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Abstract 

Background:  Tongue diagnosis is an important research field of TCM diagnostic technology modernization. The 
quality of tongue images is the basis for constructing a standard dataset in the field of tongue diagnosis. To establish a 
standard tongue image database in the TCM industry, we need to evaluate the quality of a massive number of tongue 
images and add qualified images to the database. Therefore, an automatic, efficient and accurate quality control 
model is of significance to the development of intelligent tongue diagnosis technology for TCM.

Methods:  Machine learning methods, including Support Vector Machine (SVM), Random Forest (RF), Gradient Boost‑
ing Decision Tree (GBDT), Adaptive Boosting Algorithm (Adaboost), Naïve Bayes, Decision Tree (DT), Residual Neural 
Network (ResNet), Convolution Neural Network developed by Visual Geometry Group at University of Oxford (VGG), 
and Densely Connected Convolutional Networks (DenseNet), were utilized to identify good-quality and poor-quality 
tongue images. Their performances were made comparisons by using metrics such as accuracy, precision, recall, and 
F1-Score.

Results:  The experimental results showed that the accuracy of the three deep learning models was more than 96%, 
and the accuracy of ResNet-152 and DenseNet-169 was more than 98%. The model ResNet-152 obtained accuracy 
of 99.04%, precision of 99.05%, recall of 99.04%, and F1-score of 99.05%. The performances were better than perfor‑
mances of other eight models. The eight models are VGG-16, DenseNet-169, SVM, RF, GBDT, Adaboost, Naïve Bayes, 
and DT. ResNet-152 was selected as quality-screening model for tongue IQA.

Conclusions:  Our research findings demonstrate various CNN models in the decision-making process for the selec‑
tion of tongue image quality assessment and indicate that applying deep learning methods, specifically deep CNNs, 
to evaluate poor-quality tongue images is feasible.
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Background
Tongue inspection has a long history as the most intui-
tive, simple and effective diagnostic method in Tra-
ditional Chinese Medicine (TCM)[1–3]. However, 
traditional tongue diagnosis is affected by factors such as 
the external environment and doctors’ subjective clinical 

experience. Computerized tongue diagnosis systems are 
gradually being accepted by an increasing number of cli-
nicians as a medical application for the health assessment 
and diagnosis of diseases, such as type-2 diabetes melli-
tus [4–7], breast cancer [8], colorectal cancer [9], appen-
dicitis [10], and gastritis [11].

Research teams worldwide have carried out more 
than 20 years of objective research on tongue diagnosis, 
but no standard tongue image dataset with large sam-
ples has been established. The quality of tongue images 
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is the basic component to construct standard datasets in 
the field of TCM tongue diagnosis. With the populariza-
tion of the clinical application of digital tongue pictures, 
massive tongue image data are produced. The quality of 
tongue images is an important prerequisite for the clini-
cal application of tongue diagnosis [1, 3]; see Fig. 1.

Good-quality tongue images should have the following 
characteristics: ① tongue extended and stretched to the 
outside of the lower lip; ② no food residue on the tongue 
or stained tongue coating; ③ normal exposure; ④ no 
blurring caused by tongue movement in the process of 
recording; ⑤ no light leakage; and ⑥ no blurring caused 
by breath condensation on the camera lens, as shown 
in Fig. 2a. We found that in the process of using tongue 
diagnosis equipment, despite standardized tongue image 
acquisition training, abnormal tongue images are still 
common in the clinical tongue image acquisition process, 
mainly from two aspects: operators and participants.

There are 7 types of tongue images with poor qual-
ity, including those with light leakage, overexposure, 
underexposure, blurry focus, stained tongue coating, 
fog, and incorrect tongue extension posture, as shown 
in Fig. 2b–h. Overexposure causes a tongue image to be 
brighter and the tongue colour to be whiter, as shown in 
Fig. 2b. Underexposure makes the tongue look darker in 
the image, and the tongue colour tends to be dark red 
and crimson, as shown in Fig. 2c. Shaking or vibration of 
the tongue during the shooting process results in blurry 
focus of the tongue images, as shown in Fig.  2d. Light 
from the outside of the instrument can enter the inside 
of the instrument through a gap (such as the gap between 
the face and the tongue diagnostic instrument cover), and 
then the brightness of some areas of the tongue image 
becomes too bright, as shown in Fig.  2e. Foggy tongue 
images are caused by the subject’s exhalation condensing 
in the camera during the shooting process, resulting in 
the tongue images shown in Fig. 2f. During the shooting, 
food residue remained on the subject’s tongue. Foreign 

objects on the tongue obscured characteristic informa-
tion such as the colour and texture of the tongue itself, as 
shown in Fig. 2g. During the shooting, some subjects did 
not hold the tip of their tongue away from their lips, the 
tip of their tongue was upturned, or the extension of their 
tongue was uneven, which obscured the colour, texture 
and other information in some areas of their tongue, as 
shown in Fig. 2h.

