assessed through the AHEI-2010, and to investigate
the reproducibility of these associations over time at three study
points over 1 year in a free-living, population-based cohort. To
obtain a reliable snapshot of the individuals’ habitual diet, we
employed the sampling method proposed by Beckmann et al.
(21) based on the assumption that the collection and pooling of
various spot urine samples should provide a single representative
sample of the dietary habits adhered to during the sampling time
frame. Furthermore, repeated sampling was conducted at 0, 6
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TABLE 2 | Metabolites identified as being associated with the AHEI-2010 score at M0, M6 and M12.

M0 M6 M12

LASSO (β) LIMMA

(logFC)

r LASSO (β) LIMMA

(logFC)

r LASSO (β) LIMMA

(logFC)

r

M
ic
ro
b
ia
lm

e
ta
b
o
lit
e
s

Enterolignans

Enterolactone glucuronide 5.6 0.016 0.40 2.3 0.014 0.36 3.5 0.016 0.38

Enterolactone sulfate 0.25 0.00057 0.32 0.00057 0.32

Enterodiol sulfate 0.16 0.3 0.25 0.08

Urolithins

Urolithin A glucuronide 2.7 0.22 0.20 0.03

Urolithin B glucuronide 0.08 0.0040 0.27 0.05

Urolithin B sulfate 0.10 17.5 0.00095 0.30 0.02

Urolithin C sulfate 0.20 37.0 0.24 0.08

Phenolic acids

2-Hydroxybenzoic acid sulfate 0.11 0.10 0.0015 0.28

3-Hydroxybenzoic acid sulfate 0.14 0.19 1.1 0.016 0.35

3,4-Dihydroxybenzoic acid 0.13 0.0020 0.28 0.19

Dihydroxybenzoic acid

glucuronide

0.06 0.09 0.1 0.17

Hippuric acid 0.24 0.013 0.31 0.013 0.30

4-Hydroxyphenylacetic acid

sulfate

0.13 0.19 1.2 0.017 0.33

o-Coumaric acid 0.20 0.25 0.0012 0.26

Ferulic acid 0.01 0.05 1.5 0.23

3-(4-hydroxyphenyl)propionic

acid

−0.07 −9.1 −0.21 −0.04

Dihydroisoferulic acid 0.21 0.19 3.9 0.24

Methylpyrogallol sulfate 0.11 0.6 0.0067 0.29 0.0096 0.17

2-Aminophenol sulfate 0.15 0.08 0.8 0.013 0.28

F
la
vo

n
o
id
s

Stilbenes

trans-Resveratrol

3-glucuronide

0.14 3.5 0.0037 0.32 0.21

trans-Resveratrol

4’-glucuronide

−0.09 0.06 −4.8 −0.22

cis-Resveratrol 4’-sulfate 0.10 5.2 0.00097 0.28 0.15

cis-Resveratrol 4’-glucuronide 0.07 0.0021 0.28 0

trans-Resveratrol 3-sulfate 0.09 0.00097 0.28 0.15

Dihydroresveratrol

3-glucuronide

0.11 12.1 0.00057 0.28 0.12

Furanocoumarins

Bergaptol sulfate 0.15 4.6 0.22 0.09

Anthocyanins

Delphinidin 3-glucoside 0.15 0.23 61.8 0.18

Peonidin 3-glucoside 0.18 0.13 54.1 0.23

Flavanones

Naringenin sulfate 0.11 0.23 4.8 0.00082 0.32

Phenylethanoids

Hydroxytyrosol 3’-sulfate 0.12 0.01 3.3 0.24

Homovanillyl alcohol sulfate 0.13 0.10 0.2 0.23

Tyrosol glucuronide 0.09 0.0042 0.27 0.06

Flavonols

Quercetin 3-glucuronide 0.15 7.0 0.0012 0.27 0.05

C
o
ff
e
e 5-(hydroxymethyl-2-

furoyl)glycine

(5-HMFG)

2.7 0.25 7.2 0.0050 0.30 2.2 0.0057 0.30

(Continued)
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TABLE 2 | Continued

