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Abstract: One of the still open questions in Ewing sarcoma, a rare bone tumor with weak therapeutic
options, is to identify the tumor-driving cell (sub) population and to understand the specifics in the
biological network of these cells. This basic scientific insight might foster the development of more
specific therapeutic target patterns. The experimental approach is based on a side population (SP)
of Ewing cells, based on the model cell line CADO-ES1. The SP is established by flow cytometry
and defined by the idea that tumor stem-like cells can be identified by the time-course in clearing
a given artificial dye. The SP was characterized by a higher colony forming activity, by a higher
differentiation potential, by higher resistance to cytotoxic drugs, and by morphology. Several SP and
non-SP cell fractions and bone marrow-derived mesenchymal stem cell reference were analyzed by
short read sequencing of the full transcriptome. The double-differential analysis leads to an altered
expression structure of SP cells centered around the AP-1 and APC/c complex. The SP cells share
only a limited proportion of the full mesenchymal stem cell stemness set of genes. This is in line with
the expectation that tumor stem-like cells share only a limited subset of stemness features which are
relevant for tumor survival.

Keywords: Ewing sarcoma; side population; tumor driver cells; cancer stem cells; mesenchymal stem
cells; gene expression; AP-1; APC/c

1. Introduction

Ewing sarcoma is the second most frequent malignant bone cancer after osteosarcoma and was
first described by James Ewing in 1921 [1]. Ewing sarcoma is rare, highly aggressive and most
frequently affects children and young adults with an average incidence of about one to three cases per
million people per year [2]. Ewing sarcoma shows a slight predominance in males in comparison to
females (55/45 ratio) and its incidence is nine times greater in Caucasians than in African-Americans [3].
Histochemically, Ewing sarcoma is characterized as a small round blue-cell undifferentiated aggressive
tumor of the bone and occasionally soft tissues with a marked propensity for dissemination [4,5].
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Despite significant progress in treating Ewing sarcoma over the last years, the prognosis still remains
poor with an event-free survival of less than 20% [6].

On the molecular level, Ewing sarcoma is characterized by aberrant chromosomal translocations
usually involving EWSR1 (22q12), a gene belonging to the TET protein family, and one of the genes
from ETS family of transcription factors. The FLI1 (11q24) [7] and ERG (21q22) [8] genes from the ETS
family are the most common translocation partners. EWSR1-FLI1 t(11;22)(q24;q12) and EWSR1-ERG
t(21;22)(q22;q12) fusions accounts for 85% and 5–10% of the cases respectively [9]. The chimeric
fusion proteins are produced when the N-terminal transactivation domain of EWSR1 combines
with the C-terminal DNA binding domain of FLI-1 or ERG [7]. Both FLI1 and ERG share 68%
amino acid identity over their entire peptide sequence and 98% (83/85) amino acid identity in their
ETS-binding domains [10]. The other less frequent ETS-family translocation partners include ETV1
(7p22), ETV4/E1AF (17q12) and FEV (2q33) genes [11]. These mentioned main features of the Ewing
sarcoma form the mature appearance of the tumor when diagnosed in the clinic.

However, there is more complexity in a mature tumor. It is now common sense that the tumor
is also composed on a multitude of cell sub-populations creating the diversity and stability of the
progressing tumor [12]. The majority of the tumor cells will not have the potential to progress or
maintain the general viability of the tumor. This small cell fraction is generally termed cancer stem
cell (CSC). The CSCs possess characteristics associated with normal stem cells such as their ability to
give rise to several cell types on a wide spectrum of differentiation stages and various proliferative
capacities. Those with the ability for self-renewal become CSCs again, which were described among
others by John Dick in acute myeloid leukemia [13].

In Ewing sarcoma, the multipotent mesenchymal stem cells (MSCs) can be seen as progenitor
cells of the putative Ewing sarcoma CSCs [14,15]. MSCs are the nonhematopoietic multipotent stem
cells of the bone marrow [16]. MSCs give rise to several differentiated cells including osteoblasts,
osteocytes, adipocytes, chondrocytes, stromal cells, and myogenic precursors such as cardiac muscles,
skeletal muscles and smooth muscles. Experiments involving the knockdown of Ewing sarcoma fusion
genes in Ewing sarcoma cell lines have resulted in MSC-like gene expression and phenotype [14,17,18].
Other experiments involving the expression of Ewing sarcoma fusion genes in MSCs have induced
Ewing sarcoma-like malignant transformation [18,19]. So characterizing the molecular gene expression
networks of MSCs and Ewing CSCs in more detail would give more insight into the dependency
nature of master gene regulators.

The presented study is comparing the gene expression pattern of bone marrow MSCs with an
Ewing sarcoma ‘side population’ (SP) based on the CADO-ES1 cell line owning CSC properties,
to identify common regulatory mechanisms contributing to the CSC characteristics of Ewing sarcoma.

The SP termed cell fraction is defined by flowcytometry. These cells have a higher drug efflux
capability for anti-mitotic drugs or artificial dyes, as well as a higher ability to transdifferentiate.
Analogous to the normal stem cells, the cancer stems cells have also been identified to harbor
tumorigenic SP population [20]. The SPs are capable of sustained expansion, generating both SP
and non-SP progeny clearly pointing toward the hierarchical model of cancer stem cell theory [21],
a model that suggests that only a sub-population of the cancer stem cells have the ability to drive the
progression of cancer. These cells express transporter genes belonging to the ABC transporter family,
thereby enhancing their capacity to expel foreign substances, resulting in better survival [20].

The objectives of the study are (I) to isolate SP and non-SP cell types from the Ewing model cell
line CADO-ES1, to characterize some typical stemness-like features and (II) to identify active regulatory
mechanisms that are specifically responsible for the CSC properties of the SP cells in Ewing sarcoma.
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2. Results

2.1. Defining a CADO-ES1 Side Population

Many articles have now been published which support the clonal nature of human cancers
(e.g., [22,23]) and the putative roles of those cells having different capabilities, but acting in a systemic
manner. The isolation of the CSC-like cells were done according to the established procedures of
Goodell [24]. The established SP cells, a fraction of 1 to 3% of the whole cell line population, exhibit
features like: The ability to form more colonies in an anchorage-independent growth assay compared
to the non-SP cell population (Figure 1A, 1D-left one), to differentiate to a higher extent into adipogenic
cells compared to non-SP cells (Figure 1B: SP left, non-SP right) and equally to MSC (not shown),
are slightly smaller (Figure 1C), and are more resistant to treatment with certain cytotoxic drugs
(Figure 1D middle, right).