All poor-quality tongue images affect the analysis 
of the colour, shape, texture of the tongue image and 
directly lead to a wrong diagnosis of the patient’s TCM 
syndromes, causing severe interference with the devel-
opment of intelligent diagnosis technology of TCM 
tongue diagnosis and the accuracy of TCM clinical 
remote diagnosis and treatment.

Image quality assessment (IQA) mainly evaluates the 
quality of images. Both manual and automatic methods 

Fig. 1  Overview of intelligent TCM tongue diagnosis procedures

Fig. 2  Good-quality versus poor-quality tongue images. a 
Good-quality tongue images; b–h poor-quality tongue images: b 
overexposed tongue images; c underexposed tongue images; d 
blurry tongue images; e tongue images with light leakage; f foggy 
tongue images; g stained tongue images or tongue coating; h 
tongue images with unsuitable posture.
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can be used to evaluate image quality. At present, the 
main approach to removing pictures in these situations 
is manual. The manual method is based on TCM diag-
nosis and clinical experts’ perception assessment of the 
quality of tongue images. Zhang et  al. proposed new 
features for recognizing poor-quality and good-quality 
tongue images, including color features, textures spec-
tral features, spatial and spectral entropies features [12, 
13]. The proposed features were manually extracted 
from tongue images, and then were fed onto SVM and 
RF for binary classification of tongue IQA, respec-
tively. Their results of accuracy are nearly 90%. The 
proposed methods by [12, 13] only focused on two kind 
of poo-quality tongue images. This method is costly, 
labour intensive, error prone and inefficient and can-
not be automated in real time. Therefore, an efficient 
and accurate quality control model of tongue images is 
essential for the clinical use of tongue diagnosis instru-
ments. This research focused on solving the quality 
control problem of tongue images and automatically 
removing poor-quality tongue images.

In recent years, with the tremendous success of deep 
convolutional neural networks (CNNs) and the devel-
opment of deep learning algorithms, the classification 
accuracy and efficiency of image analysis technology 
based on CNNs have been dramatically improved. 
These networks have been widely used in image seg-
mentation, image classification, face recognition, etc., 
and has become the current mainstream algorithm 
[14–16]. CNNs, a representative deep learning method, 
have gradually become a research hotspot in the field of 
objective tongue diagnosis.

In general, CNN architectures can avoid feature 
selection manually and automatically extract features, 
which are key elements to enable the intelligent tongue 
diagnosis system into TCM clinical practice. Although 
several previous studies have reported encouraging 
results using CNN methods to extract tongue image 
features for tongue colour (tongue body and tongue 
coating) classification [17–19], tongue image character-
istic recognition (tooth-marked tongue [20–22], tongue 
cracking [23]), tongue image segmentation [24–31], 
and clinical application in herbal medicine [32, 33], 
they usually ignore the quality of tongue images or 
implicitly assume the good quality of tongue images. 
Thus, the medical application of deep learning methods 
to the field of tongue diagnosis has not achieved much 
so far.

In this research, we focus on the model construction 
method of automatically rejecting unqualified tongue 
images based on a deep CNN model to evaluate the 
quality of tongue images.

Methods
Tongue image acquisition and preprocessing
To make a relatively stable tongue image dataset, tongue 
images were collected by uniform equipment (TFDA-1, 
equipment number: ER17005-201809) developed by the 
Shanghai University of TCM [34]. This equipment has 
been applied for a medical device registration certificate 
and mainly includes CCD equipment, standard D50 light 
sources, hoods, bases, and curved reflectors (see Fig. 3). 
The colour temperature of the LED lamp is 5003 K, and 
the colour rendering index is 97. The device has a high 
colour rendering index LED light source, and a curved 
reflector is set in front of it to ensure the uniformity of 
the illumination of each part when the tongue image is 
collected, which effectively ensures the stability and 
authenticity of the tongue image collection process.

Then, all tongue images were classified as good qual-
ity or poor quality by ten professional TCM practitioners 
(with over 10 years of clinical and TCM teaching experi-
ence) from the Shanghai University of TCM and its affili-
ated hospitals. All professionals had either corrected to 
normal or normal vision and reported normal colour 
vision. The tongue IQA was completed uniformly using 
an Apple Cinema HD Display (27 in., screen resolution 
1920 × 1200) in the Intelligent Diagnostic Technology 
Laboratory of the Shanghai University of TCM.

Three steps were performed in this study to ensure the 
interpretation principles of tongue image quality. First, 
professionals unanimously agreed with the tongue image 
diagnosis criteria for good quality and poor quality. Sec-
ond, at least 8 of 10 experts confirmed that the same 
label was included in the Dataset 1, and all 2531 tongue 
images were classified into ‘‘good” or ‘‘poor” folders by 
two professionals. The other eight professionals checked 
the labelled folders. Third, if inconsistency occurred, the 

Fig. 3  TFDA-1 tongue diagnosis instrument. a Side view of the 
instrument. b Front view of the instrument
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corresponding tongue images were not included in this 
study. Only tongue images with unanimous agreement 
were included in the dataset for building the CNN model.