M0 M6 M12

LASSO (β) LIMMA

(logFC)

r LASSO (β) LIMMA

(logFC)

r LASSO (β) LIMMA

(logFC)

r

2-furoylglycine (2-FG) 0.14 0.9 0.0052 0.27 0.21

Trigonelline 1.0 0.26 0.25 1.6 0.016 0.30

M
e
a
t
a
n
d
fis
h

L-carnitine −0.15 −6.8 −0.0047 −0.31 −6.8 −0.0054 −0.31

Carnosine −0.04 −0.15 −1.8 −0.20

Trimethylamine N-oxide 0.22 1.6 0.014 0.31 0.23

Arsenobetaine 0.22 0.04 2.6 0.14

O
th
e
rs

Ergothioneine 0.11 0.06 3.9 0.0047 0.30

4-Hydroxyproline betaine 0 0.13 2.1 0.017 0.33

α-Chaconine −0.05 −0.13 −47.1 −0.20

Nicotine −0.17 −0.17 −2.4 −0.24

Cotinine −0.16 −0.14 −0.3 −0.24

For the LASSO values, only the non-zero β coefficients are shown, while for the LIMMA values, only those logFC values with an associated FDR < 0.05 are shown. Pearson’s correlation

(r) between the selected metabolites and the AHEI-2010 are also presented in the table.

FIGURE 1 | Clustered heatmap showing Pearson’s correlation across the three study points between the AHEI-2010 and those metabolites selected by LASSO or

limma approaches, respectively. Cluster 1 shows those metabolites that tend to be negatively associated with AHEI-2010 at the three study time points. Clusters 2

and 3 show those metabolites positively associated with AHEI-2010 at each of the three study time points, making a slight distinction between those most strongly

associated at time M6 (Cluster 2), and times M0 and M12 (Cluster 3).
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and 12 months (M0, M6 and M12) over a year to investigate the
reproducibility of the metabolites analyzed here. In this respect,
it has been reported that three urine samples collected within 1
year are sufficient for the measurement of long-term exposure
status in epidemiological studies (26).

The most robust result was the positive association between
the AHEI-2010 scores and urinary levels of enterolactone
glucuronide, which was consistently replicated at M0, M6
and M12, using both LASSO regression and limma univariate
analysis (Table 2). Enterolactone is the main microbial-derived
metabolite of dietary lignans, a subclass of polyphenols widely
distributed in plant foods such as fruits, vegetables, wholegrains,
legumes and nuts (27). Lignans are well known to possess
anti-inflammatory and antioxidant properties due to their
phytoestrogen nature; various epidemiological studies have
shown that high circulating concentrations of enterolactone
are associated with a decreased risk of cardiovascular diseases
(28), several cancers (29), neurodegenerative disorders (30) and
other chronic diseases. Notably, Whitton et al. (31) reported
that urinary enterolactone was positively correlated with various
dietary quality scores in a multi-ethnic Asian population,
including the AHEI-2010, the alternate Mediterranean Diet
(aMED) and the Dietary Approaches to Stop Hypertension
(DASH). In line with these results, Wellington et al. (32) also
reported increased levels of urinary enterolactone glucuronide
after an intervention with a Prudent diet. In the present study,
enterolactone glucuronide showed a robust association over time
with the AHEI-2010 score across the three sampling periods,
and it was detected at concentrations that are easily measurable
by using state-of-the-art analytical techniques (0.006–27.6 µmol
L−1). Accordingly, it could be regarded that this metabolite is a
reliable and robust biomarker for assessing the healthiness of a
diet, in agreement with the guidelines for the validation of food
intake biomarkers (33).

In this respect, we also observed a positive association between
the AHEI-2010 score and many other polyphenol microbiota
derivatives, including enterolignans, urolithins and phenolic
acids (Table 2). However, none of these associations were
replicated at the three time points investigated. Considering their
microbial origin, this variability could be mainly due to changes
in the gut microbiota composition over the study year, but also
to other phenotypic (e.g., weight changes) and environmental
(e.g., changes in dietary habits) factors (34). In particular, it
should be noted the existence of inter-individual variability
factors related to the incapacity of some individuals to produce
specific microbiota derivatives, i.e., the so-called “metabotypes.”
This is of particular importance for urolithin production, for
which three metabotypes have been described (35), and could
be, at least in part, behind the variability reported in the present
study. Altogether, our results suggest that microbial-derived
metabolites could be better indicators of healthy dietary habits
than the corresponding parent polyphenol species. This might be
largely due to the poor absorption and extensive metabolization
of dietary polyphenols, which makes microbial metabolites the
predominant species in circulation, although mounting evidence
indicates that microbiota derivatives can also participate in the
biological effects traditionally attributed to polyphenols (36).