All the analyzed features show differences between the SP and non-SP population and indicate
some stemness characteristics of the SP population.
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Figure 1. Stemness features of the side population. In image (A) respective panel (D the left
drawing), the colony-forming potential of SP compared to non-SP cells is illustrated. The image shows
representative colonies. Panel (B) shows OIL-RED-O-stained cells after adipogenic differentiation.
More dark red cells indicate more adipogeneic differentiation. The slightly smaller SP cells are seen in
Panel (C) (May-Grünwald-Giemsa staining). In panel (D), the two rightmost diagrams show the higher
resistance of SP cells compared to non-SP cells (reference no-sort) after treatment with cytotoxic drugs
for 72 h. Doxorubicine was effective at 0.1 µM while Etoposide is shown at 1 µM. A star indicates a
significant difference using the t test and an alpha error of 5%. ‘n’ denotes the number of biological
replicates behind a condition. Horizontal brackets with a star indicate a significant difference between
bars (alpha < 0.05).
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2.2. Double Differential Experimental Design and Short Read Sequencing

The experimental design is composed of CADO-ES1 Ewing tumor cells and bone marrow-derived
MSCs. The CADO-ES1 cell line is subdivided as described before into SP, non-SP, and two further
technical controls: Not sorted but stained and sorted and not stained. The later controls were designed
for intercepting those differential genes which are due to staining or sorting stress. However, it turned
out, that on the level of three biological replicates for each condition, the variability will dilute the
effects of the main case control design. Therefore, these controls are not considered but are part of the
published, more comprehensive, main data set. The overall analysis workflow is illustrated in Figure 2.

From all samples, total RNA was isolated and the ribosomal RNA proportion was removed.
About 200 million short reads were generated per sample with a standard Life Technology workflow on
Solid4/5500XL sequencers. The reads were checked for quality with the FastQC program. The adapters,
if there, were removed by Cutadapt and alignment performed by Tophat. The on average 30 million
aligned high quality reads per sample were quantified on a per gene basis by HTSeq.
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2.3. The Identification of Tumor Driver Gene-Sets

The identification of differentially expressed genes (DEG) is based on two linked differential
analyses and two intersections. The used subsets are SET-1: Difference of the side population cells to
the non-SP population, SET-2: Intersection of up-regulated SET-1 genes with up-regulated MSC cells
and SET-3: The intersection of down-regulated SET-1 genes with down-regulated MSC cells.

The idea behind SET-1 is that these differential genes might help us to understand the
distinguishing features of SP cells which are hypothesized to be tumor-driver cells owning stem
cell-like properties. The hypothesis in deriving SET-2 and SET-3 is that these genes might help to
understand the common regulatory mechanisms between MSCs and SPs, where MSC might be the
proposed cell of origin for Ewing sarcoma.

The transcriptomic sequencing data sets of SP, non-SP and MSC after the alignment to the
reference genome HG38 patch 10 have an average of 26x coverage. The differential analysis of SP
versus non-SP cells, according to the DESeq2 standard protocol, resulted in a total of 312 transcripts
(SET-1) where 215 genes are up-regulated and 97 genes are down-regulated (File_S1_312_SET_1).
The second differential analysis between SP and MSC cells resulted in a differential set of around
10,000 genes owning 5% more up-regulated genes than down-regulated genes. This excessive amount
of differential genes is a common phenomenon comparing stem cells and differentiated cells and does
not hamper the double differential approach. The alpha threshold was chosen at a more permissive
value of 0.1 because the main application objective is to use gene set enrichment procedures and set
size is critical in this respect.

The intersection of the up-regulated genes of SET-1 and the up-regulated genes of SP versus
MSC resulted in 42 transcripts (SET-2) that are commonly up-regulated in SP and MSC but are
down-regulated in the non-SP. The analogous intersection, except for the down-regulated genes,
resulted in 46 transcripts (SET-3).

The expression data of the up-regulated 42 genes (SET-2) across all replicates and all conditions
can be seen in Figure 3. Three coherent expression groups can be identified, illustrated by the cluster
tree on the left. In two cluster groups, the average expression activity is increasing from the non-SP
over SP to the MSC samples, while in the remaining group the SP samples have a stronger activity
window. The fold change of the regulation is not balanced.
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Figure 3. Heatmap of the counts for 42 up-regulated genes from SET-2. The counts are quantile
normalized (preprocessCore) and rlog transformed (DESeq2) prior to plotting. The color bar on the
right is defining the fold change values (FC) concerning gene average. Green colors denote levels
of down-regulation, while red colors indicate levels of up-regulation. The order of SP and non-SP
experiments reflects their paired nature (1,2,3,1,2,3). The hierarchical cluster tree on the left is based on
the Euclidean measure.
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The down-regulated genes (SET-3) do not really show a well-defined cluster (Figure S1).
The difference between the MSCs and the group of SPs/non-SPs is remarkably clear. Only sparse
differences exist between SP and non-SP. So the SET-3 gene expression characteristic is in a certain way
unrelated to SET-2.

An overview of all the result sets by their gene symbols is given in ‘File_S2_overview_sets’.

2.4. Functional and Pathway Enrichment Analysis

The 312 DEGs in the SET-1 are first classified according to gene function using the Gene Functional
Classification tool of DAVID knowledge-base. According to this analysis, the genes are observed
to have clustered into six prominent clusters which can be summarized as phosphoprotein cluster,
histone cluster, cell cycle genes cluster, protein kinase cluster, kinesin family cluster, and zinc finger
protein cluster (File_S3_DAVID_312_SET_1). Similar analysis of the SET-2 revealed one prominent
cluster, the histone cluster (File_S4_DAVID_42up_SET_2).

GO functional analysis has been performed using the BiNGO plugin of Cytoscape with the
up-regulated genes of the SET-1. The biological processes terms such as cell cycle phase, M phase,
and organelle organization were found to be significantly enriched (Table 1 and Table S1). Pathway
analysis using CPDB with the up-regulated genes of SET-1 revealed cell cycle, cell division, mitotic
prophase, and cellular senescence as some of the significant pathways (Table 2). The pathway analysis
with SET-2 genes revealed cellular senescence, oxidative stress-induced senescence, cellular responses
to stress, and AP-1 transcription factor network pathways as significant (Table 2).

The number of APC/c complex-associated factors in SET-1 seems to be small (3%) but they
represent 39% of the known APC/c members (Figure 4). This is an important change.

For the down-regulated fraction SET-3, the GO functional classification and the pathway analysis
revealed, on the used test constraints and FDR corrected p values, no significant pathways and GO
processes (File_S5_DAVID_46down_SET_3). Because these genes are less informative concerning
enrichment procedures, the further enrichment analyses were performed and reported only for the
up-regulated genes.