According to the above interpretation principles, the 
Dataset 1, containing 1238 poor-quality tongue images 
and 1293 good-quality tongue images, was constructed. 
Among them, 1238 poor-quality images were captured in 
clinical research centres, including 189 cases of underex-
posure, 192 cases of overexposure, 168 cases of fogging, 
190 cases of light leakage, 146 cases of blurred focus, 197 
cases of tongue posture errors, and 156 cases of stained 
tongue coating. The remaining 1293 tongue images with 
no fogging, no underexposure, and no overexposure were 
selected as good-quality tongue images. The raw tongue 
image size was 5568 × 3711 pixels. In addition, to control 
the noise of the face and background areas around the 
tongue region, all available raw tongue images were iso-
lated and cropped manually to the same size (400 × 400 
pixels) as the tongue region before model training. 
Finally, we constructed the dataset, including good-qual-
ity tongue region images and poor-quality tongue region 
images. A schematic of the process of acquired raw 

tongue image Dataset 1 construction and tongue region 
image preprocessing is shown in Fig. 4.

Development of CNN models
CNN model architecture
To prove the effectiveness of the CNN model in the pre-
sent research, three classical CNN were conducted.

First, this paper uses the deep CNN model ResNet-152 
based on the residual network (residual network, ResNet) 
[14]. ResNet-152 is a deep CNN with 152 layers, and then 
through 50 building blocks, each block is 3 layers, for a 
total of 150 layers. The last layer is an FC layer for tongue 
image quality classification. This layer improves the effi-
ciency of information dissemination by adding a short-
cut connection to the nonlinear convolutional layer. The 
residual network increases the depth of the neural net-
work by connecting multiple residual units. This method 
has improved the prediction accuracy and the train-
ing speed and performs better than the traditional neu-
ral network model. A schematic diagram of the tongue 
IQA based on the ResNet-152 model is shown in Fig. 5, 

Fig. 4  Overview of tongue IQA. a Example of tongue image acquisition with a uniform TFDA-1 instrument. b Tongue image dataset construction 
and examples of good-quality and poor-quality tongue images. c Three classical CNN models, robustness testing, and comparison with existing 
methods. d performance of assessing tongue image quality
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and detailed information on the ResNet-152 structure is 
shown in Table 1.

Then, VGG-16 was used for comparative experiments. 
VGGNet is a deep CNN developed by researchers from 
the Visual Geometry Group of Oxford University and 
Google DeepMind [35]. VGG-16, which contains 13 con-
volutional layers and 3 fully connected layers, was used 
to improve performance by continuously deepening the 
network structure. For comparative analyses and reduc-
ing training time, VGG-16 was also pretrained on Ima-
geNet datasets, and the training parameter settings were 
in accordance with the aforementioned ResNet-152. A 
schematic diagram of the tongue IQA based on VGG-16 
is shown in Fig. 6, and detailed information on the VGG-
16 structure is shown in Table 2.

Finally, DenseNet-169 was also used for comparative 
experiments. Crucially, in contrast to ResNets, DenseN-
ets bypass signals from one layer to the next via iden-
tity connections that combine features by concatenating 
them. Due to the design of the dense connectivity pattern 
with dense blocks and transition layers, DenseNets also 
alleviate the vanishing gradient problem and achieve high 
performance in competitive object recognition bench-
mark tasks [36]. DenseNet-169 was also pretrained on 
ImageNet datasets. A schematic diagram of the tongue 
IQA based on DenseNet-169 is shown in Figs.  7 and 8, 
and detailed information on the DenseNet-169 structure 
is shown in Table 3.

CNN model training, validation and testing
Three convolution neural networks, including VGG-
16, DenseNet-169 and ResNet-152, were separately 
deployed to conduct experiments of classifying poor-
quality tongue images and good-quality tongue images. 
Each model was pretrained over the dataset ImageNet 
to obtain initialized weights. Each well-pretrained 
model was employed to perform training-validation-
testing experiments over Dataset 1. In each experi-
ment, Dataset 1 was randomly divided into training 
set, validation set and test set according to a ratio of 
8:1:1. When training model, parameters were adjusted 
to obtain a trained model with best performances. The 

Fig. 5  Overview of the ResNet-152 architecture for assessing tongue 
image quality. “7 × 7conv, 64” means that the convolutional kernel 
size is 7 × 7 and the filter number is 64. “/2” indicates the stride size

Table 1  ResNet-152 for tongue image quality control

Building blocks are shown in brackets, with the number of blocks stacked. 
Downsampling is performed by Conv3_1, Conv4_1, and Conv5_1 with a stride 
of 2