Aside from the microbiota-related metabolites discussed
above, LASSO regression revealed a reproducible association
of 5-(hydroxymethyl-2-furoyl)glycine (5-HMFG) with higher
AHEI-2010 scores over time, as well as a positive association
with 2-furoylglycine (2-FG) at M6. Furan metabolites are
intermediate products of theMaillard reactions that are produced
in foods during heating processes (e.g., roasting, sterilization).
After consumption, furans undergo conversion to 2-furoic acid
and 5-hydroxymethylfuroic acid, then conjugation with glycine
to form 2-FG and 5-HMFG, and finally excretion via urine
(37). Thus, glycinated furans have previously been proposed as
candidate intake biomarkers for different heat-processed food
products, such as dried fruits (38, 39) and coffee (40, 41).
In our metabolomics data set, Pearson correlation analyses
showed a strong and significant correlation between the two
furoylglycine species and other urinary metabolites (r > 0.30,
Supplementary Table S4), including various methylxanthine
alkaloids (e.g., caffeine), diketopiperazines (e.g., cyclo-leucyl-
proline) and trigonelline, which are wellknown markers of coffee
consumption (42). This therefore suggests that coffee is the most
plausible dietary source of 5-HMFG and 2-FG in our population-
based cohort. Furthermore, we observed a significant association
between trigonelline levels and the AHEI-2010 score at M0 and
M12 (Table 2), thus providing robust evidence of the association
between coffee consumption and adherence to a healthy diet. In
line with our results, recent meta-analyses have related habitual
coffee intake with positive health outcomes and with lower
incidence of type 2 diabetes, various liver diseases and cancer
types, as well as with reduced all-cause mortality (43). However,
it is worth noting that coffee is not amongst the food items that
are employed for calculating the AHEI-2010 score (7), which
reinforces the added value of measuring objective biomarkers
in addition to using traditional dietary assessment self-reported
methods in order to truly elucidate the impact of diet on health.

Although not corroborated at baseline, we found a strong
inverse association between L-carnitine and the AHEI-2010
score at M6 and M12, together with a negative association
with carnosine at M12. This could mirror a deleterious effect
of red and processed meat consumption on health, since
increased urinary levels of these metabolites have been repeatedly
reported in habitual consumers of these food products (44).
Conversely, various metabolites reflecting the intake of fish
and/or shellfish showed associations with the AHEI-2010 in
the opposite direction, namely trimethylamine N-oxide at M6
and arsenobetaine at M12 (Table 2). In line with our results,
Akbaraly et al. (9) reported a robust association between
AHEI-2010 scores and circulating concentrations of omega-3
polyunsaturated fatty acids (positive association) and saturated
fatty acids (negative association), which can be mainly found in
fish andmeat products, respectively (8). In another study, various
fish-related metabolites were identified as the most discriminant
predictors for distinguishing high from low scores for different
dietary patterns, with two of them (i.e., docosahexaenoic acid
and hydroxy-3-carboxy-4-methyl-5-propyl-2-furanpropanoate)
being shared between the AHEI-2010, the aMED and the Healthy
Eating Index (9). These associations found between red and
processed meats and fish metabolites with the AHEI-2010 in
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healthy subjects propose a stage prior to the results found in
epidemiological data, which suggest that regular consumption of
red and processed meats is closely related to an increased risk
of developing cardiovascular diseases and cancer (45), whereas
fish intake may contribute to risk reduction for a range of health
outcomes (46).

Finally, LASSO regression also evidenced consistent
associations between the AHEI-2010 score and other candidate
food intake biomarkers defined in the Food-Biomarker
Ontology (24), but only at one of the three sampling points
investigated. These findings were in turn replicated to a large
extent using complementary limma-based univariate analysis
(Table 2). In particular, a positive association was found with
various red wine- (i.e., trans-resveratrol 3-glucuronide, cis-
resveratrol 4

′
-sulfate, dihydroresveratrol 3-glucuronide) and

grapefruit-derived (i.e., bergaptol sulfate) metabolites at M6,
as well as with other metabolites related to the intake of citrus
(i.e., naringenin sulfate, 4-hydroxyproline betaine), olive oil
(i.e., hydroxytyrosol 3