Table 1. Significantly enriched Biological Processes in SET-1 using BiNGO. The third column displays
the number of genes from SET-1 enriched in the respective biological process. The last column of the
table displays the number of genes from the input list present in at least one pathway. To obtain this
result, the third column of the current table is fed as an input to the CPDB analysis (cf. Table 2). The p
values are FDR (false discovery rate) corrected.

GO-ID GO Name Gene Counts p values (FDR) Candidates Also Part of
Enriched Pathways

22403 cell cycle phase 48 2.3 × 10−31 36 (75%)

279 M phase 44 3.1 × 10−31 33 (75%)

6996 organelle organization 75 3.1 × 10−31 65 (87%)

22402 cell cycle process 52 2.3 × 10−30 39 (75%)

278 mitotic cell cycle 44 5.6 × 10−30 34 (77%)

87 M phase of mitotic cell cycle 36 3.5 × 10−28 27 (75%)

280 nuclear division 35 1.8 × 10−27 26 (74%)

7067 mitosis 35 1.8 × 10−27 26 (74%)

7049 cell cycle 55 5.1 × 10−27 42 (76%)

48285 organelle fission 35 5.5 × 10−27 26 (74%)
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Table 2. Enriched pathway-based sets for SET-1 and SET-2 as obtained from the CPDB analysis.

Pathway Name Set Size Candidates
Contained p Value q Value Source

SET-1

Cell Cycle, Mitotic 468 53 (11%) 1.7 × 10−39 1.0 × 10−36 Reactome

Cell Cycle 551 55 (10%) 4.0 × 10−38 1.2 × 10−35 Reactome

M Phase 267 40 (15%) 3.0 × 10−34 6.1 × 10−32 Reactome

RHO GTPase Effectors 299 32 (11%) 1.2 × 10−22 1.9 × 10−20 Reactome

Condensation of Prophase
Chromosomes 77 20 (26%) 1.9 × 10−22 2.3 × 10−20 Reactome

Mitotic Prophase 143 24 (17%) 7.9 × 10−22 8.0 × 10−20 Reactome

Senescence-Associated Secretory
Phenotype (SASP) 113 22 (20%) 1.4 × 10−21 1.2 × 10−19 Reactome

Cellular Senescence 192 25 (13%) 6.9 × 10−20 5.2 × 10−18 Reactome

HATs acetylate histones 143 22 (15%) 3.8 × 10−19 2.6 × 10−17 Reactome

HDACs deacetylate histones 94 19 (20%) 5.3 × 10−19 3.2 × 10−17 Reactome

SET-2

Cellular Senescence 192 9 (5%) 1.8 × 10−10 4.2 × 10−08 Reactome

Oxidative Stress-Induced
Senescence 129 7 (6%) 9.1 × 10−09 1.1 × 10−06 Reactome

Cellular responses to stress 393 9 (2%) 9.6 × 10−08 7.4 × 10−06 Reactome

Senescence-Associated Secretory
Phenotype (SASP) 113 6 (5%) 1.4 × 10−07 7.8 × 10−06 Reactome

AP-1 transcription factor network 71 5 (7%) 4.3 × 10−07 2.0 × 10−05 PID

HATs acetylate histones 143 5 (4%) 1.4 × 10−05 5.3 × 10−04 Reactome

MAPK targets/Nuclear events
mediated by MAP kinases 31 3 (10%) 4.2 × 10−05 1.4 × 10−03 Reactome

HDACs deacetylate histones 94 4 (4%) 5.1 × 10−05 1.5 × 10−03 Reactome

ErbB1 downstream signaling 107 4 (4%) 8.2 × 10−05 2.1 × 10−03 PID

Hfe effect on hepcidin production 7 2 (27%) 9.9 × 10−05 2.1 × 10−03 Wiki-pathways
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Figure 4. Intersecting number of genes between the SET-1 DEGs and the member of the pathway
involved in the Activation of APC/c and CDC20-mediated degradation of mitotic proteins. The nine
intersecting members include PLK1, CDK1, MAD2L1, BUB1B, UBE2C, CCNA2, CDC20, NEK2,
and CCNB1.
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2.5. Identification of Oncogenes and Tumor Suppressor Genes

According to the annotation, 43 genes of 312 DEGs (SET-1) were identified as tumor-associated
genes (File_S2_overview_sets). These known oncogenes are not forming any cluster in the Gene
Functional Classification tool of DAVID (File_S6_DAVID_43_oncogenes). Among the 35 up-regulated
and annotated genes, 21 are oncogenes (KIF14, ID2, COPS3, UBE2C, SGK1, E2F5, ATF1, FAM72A, PBK,
FAM83D, CDC25C, CDK1, MYC, CXCL1, CCNB2, CDKN3, ID1, AURKA, CCNB1, FOS, JUN).

There are a further eight tumor-suppressor genes (DLEU2, CDKN2C, SPRY4, UBE2QL1, LIN9,
TFPI2, LRIG3, DUSP1) and six genes serve as both oncogenes and tumor-suppressor genes (FOXO1,
CAV1, KLF6, CDK6, PLK1, CTGF). Among the eight down-regulated genes, one is an oncogene
(NEAT1), six are tumor-suppressor genes (ASS1, PTPRD, ISG15, TGFBI, SELENBP1, MEG3) and
one gene serves as both an oncogene and tumor-suppressor gene (CDH17). An overview on the
distribution can be found in Table S2.

In order to observe the extent of the oncogene presence in the top enriched functional processes
and pathways, the genes of the functional enrichment results have also been annotated with an
‘oncogene’ or ‘tumor-suppressor gene’ tag (Tables S3 and S4). This subset of genes again points to
similar cellular processes as found during the analysis of the whole sets.

2.6. Identifying Epigenetic Modifier

The up-regulated SET-1 gene candidates as well as the down-regulated genes, represent a gene
pool which might show an epigenetic modifier. For this purpose, the epigenetic modifiers of the
curated dbEM database [25] were manually exported into a list. This list of gene symbols was imported
into the R platform and intersected with the gene symbol identifier of SET-1 and also SET-2. Only in
SET-1 an overlap to dbEM candidates was found: HDAC9, a histone deacetylase.

2.7. The Protein-Protein Interaction (PPI) Network Analysis Is Supporting the Annotation Derived
Information

To exploit the existing knowledge on protein interactions and to get insight into putative
interaction networks, the 312 SET-1 DEGs were supplied as an input to the STRING database. A PPI
network of 182 gene products (157 up-regulated, 25 down-regulated) with 2056 interactions was
retrieved. The network was then imported into Cytoscape and the network statistics were calculated
to identify highly connected nodes (so called ‘hubs’) characterizing the network topology which
implicitly is pointing to the biological function. TOP2A (degree = 87), CDK1 (degree = 82), CCNB1
(degree = 80), CENPA (degree = 74), and CCNA2 (degree = 68) are the top five genes with the highest
degree of connectivity in the complete network (Figure S2). CDK1 and CCNB1 are also part of the
oncogene group. The network can be inspected online [26] or offline (File_S7_network).