Layers Feature map size Structure

Conv1 200 × 200 7 × 7 conv, 64, stride 2

Conv2_x 100 × 100 3 × 3 max pool, stride 2




1× 1 conv, 64

3× 3 conv, 64

1× 1 conv, 256



× 3

Conv3_x 50 × 50




1× 1 conv, 128

3× 3 conv, 128

1× 1 conv, 512



× 8

Conv4_x 25 × 25




1× 1 conv, 256

3× 3 conv, 256

1× 1 conv, 1024



× 36

Conv5_x 13 × 13




1× 1 conv, 512

3× 3 conv, 512

1× 1 conv, 2048



× 3

Classification Layer 1 × 1 13 × 13 global average pool

2208D fully connected layer 
with ReLU

2D fully connected layer

Softmax
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adjusted parameters included epochs, batch size, opti-
mizer, learning rate, momentum, and loss function. 
Also, the learning rate was set to be decreasing along 
with training steps. A group of model parameters with 
the best validation accuracy was selected, and it was 
set on the corresponding model to conduct 10 experi-
ments. Performance results in the 10 experiments 
were averaged as the model performance. For models 
of VGG, ResNet and DenseNet, their parameters set-
tings were the same. And the parameters settings were 
epochs of 30, optimizer of stochastic gradient descent 
optimization (SGD), learning rate of 0.01, momentum 
of 0.9, batch size of 32, and Cross Entropy loss. CNN 
models were trained using PyTorch (version 1.3.1) and 
Python (version 3.6) frameworks on the Ubuntu sys-
tem (version 14.04). CNN models were developed on 
the hardware DEVTOP AIX4750 produced by OMNI-
SKY with 4 NVIDIA GTX 1080Ti GPU, i7-6850 K CPU, 
64 GB DDR4 RAM, and 512 GB SDD.

CNN model testing on new dataset
Testing was performed in new dataset (Dataset 2) by 
other clinical research centres with different kinds of 
tongue diagnosis instruments. A new testing dataset 
including 700 tongue images acquired by the TFDA-1 
and TDA-1 instruments was constructed. (These instru-
ments use different CCDs and illumination.) In addition, 
we cropped each raw tongue image into a tongue region 
image of the same size. The tongue image dataset was 
also classified into 350 poor-quality tongue images and 
350 good-quality tongue images by the same profession-
als as mentioned above in “Tongue image acquisition 
and preprocessing” section. The 350 poor-quality tongue 
images included 7 categories as mentioned in “Back-
ground” section. Then, all tongue images Dataset 2 here 
were classified using the aforementioned 3 CNN models 
trained by dataset1.

Comparison with existing methods
According to Zhang’s method [12, 13], 350 good-quality 
tongue images and 350 poor-quality tongue images were 
randomly selected to form Dataset 3 from Dataset 1. In 
each experiment, Dataset 1 was randomly splitted into 
training set, validation set and test set according to a ratio 
of 7:1.5:1.5. First, colour features, texture features and 
SSEQ features were extracted to evaluate the quality of 

Fig. 6  VGG-16 architecture of tongue IQA

Table 2  VGG-16 for tongue image quality control

Layers Feature map size Structure

Conv1 400 × 400 3 × 3 conv, 64

Conv2 400 × 400 3 × 3 conv, 64

Pool1 200 × 200 2 × 2 max pool, stride 2

Conv3 200 × 200 3 × 3 conv, 128

Conv4 200 × 200 3 × 3 conv, 128

Pool2 100 × 100 2 × 2 max pool, stride 2

Conv5 100 × 100 3 × 3 conv, 256

Conv6 100 × 100 3 × 3 conv, 256

Conv7 100 × 100 3 × 3 conv, 256

Pool3 50 × 50 2 × 2 max pool, stride 2

Conv8 50 × 50 3 × 3 conv, 512

Conv9 50 × 50 3 × 3 conv, 512

Conv10 50 × 50 3 × 3 conv, 512

Pool4 25 × 25 2 × 2 max pool, stride 2

Conv11 25 × 25 3 × 3 conv, 512

Conv12 25 × 25 3 × 3 conv, 512

Conv13 25 × 25 3 × 3 conv, 512

Pool5 12 × 12 2 × 2 max pool, stride 2

Classification Layer 1 × 1 2208D fully connected 
layer with ReLU

2D fully connected layer

Softmax
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tongue image. Colour moments are computed as features 
in  tongue IQA, including 3 dimensional features: the 
first colour moment “mean”, the second colour moment 
“standard deviation”, and the third colour moment “skew-
ness”. The coarseness and contrast of the tongue image 
were computed as 2 dimensional texture features. All 700 
tongue images were decomposed into low, middle and 
high scales and then 6 dimensional spatial entropy fea-
tures and 6 dimensional spectral entropy features were 
extracted as SSEQ features [37–39]. Then, all 17 dimen-
sional extracted features were normalized to [0,1] and fed 
into 6 machine learning classifier SVM, Decision Tree, 
Random Forest, Naïve Bayes, Adaboost and GBDT for 
the binary classification of tongue IQA, respectively.