′
-sulfate, homovanillyl alcohol sulfate),

mushrooms (i.e., ergothioneine) and berries (i.e., peonidin
3-glucoside, delphinidin 3-glucoside) at M12. Although fruits,
olive oil and moderate red wine consumption represent some
pivotal components of many healthy dietary patterns, including
the AHEI-2010 (7), the lack of a reproducible association
over time with the AHEI-2010 scores was not particularly
surprising, because the intake of these foods might be influenced
by seasonality factors (note that time points M0 and M12 are
slightly different to time point M6 in the clusters in Figure 1).
Indeed, these specific food items (e.g., citrus, berries) are
included within more complex components of the dietary quality
scores (e.g., fruits) (7), so that high scores can be obtained
even with low intake of these particular foods if the criteria
are met for the other components. Similarly, we also found
robust associations between several metabolites related to potato
intake (i.e., α-chaconine) and smoking (i.e., nicotine, cotinine)
with lower AHEI-2010 scores, but again only at M12. Potatoes
are the only vegetables that do not contribute positively to the
AHEI-2010 score (7), because their consumption has not been
associated with lower chronic disease risk in epidemiologic
studies (47) and is linked to increased incidence of diabetes
(48). Furthermore, it should be noted that French fries/chips
were the main form in which potatoes were consumed in our
population-based cohort [ca. 70% of total potato consumption
according to the self-reported dietary intake data (unpublished
data)]. Similarly, previous studies have reported that dietary
patterns characterized by a high consumption of French
fries/chips are associated with increased cardiometabolic risk
and mortality caused by cardiovascular diseases (49), in line
with the inverse association observed in our study between
the AHEI-2010 and urinary α-chaconine. On the other hand,
although smoking status is not considered within the AHEI-
2010 scoring method and was considered an exclusion factor
in this study, various nicotine-related metabolites were also
identified as reliable predictors of unhealthy dietary habits
(Table 2). In this respect, several studies have demonstrated
a higher adherence to unhealthy diets and to energy-dense,

nutrient-poor food consumption amongst smokers in different
populations (50, 51). Altogether, these results evidence that a
range of metabolites related to the intake of particular foods
(e.g., citrus, red wine, olive oil, potatoes) and lifestyle habits
such as smoking or passive smoking (most likely the source of
nicotine-related compounds in this study) are strongly associated
with adherence to the AHEI-2010. This therefore demonstrates
the crucial need to investigate the inter-individual variability
in the bioavailability of these candidate biomarkers of healthy
dietary habits.

The main strength of this study was investigating—to the
best of our knowledge for the first time—the reproducibility
of the associations between urinary metabolites and the AHEI-
2010 score over time, which is of utmost importance for
addressing individual variability in order to identify reliable
and robust candidate biomarkers of healthy dietary habits.
For this purpose, we leveraged a large-scale metabolomics
platform for comprehensive and quantitative characterization
of the urinary food metabolome. Unlike previous studies
aimed at identifying AHEI-2010-related metabolites by applying
untargeted metabolomics to serum/plasma samples, mainly
focused on the endogenous metabolome (i.e., biomarkers of
effect) (9–12), the methodology employed here enabled us to gain
a deeper insight into the food-related and microbiota-derived
metabolome (i.e., biomarkers of exposure). However, some
limitations should also be noted. First, as in any observational
study based on food intake data, our results could be influenced
by measurement errors inherent to the self-reported methods
employed for dietary assessment (in this study we could not
apply a more accurate method such as the technique of duplicate
meal trays due to the cost and logistics of applying this
method in our population). Furthermore, the AHEI-2010 scoring
method is based on a limited set of predefined food groups
and therefore does not provide a complete overview of all the
nutritional and lifestyle factors involved in the healthiness of
a diet. Therefore, further studies in independent and larger
population cohorts are needed to validate the findings uncovered
here, as well as to find new and good markers for the AHEI-
2010 adherence.

CONCLUSIONS

In conclusion, this study has demonstrated that the urinary
food-related metabolome is strongly associated with adherence
to healthy dietary habits as assessed through the AHEI-
2010. Many of the metabolites identified were microbial-
derived compounds, including enterolignans, urolithins and
phenolic acids, thus confirming the major role played by
the gut microbiota in the interplay between diet and health.
Despite observing high variability across the three study points
for these microbial species, the enterolactone glucuronide
metabolite showed a reproducible association over time.
Furthermore, robust associations were found between the AHEI-
2010 score and various metabolites reflecting the intake of
coffee (i.e., 5-HMFG), red meat (i.e., L-carnitine) and fish
(i.e., trimethylamine N-oxide, arsenobetaine), while other food
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products also showed a robust association at one of the three time
points investigated here.
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