Taking the SET-2 genes alone for constructing the PPI network reveals again the scenario around
AP-1 and the histone cluster (Figure 5).

jActiveModules [27] was employed to analyze the substructure of the whole PPI network.
The objective of this analysis is to unfold complex networks into subunits, which again own some
functional topic. This is realized by finding synergistic changes in expression according to selected
conditions. The utilized p values for this analysis were chosen from the FDR adjusted p values of the
DEGs of the SP and non-SP comparison (SET-1). The search space was limited to display five significant
subnetworks (Figure S3). The two highest scoring subnetworks are seen in Figure 6A,B. The first
highest scoring subnetwork has 6 nodes and 11 interactions, while the second one has 36 nodes and
216 interactions. The first network is pointing to the activity of the AP-1 complex and the second is
situated again close to cell cycle progression and cellular transformation.
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2.8. Condensing Information on Networks and Pathways by Considering on Protein Domains and
Protein Complexes

The generated differential gene sets were analyzed up to now concerning their enrichment in
categories and functional roles. Additionally, now PPI information from the STRING database was
used to model the network structure in between the molecular factors. The resulting network and
sub-networks support the functional analysis.

These two approaches can be further complemented by additionally finding an enrichment on
the level of functional protein domains as well as on known protein complexes.

The domain view is subdividing the view on genes/proteins in a functional way. In Table 3,
the results are shown. Again, many functions are pointing to transcriptional control (bZIP family,
kinases, histones) as well as to general control of regulatory procedures (Insulin domain—growth
factor, cyclin—cell cycle, von Willebrand factor).

Table 3. Top 10 enriched protein domains in up-regulated genes of SET-1 and all the enriched protein
domains of SET-2 as obtained from DAVID according to the PFAM database. The reported p values are
FDR corrected.

Term Protein Domains Candidates Contained p Value (FDR)

SET-1 set size 204

PF00125 Core histone H2A/H2B/H3/H4 18 (9%) 9.8 × 10−18

PF00225 Kinesin motor domain 6 (3%) 6.1 × 10−03

PF00170 bZIP transcription factor 5 (2%) 8.4 × 10−03

PF00069 Protein kinase domain 11 (5%) 9.9 × 10−02

PF02984 Cyclin, C-terminal domain 3 (1%) 3.8 × 10−01

PF00219 Insulin-like growth factor-binding protein 3 (1%) 3.8 × 10−01

PF08311 Mad3/BUB1 homology region 1 2 (1%) 4.0 × 10−01

PF00307 Calponin homology (CH) domain 4 (2%) 4.6 × 10−01

PF00093 von Willebrand factor type C domain 3 (1%) 4.6 × 10−01

PF00134 Cyclin, N-terminal domain 3 (1%) 5.5 × 10−01

SET-2 set size 41

PF00170 bZIP transcription factor 4 (10%) 8.1 × 10−04

PF00125 Core histone H2A/H2B/H3/H4 4 (10%) 5.9 × 10−03

PF00219 Insulin-like growth factor binding protein 3 (7%) 9.2 × 10−03

PF00093 von Willebrand factor type C domain 3 (7%) 1.4 × 10−02

PF00007 Cystine-knot domain 2 (5%) 2.4 × 10−01

In SET-2, additional protein stability/growth factor activity shows up (Cystein-knot). Up to
10 percent of the study factors per domain and overall approximately 23 percent of the study factors
are represented. These results are again coherent with the GO-based results from the beginning.

The protein complex view (Table 4) has a slightly different logic. Here, it is a fixed set size rather
a variable one. However, we see that nearly all selected candidates go into the presented complex
motives. Again, the same molecular evidences show up in a focused manner for SET-1 and SET-2:
AP-1, CDC2 centered activity.
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Table 4. Enriched protein complex-based sets for SET-1 and SET-2 as obtained from the CPDB database.

Name of Protein Complex Set Size Candidates
Contained p Value q Value Source

SET-1

AP-1 5 4 (80%) 1.4 × 10−07 1.5 × 10−05 INOH

CycB-Cdc2.complex 3 3 (100%) 2.2 × 10−06 1.2 × 10−04 Spike

Centrosome:AURKA:TPX2:HMMR 75 8 (11%) 4.8 × 10−06 1.3 × 10−04 Reactome

MASH1 promoter-coactivator complex 37 6 (16%) 7.2 × 10−06 1.3 × 10−04 CORUM

Nek2A:MCC:APC/C complex 22 5 (23%) 7.6 × 10−06 1.3 × 10−04 Reactome

H3.1 com 38 6 (16%) 8.5 × 10−06 1.3 × 10−04 PINdb

hBUBR1:hBUB3:MAD2*:CDC20 complex 4 3 (75%) 8.6 × 10−06 1.3 × 10−04 Reactome

Cell cycle kinase complex CDC2 6 3 (50%) 4.2 × 10−05 5.7 × 10−04 CORUM

Histone H3.1 complex 32 5 (16%) 5.3 × 10−05 6.4 × 10−04 CORUM

Emerin regulatory complex 18 4 (22%) 7.3 × 10−05 7.3 × 10−04 CORUM

SET-2

AP-1 5 3 (60%) 1.4 × 10−07 2.7 × 10−06 INOH

p-2S-cJUN:p-2S,2T-cFOS 2 2 (100%) 6.0 × 10−06 2.4 × 10−05 Reactome

Fra2/JUN 2 2 (100%) 6.0 × 10−06 2.4 × 10−05 PID

c-FOS/c-JUN/CREB/CREB 3 2 (67%) 1.8 × 10−05 2.4 × 10−05 BioCarta

ERG-JUN-FOS DNA-protein complex 3 2 (67%) 1.8 × 10−05 2.4 × 10−05 CORUM

JUN/FOS/ER alpha 3 2 (67%) 1.8 × 10−05 2.4 × 10−05 PID

ETS2-FOS-JUN complex 3 2 (67%) 1.8 × 10−05 2.4 × 10−05 CORUM

JUN/FOS/GATA2 3 2 (67%) 1.8 × 10−05 2.4 × 10−05 PID

cortisol/GR alpha (monomer)/JUN/FOS 3 2 (67%) 1.8 × 10−05 2.4 × 10−05 PID

p-2S-JUN:p-2S,2T-FOS:IGFBP7 Gene 3 2 (67%) 1.8 × 10−05 2.4 × 10−05 Reactom

3. Discussion

Whether the Ewing sarcoma fusion gene marks the origin of the Ewing sarcoma or is acquired
during tumor progression is still not known. Nevertheless, the tumor phenotype is definitely formed by
this fusion protein type and the physiological cellular processes are altered remarkably [28]. However,
the complexity is still higher. It is now established knowledge that tumors are not only based on one
tumor clone but instead are composed in a multi-clonal way [29,30]. Only a sub-proportion with stem
cell-like features is well suited to fulfill the maintainer and pathfinder role for the whole tumor [31].
To know more on this sub-population will benefit anti-tumor strategies as well as therapeutic methods.