For comparison, we used ResNet-152, VGG-16, and 
DenseNet-169 to construct model on Dataset 3. The 
parameters settings were the same aforementioned in 
“CNN model training, validation and testing” section. It 
was set on the corresponding model to conduct 10 exper-
iments and performance results in the 10 experiments 

were averaged as the model performance. The main pro-
cedures are shown in Fig. 4.

Model evaluation metrics
Accuracy is one of the most commonly used model 
evaluation metrics in machine learning. It indicates the 
average classification effect describing the overall perfor-
mance of all categories. In addition, this study also uses 
three metrics, namely, precision, recall, and F1-score, 
to evaluate and analyse the performance of the model. 
The accuracy (Eq. (1)), precision (Eq. (2)), recall (Eq. (3)) 
and F1-score (Eq.  (4)) were used to evaluate the perfor-
mance of the CNN model [40–43]. True positive (TP) 

Fig. 7  DenseNet-169 architecture of tongue IQA

Fig. 8  Details of the dense block and transition layer in 
DenseNet-169. Dense block (1), dense block (2), dense block (3), and 
dense block (4) contain 6, 12, 32, and 32 block units, respectively



Page 8 of 14Jiang et al. BMC Med Inform Decis Mak          (2021) 21:147 

represents the number of images correctly classified as 
poor-quality tongue images, true negative (TN) repre-
sents the number of images correctly classified as good-
quality tongue images, false positive (FP) represents the 
number of images incorrectly classified as poor-quality 
tongue images, and false negative (FN) represents the 
number of images incorrectly classified as good-quality 
tongue images. These parameters compose, therefore, a 

complementary metric to the overall accuracy. Macro-
averaging is used for models with more than 2 target 
classes. Macro-averaging is performed by first computing 
the precision, recall, and F1-score of each class and then 
taking the average of all precision and recall values and 
F1-scores. For each of the three CNN models, ten experi-
ments were performed in a fixed parameter setting. The 
average and the standard deviation were calculated over 
the results in the ten experiments for each kind of metric.

Results
Testing results on the tongue image dataset 
with ResNet‑152
The accuracy of the model in the training set and the 
validation set is close to 100%, and the training loss 
gradually decreases as the epoch increases. The tongue 
image quality classification results by the ResNet-152 
architecture on 2531 raw tongue images are shown in 
Table 4. As expected, the classification performance of 
the ResNet-152 model remains stable and satisfactory. 
The macro-averaged accuracy is 98.82%, which proves 
the effectiveness of the CNN method. The macro preci-
sion is 98.83%, and the macro recall is 98.81%, revealing 

(1)Accuracy =
TP + TN

TP + FP + TN + FN

(2)Precision =

TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1− score =
2× Precision× Recall

Precision+ Recall
.

Table 3  DenseNet-169 for tongue image quality control

In DenseNet-169, the growth rate is set to 32, each bottleneck layer produces 
128 feature maps, and the reduction is 0.5

Layers Feature map size Structure

Convolution 200 × 200 7 × 7 conv, 32, stride 2

Pooling 100 × 100 3 × 3 max pool, stride 2

Dense Block (1) 100 × 100
[

1× 1 conv, 128

3× 3 conv, 32

]

× 6

Transition Layer (1) 100 × 100 1 × 1 conv, 112

50 × 50 2 × 2 average pool, stride 2

Dense Block (2) 50 × 50
[

1× 1 conv, 128

3× 3 conv, 32

]

× 12

Transition Layer (2) 50 × 50 1 × 1 conv, 248

25 × 25 2 × 2 average pool, stride 2

Dense Block (3) 25 × 25
[

1× 1 conv, 128

3× 3 conv, 32

]

× 32

Transition Layer (3) 25 × 25 1 × 1 conv, 636

12 × 12 2 × 2 average pool, stride 2

Dense Block (4) 12 × 12
[

1× 1 conv, 128

3× 3 conv, 32

]

× 32

Classification Layer 1 × 1 12 × 12 global average pool

2208D fully connected layer 
with ReLU

2D fully connected layer

Softmax

Table 4  Results of the ResNet-152 architecture

The bold value mean average accuray results of ten folds

Folds Precision Recall F1-score Accuracy

Fold 1 99.21% 99.21% 99.21% 99.21%

Fold 2 98.04% 98.02% 98.03% 98.03%

Fold 3 98.45% 98.41% 98.43% 98.43%

Fold 4 98.83% 98.81% 98.82% 98.82%

Fold 5 98.42% 98.42% 98.42% 98.43%

Fold 6 98.81% 98.83% 98.82% 98.82%

Fold 7 99.21% 99.21% 99.21% 99.21%

Fold 8 98.83% 98.81% 98.82% 98.82%

Fold 9 99.24% 99.19% 99.22% 99.21%

Fold 10 99.24% 99.19% 99.22% 99.21%

Average (SD) 98.83% (0.42%) 98.81% (0.42%) 98.82% (0.42%) 98.82% (0.41%)
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that the ResNet-152 models have a relatively high level 
of precision and recall.

Comparison with VGG‑16 and DenseNet‑169
To further study whether the CNN architecture may 
influence the experimental results, VGG-16 and 
DenseNet-169 were used for comparison analysis. 
The results are shown in Tables  5 and 6. The macro-
averaged accuracy is 96.89% by VGG-16 and 98.82% 
DenseNet-169 on the same testing tongue image subset. 
However, the ResNet-152 and DenseNet-169 architec-
tures can increase the accuracy of poor-quality tongue 
image classification by nearly 2% on the same testing 
tongue image subset. As we expected, the macro-aver-
aged precision is 96.91% and recall is 96.88% by VGG-
16, and the macro-averaged precision is 98.83% and 
recall is 98.82% by DenseNet, indicating that the mod-
els have impressively high precision and recall.

Robustness testing
To further evaluate the robustness of our CNN models, 
we also conducted comparative experiments on the new 
testing dataset. The new tongue image dataset consisted 
of 350 poor tongue images from different tongue diagno-
sis instruments. The overall accuracy of the trained CNN 
models is 97.71% with VGG-16, 99.04% with ResNet-152, 
and 98.89% with DenseNet-169 for the same testing 
dataset (Table  7). In addition, since the tongue images 
from this testing dataset were acquired under different 
light conditions, the macro accuracy of the testing new 
dataset is also higher than 97%, revealing that the CNN 
models have good robustness and can be generalized to 
images from different instruments with various CCDs 
and illuminations.

The average accuracy results over different data-
sets are shown in Fig.  9 for ResNet-152, VGG-16, and 
DenseNet-169 with different CNN models. The tongue 

Table 5  Results of the VGG-16 architecture

The bold value mean average accuray results of ten folds

Precision Recall F1-score Accuracy

Fold 1 95.27% 95.27% 95.27% 95.28%

Fold 2 96.50% 96.43% 96.47% 96.46%

Fold 3 95.35% 95.24% 95.29% 95.28%

Fold 4 96.84% 96.87% 96.86% 96.85%

Fold 5 96.85% 96.85% 96.85% 96.85%

Fold 6 98.04% 98.02% 98.03% 98.03%

Fold 7 98.04% 98.02% 98.03% 98.03%

Fold 8 96.09% 96.04% 96.07% 96.06%

Fold 9 98.45% 98.41% 98.43% 98.43%

Fold 10 97.63% 97.66% 97.64% 97.64%

Average (SD) 96.91% (1.13%) 96.88% (1.14%) 96.89% (1.13%) 96.89% (1.14%)

Table 6  Results of the DenseNet-169 architecture

The bold value mean average accuray results of ten folds

Precision Recall F1-score Accuracy

Fold 1 99.21% 99.23% 99.22% 99.21%

Fold 2 98.83% 98.81% 98.82% 98.82%

Fold 3 98.08% 98.00% 98.04% 98.03%

Fold 4 97.64% 97.64% 97.64% 97.64%

Fold 5 98.81% 98.83% 98.82% 98.82%

Fold 6 98.87% 98.79% 98.83% 98.82%

Fold 7 99.21% 99.23% 99.22% 99.21%

Fold 8 99.21% 99.21% 99.21% 99.21%

Fold 9 98.81% 98.83% 98.82% 98.82%

Fold 10 99.60% 99.62% 99.61% 99.61%

Average (SD) 98.83% (0.58%) 98.82% (0.60%) 98.82% (0.59%) 98.82% (0.59%)
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IQA model based on ResNet-152 obtained the best test-
ing results, with an average accuracy of 99.04%, precision 
of 99.05%, recall of 99.04%, and F1-score of 99.05%, as 
shown in Fig. 9.

Results of comparison with existing methods
The results show that the GBDT model achieved the best 
accuracy of 83.15%, followed by SVM with accuracy of 
82.95%, Random Forest with accuracy of 82.84%, Ada-
boost with accuracy of 81.42%, and Decision Tree with 
accuracy of 78.09%. The performance of Naïve Bayes 
classification was the worst, with an accuracy of 76.57%. 
The classification performance of the three CNN models 
is significantly better than Zhang’s methods. The overall 
classification accuracy over Dataset3 by using VGG-16 
was 91.68%, the accuracy of 96.22% for DenseNet-169, 
and the accuracy of 96.32% for ResNet-152, as shown in 
Table 8. The experimental results in Table 8 and Fig. 10 
indicated that ResNet-152 outperformed the models 

in classifying good-quality versus poor-quality tongue 
images, including VGG-16, SVM, RF, and GBDT.