This study established a SP of Ewing sarcoma cells, characterized some features of the biology
and analyzed the biological networks of this sub-population in comparison to the whole population of
tumor cells and a MSC reference population.

The SP are able to show in a colony-forming assay that they are able to create spheres to an
extent which is characteristic for CSC-like undifferentiated cell populations [32], despite it having
some limitations [33]. The differentiation potential is higher than the main tumor population, and their
morphology is less differentiated and more round-shaped in contrast to the main population of cells
which are more flat shaped (adhering). The SP cells tolerate higher doses of cytotoxic drugs which
might be due to a faster clearance of these contaminants by typical members of the ABC transporter
family [34]. All together, these still limited features are good indicators that the SP population might
be, or at least be part of, a CSC population in Ewing sarcoma.
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Beyond this phenotypic characterization, the SP shows also an altered pathway situation.
The linked double differential case control design of SP versus non-SP and MSC versus non-SP
(Figure 2) reveals some of the CSC-like properties. Looking at the details around SET-1, it can be
observed that the number of up-regulated genes is twofold above those which are down-regulated.
This indicates a higher overall activity of tumor-driving cells in contrast to more differentiated cancer
cells; a phenomenon which is already observed by many researchers comparing cancer and normal
cells e.g., [35].

The first functional classification in DAVID resulted in six functional clusters in the case of SET-1.
So we see a very distinct and focused functional environment centered on cell cycle activity and
regulatory mechanisms (kinases, histones) as the GO terms indicate. The functional classification of
the subset (SET-2) narrowed down to the histone cluster and revealed a lot of key player like JUN, FOS
which link to the AP-1 complex and transcriptional control [36–38].

The results of both functional and pathway analysis with the SET-1 genes, point additionally
towards the cell cycle regulators as being the governing factors in steering the activity of the SP cells
in contrast to the non-SP cells. The enrichment results indicate the progression of cancer mediated
through the cell cycle regulators [39]. In contrast, none of the enrichment results obtained with the
SET-2 have revealed enriched cell cycle regulating pathways but instead pathways related more to the
stress response.

Although the GO term cell cycle gives us the information about the active set of genes driving
the SP cells, it does not provide us with the required resolution with regard to the specific candidates
responsible for the SP phenotype. In order to have a deeper understanding, enrichment analyses were
conducted in terms of protein complexes to specifically identify those cell cycle regulators which are
playing a key role in progression and stemness properties of the SP cells.

Agreeing with the gene functional classification, the protein domain enrichment analysis identified
bZIP transcription factors as one of the significantly enriched domains in our DEG list (SET-1 and
SET-2). bZIP transcription factors (basic region leucine zipper) play a central role in the regulation of
gene expression by extracellular signals. The bZIP transcription factors have a dimerization domain
and a DNA binding domain. Activator protein 1 (AP-1) is a transcription factor belonging to a family
of bZIP proteins because they dimerize through a leucine-zipper motif and contain a basic domain for
interaction with the DNA backbone. AP-1 is a dimer of two proteins from the Fos family (c-Fos, Fra-1,
Fra-2, and FosB) and Jun family (c-Jun, JunB, and JunD) of transcription factors. In addition, members
of the ATF/CREB family can replace one of the Fos or Jun proteins in the dimer [36,40,41].

The protein complex-based enrichment analysis (cf. Table 4) with both SET-1 and SET-2 has
resulted in identifying AP-1 as the most enriched protein complex having JUN, FOS, FOSB, FOSL2
as the overlapping members from our list of DEGs, although JUN:FOS are the most prominently
observed AP-1 dimers. Notably, the subnetwork analysis has also identified JUN and FOS among
their most active subnetworks (cf. Figure 6). AP-1 controls a number of cellular processes including
differentiation, proliferation and apoptosis [42]. However, Eferl and Wagner [36] note that AP-1 can
be a double-edged sword in tumorigenesis, where the property of AP-1 proteins being oncogenic
or anti-oncogenic depends on the combination of the dimers involved in forming the AP-1 complex.
AP-1 transcription factor complexes formed by the members of the JUN and ATF family such as
JUN:ATF2 are also seen to play a role in tumor formation [43]. Our analysis has shown a significant
up-regulation of ATF1 in the SP cells which is not known to form a dimer with JUN [36]. However,
ATF1 influences downstream target genes related to growth and survival. Its phosphorylation enhances
its transactivation and transcriptional activities and enhances cell transformation.

Although JUN is often seen to be up-regulated in many cancers due to the activation of upstream
oncogenes RAS, BRAF and EGFR, these genes were not found to be up-regulated in our data set.
Our observations in regard to the AP-1 transcription factor and the expression of its associated
oncogenes do not reliably support the proposed hypothesis if AP-1 is playing any role in the
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tumorigenic transformation of the cell. Nevertheless, the up-regulation of AP-1-mediated gene
regulation might be playing a role in adding the stemness properties to the SP cells.

Yamashita and McCauley [44] show that the level of both AP-1 subunits (Jun and Fos) are
expressed above the basal levels during cell division. The higher expression of AP-1 transcription
factor in SPs and MSCs suggests a higher rate of cell division in comparison to the nonSPs. Furthermore,
having parallels to MSCs in terms of a higher expression of AP-1 could be having a contributing role
in the cancer stem cell property of the SP cells.

Anaphase Promoting Complex cyclosome (APC/c) is a multi-subunit E3 ubiquitin ligase
enzyme and is one of the major driving forces playing a pivotal role in cellular process such as
cell migration, proliferation, differentiation, senescence, apoptosis, cell cycle progression, and DNA
damage repair [45,46]. APC/c here forms two sub-complexes, APC/c-CDC20 and APC/c-CDH1.
The recent studies have shown that CDH1 is functioning as a tumor suppressor whereas CDC20 may
function as an oncogene to promote the development and progression of human cancers [47]. CDC20
and CDH1 are the substrate-recruiting modules that activate the APC/c complex and drive the cell
cycle progression at several stages of the cell cycle process [48].

Apart from the cell cycle control, it was also proved that CDC20 plays an important role in
the development of human cancers [49]. CDC20 targets several key substrates for degradation to
govern cell cycle progression [47]. Among those key substrates, CCNB1 (Cyclin B1), CCNA2 (Cyclin
A) and NEK2 are seen to be up-regulated in the SP cells of our data set. Studies have shown an
APC/c-independent activity of CDC20 in regulating gene transcription [50].

In this regard, the over expression of the tumor suppressor protein p53 is bound to the
down-regulation of CDC20 and conversely, siRNA silencing of p53 is demonstrated to induce
the expression of CDC20 [51]. Interestingly, the expression of p53 is undetected in the SP cells
which probably might explain the increased expression of CDC20. Phosphorylation by CDK
(cyclin-dependent kinase) and dephosphorylation by protein phosphatase 2A is critical for the
activation of APC/c-CDC20 [52].

In our data set, CDKs are observed to be up-regulated in SPs. The pathway involving the APC/c
activation and APC/c-CDC20-mediated degradation of mitotic proteins involves 32 gene members, of
which 9 genes are seen to be upregulated in our DEG set (SET-1). The nine genes include PLK1, CDK1,
MAD2L1, BUB1B, UBE2C, CCNA2, CDC20, NEK2, and CCNB1. This might indicate a relevant role of
the APC/c-CDC20 sub-complex–mediated cell cycle control in SP.

CDC20 is frequently seen over-expressed in several cancers such as breast cancer [53], cervical
cancer [54], glioblastomas [55], ovarian cancer [56] and others. Interestingly, Kato et al. [57] show that
the higher expression of CDC20 is associated with males. This correlates to the observation that Ewing
sarcoma is slightly more frequent in males as compared to females [3]. Although CDC20 is seen to be
over-expressed in several cancers, the role of its over-expression has not yet been discussed in Ewing
sarcoma. Whether the over-expression of CDC20 is playing a pivotal role in Ewing sarcoma cancer
progression and if CDC20 is contributing to the cancer stem cell property of the Ewing sarcoma cells is
an open question.

So, what is known on AP-1 and APC/c action and the stemness-like features, beyond the
mechanistic details reported and discussed so far?

The link between MSCs as cells of origin and Ewing sarcoma was exemplified by a publication
by Tirode et al. [14]. The recent publication of Satterfield et al. [58] is pointing towards a miR-130B
interaction with the AP-1 complex forming an oncogenic feed-forward loop. An older study from
Whitehurst et al. [59] discuesses an APC/c-associated EWSR1 fusion protein co-expression with
RASSF1A, but the corresponding gene was not observed in our, specifically to stemness features
adjusted, differential analysis.

Beyond Ewing sarcoma, the AP-1 complex is perfectly covered in the review of Alonso et al. [38],
demonstrating the relevance in lymphoma. AP-1 is also showing up in Kaposi’s sarcoma-associated
herpesvirus [60] and adult T-cell leukemia [61–63]. A nice AP-1-associated enhancer regulation motif



Int. J. Mol. Sci. 2018, 19, 3908 14 of 23

based on FOXF1 [64] might also be a model for the family member FOXO1, which is exposed in
our study and is associated with Rhabdomyosarcoma. A publication of Lopez-Bergami et al. [65]
gives a broader overview on AP-1 pathways in cancer and has a nice crosslink in his Table 2 ‘ATF2
transcriptional targets’, the cell cycle-associated cyclin CCND1. The cyclins/kinases showing up in our
study (CCNB1, CCNB2, CDK1, and CDK6) and the ATF1 family member might form a corresponding
dependency concept with a similar characteristics. Newton et al. [66] presents insight into upstream
pathways of AP-1, drafting a model for the discussed candidates.

The APC/c environment, perfectly presented by Alfieri et al. [67] and with a stronger pathway
focus and cancer relevance in Zhou et al. [68], exposes, by comparing SET-1 candidates with factors
mentioned in those two publications, that mainly G1/S phase alterations might be enhanced by the SP
cells. It can be assumed that hubs like APC/c are accepting, presumably by different specificity, several
combinations of family members, thereby dispatching multiple pathways in parallel and forming an
alternate network state. Additional evidence is given by Harkness [69] who again shows a link to
FOXO1 in our study, while Nicolau-Neto et al. [70] shows a link to the UBE2C group in our study
(UBE2C, UBE2T, UBE2QL1) and Jia et al. [71] to the BUB family in our study (BUB, BUB1B).

Of course the gene level is not the sole level of action. Several other regulatory levels like the
already mentioned microRNA miR-130B or epigenetic alterations of the transcriptional control might
influence cellular expression. The dbEM database [25] is collecting 167 well described epigenetic
modifiers which are known to be involved in many cellular regulation circuits. The intersection
of these epigenetic modifiers with the SET-1 candidates revealed the molecular factor HDAC9
(histone deacetylase). Diseases associated with HDAC9 include gastrointestinal neuroendocrine
tumor [72], medulloblastoma [73] and cutaneous squamous cell carcinoma [74]. The MSCs regulation
seems to be associated with that molecule [75]. The histone deacetylases, in general, are known to
induce/stabilize stemness phenotypes [76] and are associated with worse overall survival in chronic
lymphocytic leukemia [77]. All these details might point towards the fact that the SP cells stabilize
their presumed stemness character, amongst other mechanisms, by epigenetic regulatory circuits
via HDAC9. The remarkable cluster of differential histone proteins might also contribute to this
modified phenotype.

4. Conclusions

Taken together, the side population of the Ewing cell line CADO-ES1 (EWSR1-ERG fusion gene)
shows a modification of AP-1–mediated transcriptional control and APC/c-CDC20-mediated cell cycle
regulation. CDC20, besides other oncogenes and tumors suppressor genes, may play an oncogenic role
in the development and progression of Ewing sarcoma of at least the given type. To sum up, the Ewing
SP cells have their own biology apart from the main sarcoma cell population and their CSC properties
might be imprinted in pathways centered around AP-1 and APC/c-CDC20. Stemness properties might
be supported by the epigenetic modifier HDAC9 amongst others.

5. Materials and Methods

5.1. Cell Line and Cell Culture Conditions

The Ewing sarcoma cell line CADO-ES-1 was obtained from the Leibniz-Institute DSMZ
(Braunschweig, Germany). It was cultivated in collagen-coated tissue culture flasks in RPMI-1640
medium (Sigma Aldrich, Taufkirchen, Germany) supplemented with 10% fetal calf serum (Gibco
Life Technologies, Darmstadt, Germany), 2 mmol/L L-glutamine (Gibco) and an additional 1% of
penicillin/streptomycin in a humidified atmosphere at 37 ◦C and 5% CO2. Microbiological analysis
was carried out routinely using a PCR Mycoplasma Detection Kit (AppliChem GmbH, Darmstadt,
Germany) according to the manufacturer’s instructions.