Based on the experimental results of the three CNN 
models and the above comparisons, it is concluded that 
the three CNN models can be used for screening image 
quality over massive tongue images.

Discussion
Tongue inspection is an important objective diagnos-
tic method in the process of TCM clinical diagnosis 
and treatment. The characteristics of tongue signs are 
important information sources for TCM clinical pattern 
identification and treatment, which is of great signifi-
cance for the discrimination of cold, heat, deficient and 
excessive patterns and the treatment of medication. It is 
a common consensus that standardized tongue image 
acquisition criteria are important for objective tongue 
diagnosis in TCM clinical research. The quality of tongue 
images is a crucial indicator in artificial intelligent tongue 

Table 7  Testing results on Dataset 2

The bold values mean average accuray results of ten folds

Model Precision Recall F1-score Accuracy

VGG-16 97.77% (0.47%) 97.71% (0.51%) 97.74% (0.49%) 97.71% (0.51%)

ResNet-152 99.05% (0.20%) 99.04% (0.20%) 99.05% (0.20%) 99.04% (0.20%)

DenseNet-169 98.89% (0.17%) 98.89% (0.18%) 98.89% (0.17%) 98.89% (0.18%)

Fig. 9  Macro-averaged accuracy of the tongue image quality classification model. Our CNN models with ResNet-152 and DenseNet-169 can 
increase the accuracy of poor-quality tongue image classification by nearly 2%
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diagnosis systems. Limited by the individual differences 
of the operators of the tongue diagnosis instruments, in 
the process of advancing the "Research and Development 
of the Intelligent Tongue Diagnosis System" project, we 
found that even though we have already conducted mul-
tiple standardized tongue image collection trainings, the 
obtained tongue image quality is still unqualified, and yet 
there are many poor-quality tongue images mentioned in 
“Background” section.

The quality control of tongue images is the prelimi-
nary work of constructing the standard dataset of tongue 
images of TCM, especially during the remote diagnosis 
and treatment of the Chinese medicine Internet. If poor-
quality images in Fig. 2 are mixed in, these may lead to 
the wrong diagnosis, so an efficient and intelligent tongue 
image quality screening model is urgently needed. It is 
difficult for traditional pattern recognition methods to 
quickly identify a variety of poor-quality tongue images.

The purpose of this study was to solve the problem of 
automatically controlling the quality of a large-sample 

tongue image database. The advantage of deep learn-
ing algorithms, especially CNNs, lies in their powerful 
feature extraction capabilities. It is possible to discover 
important hierarchical relationships in the data through 
algorithms without laboriously crafting features.

To our knowledge, this is the first study using deep 
CNNs for assessing tongue image quality. This is also the 
first study to put forward and systematically summarize 
the quality control of tongue images, and the perfor-
mances of three classical deep learning models, which 
were used to automatically identify tongue images with 
good quality and poor quality, were compared.

First, we collected 2531 raw tongue images by uniform 
instruments and categorized these tongue images into 
1238 poor-quality tongue images and 1293 good-quality 
tongue images by 10 TCM professionals. We also pre-
processed the tongue images to the same size and accu-
mulated a Dataset 1. We used different CNN models, 
namely, ResNet-152, VGG-16, and DenseNet-169, to 
extract features and perform binary classifications.

Then, we collected 700 tongue images (Dataset 2) from 
other clinical research centres by different instruments 
to verify our CNN models. Interestingly, the macro-
averaged accuracy of the CNN models was impressively 
over 96% both on Dataset 1 and Dataset 2. Moreover, 
ResNet-152 and DenseNet-169 achieved a better classifi-
cation accuracy than VGG-16, mainly due to the greater 
depths and powerful feature extraction capabilities of 
the networks. Even in the new dataset, our models with 
ResNet-152, VGG-16, and DenseNet-169 can achieve 
macro-averaged accuracy, precision, and recall values 
and F1-scores exceeding 98%. This indicates that the 
CNN models can be effective and adaptable to tongue 
images acquired by instruments with different illumina-
tions and CCDs.

Finally, colour moments, texture features, SSEQ fea-
tures were extracted from Dataset3 and were fed into 
SVM, Decision Tree, Random Forest, Naïve Bayes, 

Table 8  Comparison with existing methods

Model Precision Recall F1-score Accuracy

SVM 83.39% (7.00%) 83.25% (4.32%) 83.06% (3.23%) 82.95% (3.20%)

Decision Tree 79.52% (4.41%) 76.39% (6.74%) 77.66% (3.86%) 78.09% (2.86%)

Random Forest 84.10% (6.76%) 81.67% (4.51%) 82.64% (3.70%) 82.84% (3.35%)

Naïve Bayes 88.86% (6.15%) 61.24% (7.15%) 72.26% (5.88%) 76.57% (4.39%)