MSC cells were obtained from four Ewing sarcoma patients by density gradient centrifugation,
resuspended in RPMI-1640 culture medium and frozen in liquid nitrogen or cultured for further use.
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All patients were included into the multicenter E.U.R.O Ewing 99 (EE99 NCT00020566, 12/02/1999)
and Ewing 2008 (NCT00987636, 01/10/2009) trials. The multicenter studies were approved by the
University of Muenster Ethical Board, and informed consent was obtained from patients and/or their
legal guardians in accordance with the Declaration of Helsinki.

5.2. Side Population

The side population was established by staining the CADO-ES1 cells by ‘Hoechst 33342’ dye and
a subsequent fluorescence-activated cell sorting (FACS). Staining procedure, analysis and sorting were
done essentially as described in Reference [24]. In brief: CADO-ES1 (0.5–1 × 106 cells/mL for side
population analysis, 10 × 106/mL for sorting experiments) were stained with 5 µg/mL Hoechst33342
for 90 min. at 37 ◦C in the presence and absence of 50 µM Verapamil. Unstained cells served as a
negative control. Afterwards, cells were centrifuged and resuspended in 0.15 mL (for analysis) or 1–2
mL (for sorting) HBSS (Hanks balance salt solution) with 2% FCS and 10 mM HEPES buffer. In addition,
unstained cells were resuspended in HBSS, 2% FCS, 10 mM HEPES and 2 µg/mL Propidum Iodide
to exclude dead cells from flow cytometry analysis and fluorescence-activated cell sorting. Figure S4
shows the living cells (gate R1) as well as the non-SP- (R2) and SP-gate (R3). Sorted cells were used
for further experiments (see Sections 5.3–5.5) or pelleted, shock frozen in liquid nitrogen and stored
at −80 ◦C.

5.3. Cytotoxiticity Assay

For the cell viability assays, 5000 CADO-ES1, SP or non-SP cells/well/100 µL were seeded in
collagen-coated 96-well plates. Cells were allowed to adhere for 24 h before treatment. To determine
growth inhibition relative to untreated controls, cells were treated with the drugs Etoposide,
Doxorubicin and Cis-Platin at five different concentrations (0.01–100 µM). Each concentration was
tested in four replicates. After 72 h of treatment, cells were incubated with MTT (3 (4.5 dimethylthiazol
2 yl) 2.5 diphenyltetrazolium bromide) for 3 h. Supernatant was discarded, cells lysed with 100 µL
Iso-Propanol and the absorbance was measured in a plate reader at 550 nm. Each experiment was
conducted in at least six independent biological replicates.

5.4. Colony Assy

Anchorage-independent growth was analyzed by plating 500 or 1000 CADO-ES1, SP or non-SP
cells as a single-cell suspension in semisolid medium containing 0.9% (w/v) methylcellulose in IMDM,
15% FCS (v/v) and 0.5% (w/v) BSA. For each assay, 1 mL of the cell suspension was plated in duplicate
into sterile 35 mm Petri dishes (Nunc, Karlsruhe, Germany) that were incubated at 37 ◦C. Colonies
were counted after 11–14 days and each experiment was repeated at least two times.

5.5. In Vitro Differentiation Potential

The in vitro differentiation potential of CADO-ES1, SP- and non-SP-cells was analyzed by using
the culture and adipogenic-differentiation conditions used for mesenchymal stem cells. In brief:
When plated MSCs, sorted SP and non-SP cells reached near confluency (day 0), the medium
was changed to Diff-Med 1 (RPMI-1640, 10% FCS, 1 µM Dexamethasone, 0.2 mM Indomethacine,
0.01 mg/mL Insulin and 0.5 mM IBMX (3-Isobutyl-1-methyl-xanthinie)) for 5 days. Then a second
medium change to Diff-Med 2 (RPMI-1640, 10% FCS, 0.1 mg/mL Insulin) was executed for 2 days.
These two medium changes were repeated a second time and finally cells were stained with OIL-RED-O
solution (Sigma-Aldrich). OIL-RED-O is used to stain lipids within cells. Briefly, cells were fixed with
formalin, washed with 50% ethanol and stained with OIL-RED-O solution for 20 min. After washing
with 50% ethanol, water-stained cells were analyzed under a microscope.
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5.6. RNA Isolation and Library Preparation

RNA isolation was performed based on FACS sorted and shock frozen cells (between 0.3 and
1.0 × 106 cells) with TRIZOL reagent and the PureLink RNA isolation Mini Kit according to the
manufactures protocol (Thermo Fisher Scientific, Waltham, MA, USA).

Total-RNA quantity was measured using a Nanodrop 2000 Spectrophotometer (Peqlab
Biotechnologie GmbH, Erlangen, Germany); integrity was checked by an Agilent 2100 Bioanalyzer
(Agilent Technologies Deutschland GmbH & Co. KG, Waldbronn, Germany). The ribosomal RNA was
removed with RiboMinus Eukaryote Kit for RNA-Seq (Invitrogen, Darmstadt, Germany) following
the manufacturer’s instructions.

Whole transcriptome libraries were prepared with a Solid Total RNA-Seq Kit (Life Technologies
GmbH, Darmstadt, Germany). Sequencing was performed on a LifeTechnologies SOLiD4 for the
first four samples (indexed and pooled) and, after a technology upgrade, on a LifeTechnologies
SOLiD5500xl next-generation sequencer for the following eighteen samples (indexed and pooled).
The read lengths on the SOLiD4 sequencer was 50/35 nucleotides and on the SOLiD5500xl sequencer
75/35 nucleotides. Sequencing chemistries on both sequencers were technically the same, i.e.,
Sequencing by Oligonucleotide Ligation and Detection (SOLiD). Ambion ERCC RNA Spike-In Control
Mixes (Invitrogen) were spiked during library preparation for quality control and normalization during
bioinformatics analysis following the supplier’s recommendations. The library preparation protocols
for both sequencing runs, on the SOLiD4 and the SOLiD 5500xl, were nearly identical, with only a few
minor differences, which are specified below.

In brief, rRNA-depleted total-RNA was fragmented by RNase III and purified using the
RiboMinus Concentration Module (Invitrogen) samples. Afterwards, a quality check for quantity
and fragment size was performed using a Qubit fluorometer (Life Technologies) and a Bioanalyzer
(Agilent). The resulting fragment size ranged from 100 to 200 nucleotides. Adapters were added to
the fragments using the hybridization master mix (SOLiD Total RNA-Seq Kit), followed by a reverse
transcription. The SOLiD4-samples were purified with the MinElute PCR Purification Kit (Qiagen,
Hilden, Germany) and the purified cDNA were size-selected during electrophoresis with the Novex
TBE-Urea Gel 10% (Invitrogen) at 180 V for 25 min. The resulting fragment size ranged from 150 to
250 nucleotides.

The SOLiD 5500xl-samples were size-selected using the Agencourt AMPureXP Reagent (Beckman
Coulter GmbH, Krefeld, Germany) by performing two rounds of bead capture, wash and elution to
ensure complete capture and size-selection of the desired cDNA (fragment size: 100–150 nucleotides).

The purified fragments of desired size were used as templates for the following amplification.
During the PCR amplification, unique SOLiD RNA sample barcodes were added to allow a pooled
sequencing of the 4 and 18 samples, respectively. The PCR reactions were performed at 95 ◦C for
5 min and then cycled at 95 ◦C for 30 s, 62 ◦C for 30 s and 72 ◦C for 30 s for 15 cycles and a final
elongation at 72 ◦C for 7 min. A final clean-up was performed using the Invitrogen PureLink PCR
Micro Kit (Invitrogen).

Final quality control for size distribution and yield of the PCR products was done by a
Bioanalyzer (Agilent) and a Nanodrop 2000 (Peqlab). The Bioanalyzer smear peaks ranged from
25 to 200 nucleotides. Emulsion-PCR and bead enrichment were performed using the SOLiD EZ Bead
System (Life Technologies). A workflow analysis run was performed for the SOLiD4 run to verify
the quality and density of the template beads. Approximately 120 million enriched beads for each
sample were deposited on the sequencing slide. Finally, the libraries were sequenced, resulting in
color-space reads as an output format. The whole data set comprising the presented data is available
online: E-MTAB-6067 [78].

5.7. Raw Data Processing/Controls

The SOLiD color-space reads are checked for the presence of primer sequences and are trimmed
using the tool Cutadapt (Martin, 2011). The reads were then mapped with TopHat aligner in
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‘transcriptome + genome’ mapping mode to the reference transcriptome. The reads that did not
find an alignment (unmapped reads) has a second chance to be mapped to the genomic regions [79].
The aligner is supplied with human genome reference (GRCh38/hg38 patch 10) and the corresponding
Ensembl transcriptomic GTF annotation [80]. A Python stand-alone script HTSseq-count was used
in ‘intersection-strict’ mode to obtain gene-level read counts. The script is supplied with the aligned
sequencing reads and the Ensemble GTF annotations are used as inputs [81]. The obtained counts for
each library were consolidated into a single expression count matrix to facilitate descriptive analysis
and differential expression calling.

5.8. Differential Analysis/Controls

DESeq2 is a method for differential analysis of count data, and is implemented as an R
Bioconductor package DESeq2 [82]. As the DESeq2 model internally corrects for the library size,
it is supplied with un-normalized count data as an input to identify significant changes in gene
expression between SPs and non-SPs. The FDR cut-off criteria for the DEGs are set to a default value of
0.1, because the set size plays a critical role in the enrichment analyses. Therefore, ranking is important,
but less so if a single candidate is finally rock solid. For all the downstream analyses a value of 0.05 is
in effect.

5.9. Functional and Pathway Enrichment Analysis

The Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) provide
controlled vocabulary for the classification and annotation of genes and gene products in terms of their
putative functions and pathways [83,84]. The functional annotations are categorized as ‘Biological
process’, ‘Molecular function’ and ‘Cellular component’.

Biological Networks Gene Ontology tool (BiNGO), a Cytoscape plugin, has been used to identify
the GO terms that are statistically overrepresented in a set of DEGs [85,86].

The Database for Annotation, Visualization, and Integrated Discovery tool (DAVID), was used to
identify the significantly enriched KEGG pathways (Dennis et al., 2003). REACTOME, a peer-reviewed
knowledgebase of biomolecular pathways has been used to obtain in-depth information about
the enriched pathways both in view of their hierarchy and the metabolic processes involved [87].
The Benjamini and Hochberg multiple testing correction (FDR) was applied throughout to filter the
significantly associated functions and pathways [88].

5.10. Identification of Tumor-Associated Genes

The TSGene database is a knowledge-base of curated tumor suppressor genes from multiple
cancer types [89]. ONGene is a database of curated oncogenes that are involved in the initiation and
promotion of cancer progression [90].

With the aim of finding DEGs associated with tumors, a comprehensive list of tumor suppressor
genes and oncogenes was created by combining the information obtained from TSGene [91] and
ONGene [92] databases. The genes in this list are annotated into three categories namely, ‘oncogene’
for the genes involved in oncogenesis, ‘tumor suppressor gene’ for the genes involved in tumor
suppression and ‘both’ for the genes involved in both oncogenesis and tumor suppression. The list
created by the aforementioned procedure contains 674 oncogenes, 1088 tumor suppressor genes
and 129 genes falling into both the categories. This list has been used to annotate the DEGs with
tumor-associated properties.

5.11. Construction of PPI Network and the Subnetwork Analysis

STRING (Search Tool for the Retrieval of Interacting Genes) is a database that contains
consolidated information of both known and predicted PPI data for a large number of organisms
and experiments [93,94]. The DEGs were used as an input to the STRING database to build the
interaction network of the gene products. The minimum interaction score is set to the default value of
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0.4. The results were exported and imported into Cytoscape, a software environment for visualization
and integration of biomolecular interaction data [85]. The network and subnetwork analysis was also
done in Cytoscape. Subnetwork analysis denotes the identification of sets of genes and interactions that
participate in a meaningful biological function that are ‘active subnetworks/modules’ [95]. Among a
wide range of available methods for mining the active modules, jActiveModules has been chosen for
its precision and ease of use [96]. jActiveModules is available as a Cytoscape plugin. It screens the
molecular interaction network to identify the expression-activated subnetworks. It operates by scoring
the subnetworks and implementing one of the two available search algorithms to identify top-scoring
subnetworks [27]. The analysis was conducted with a greedy search algorithm due to its precision
over the simulated annealing algorithm [96].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/12/
3908/s1.
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Abbreviations

CADO-ES1 Ewing cell line CADO-ES1, human, female. Fusion gene: EWSR1-ERG
SP Side-population, here a subfraction of Ewing sarcoma cells owning some stem cell properties
non-SP The (multi clonal) main Ewing sarcoma cell population
MSC Mesenchymal stem cell (here originating from bone marrow explantats)
CSC Cancer stem cell, other terms and slightly different definitions are existing
FACS Fluorescence activated cell sorting
DEG(s) Differentially expressed gene(s)
FDR False discovery rate, a multiple test correction procedure resulting in a corrected p value
PPI Protein-protein interaction
GO Gene Ontology
APC/c The anaphase-promoting complex/cyclosome
DAVID Database for Annotation, Visualization, and Integrated Discovery tool
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