Adaboost 83.50% (4.60%) 79.23% (6.70%) 81.00% (2.74%) 81.42% (2.26%)

GBDT 84.46% (4.82%) 81.72% (5.61%) 82.86% (3.36%) 83.15% (2.79%)

VGG-16 91.87% (2.14%) 91.68% (2.16%) 91.77% (2.15%) 91.68% (2.16%)

ResNet-152 96.36% (2.81%) 96.32% (2.81%) 96.34% (2.81%) 96.32% (2.81%)

DenseNet-169 96.30% (2.19%) 96.22% (2.23%) 96.26% (2.21%) 96.22% (2.23%)

Fig. 10  Classification accuracy results of the tongue IQA model over 
Dataset 3. Comparison with Zhang’s methods, the model ResNet-152 
improve the accuracy of classifying poor-quality versus good-quality 
tongue images by nearly 13%
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Adaboost for tongue IQA [12, 13]. The results showed 
that the GBDT model was with the best accuracy of 
83.15%, followed by SVM with accuracy of 82.95%, 
Random Forest with accuracy of 82.84%, which was a 
little less than the reported accuracies in the literatures 
of [12, 13]. One possible reason is that Zhang’s method 
was proposed for recognizing two types of poor-qual-
ity tongue images, i.e., unsuitable posture and blurry. 
Foggy, underexposure, overexposure, moss staining and 
other poor-quality types were not considered. There-
fore, the three extracted features cannot fully cover the 
types of poor-quality tongue images. Comparison with 
Zhang’s methods, ResNet-152 can improve the accu-
racy of classifying poor-quality versus good-quality 
tongue images by nearly 13%. The results showed that 
ResNet-152 can well capture features of poor-quality 
images. However, the overall classification accuracy 
over Dataset 3 is smaller than that on Dataset 1. The 
sample size of Dataset 3 is smaller, being one fourth of 
the sample size of Dataset 1. The small sample size pos-
sibly restricts the generalizing capability of the trained 
CNN models.

In summary, these testing and comparison results dem-
onstrate that the CNN models in the present study per-
formed impressively in the classification of poor-quality 
tongue images. The experimental results showed that 
the accuracy of these three deep learning models was 
over 96%, and the accuracy of ResNet and DenseNet was 
over 98%. The results showed that it is feasible to apply 
the depth CNN model to the quality control of tongue 
images and that the practicability of this research work 
provides a preliminary research basis for establishing the 
standard dataset of tongue images in the future.

With the assistance of deep learning methods, the pro-
posed CNN method on our tongue image dataset for 
binary classification exhibits especially high accuracy, 
so the tongue IQA can be easily achieved. This provides 
reliable premises, guarantees the stability of later data 
analysis, and meets the clinical research needs of tongue 
diagnosis.

At this stage, this study did not establish a new model 
for tongue image quality control and did not use a recent 
state-of-the-art CNN model. According to the literature 
we consulted, there was no open-source dataset for test-
ing in the field of tongue diagnosis of TCM. Thus, we 
focused on the quality control of tongue images to build 
an open-source tongue image database, ensure the qual-
ity of pictures in the tongue image database, and provide 
reliable data support for intelligent technology research 
on tongue diagnosis in TCM. Moreover, there are still 
several shortcomings in this study. The quality assess-
ment of tongue images can be further improved in the 
future.

First, with the training of standardized acquisition 
techniques, subjects should be given sufficient guidance 
before collecting tongue images. Poor-quality tongue 
images originating from the operators can be avoided.

Second, considering the good performance of CNN 
models and the problem of poor interpretability of CNNs 
[44], some scholars have also conducted visual analy-
sis and research on the process of convolution, pool-
ing, and prediction classification of CNNs [45, 46]. Our 
results show that the deeper architectures (ResNet-152, 
DenseNet-169) outperformed the shallower architec-
ture (VGG-16) for all the evaluation metrics, including 
accuracy, precision, recall, and F1-score. However, the 
problem usually becomes more computationally inten-
sive when the CNN layer becomes deeper. Therefore, to 
balance the computational cost and model performance 
well, it is essential to develop lighter CNN models for 
tongue image quality.

Third, further research is required to investigate the 
tongue IQA model for more diverse scenes, such as 
smartphones [47, 48], aiming at various kinds of poor-
quality tongue image appearances. Constructing multiple 
classification models to distinguish poor tongue quality 
images into more groups may increase the clinical appli-
cability to expand the clinical application level of tongue 
diagnosis. In the next step, we plan to study how to use 
the latest image recognition technology to improve the 
performance of automatic tongue image recognition, 
with the aim to establish tongue image quality control 
suitable for more scenes.

Conclusions
Our research findings demonstrate various CNN mod-
els in the decision-making process for the selection of 
tongue IQA and indicate that applying deep learning 
methods, specifically deep CNNs, to evaluate poor-qual-
ity tongue images is feasible.
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