
Frontiers in Immunology | www.frontiersin.

Edited by:
Guochang Hu,

University of Illinois at Chicago,
United States

Reviewed by:
Beth Garvy,

University of Kentucky, United States
Yang Jin,

Boston University, United States
Jennifer Speth,

University of Michigan, United States

*Correspondence:
Elyse Y. Bissonnette

elyse.bissonnette@fmed.ulaval.ca

Specialty section:
This article was submitted to

Inflammation,
a section of the journal

Frontiers in Immunology

Received: 29 July 2020
Accepted: 30 September 2020

Published: 15 October 2020

Citation:
Bissonnette EY, Lauzon-Joset J-F,
Debley JS and Ziegler SF (2020)

Cross-Talk Between Alveolar
Macrophages and Lung

Epithelial Cells is Essential to
Maintain Lung Homeostasis.
Front. Immunol. 11:583042.

doi: 10.3389/fimmu.2020.583042

REVIEW
published: 15 October 2020

doi: 10.3389/fimmu.2020.583042
Cross-Talk Between Alveolar
Macrophages and Lung Epithelial
Cells is Essential to Maintain
Lung Homeostasis
Elyse Y. Bissonnette1*, Jean-François Lauzon-Joset1, Jason S. Debley2

and Steven F. Ziegler3

1 Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine,
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The main function of the lung is to perform gas exchange while maintaining lung
homeostasis despite environmental pathogenic and non-pathogenic elements
contained in inhaled air. Resident cells must keep lung homeostasis and eliminate
pathogens by inducing protective immune response and silently remove innocuous
particles. Which lung cell type is crucial for this function is still subject to debate, with
reports favoring either alveolar macrophages (AMs) or lung epithelial cells (ECs) including
airway and alveolar ECs. AMs are the main immune cells in the lung in steady-state and
their function is mainly to dampen inflammatory responses. In addition, they phagocytose
inhaled particles and apoptotic cells and can initiate and resolve inflammatory responses
to pathogens. Although AMs release a plethora of mediators that modulate immune
responses, ECs also play an essential role as they are more than just a physical barrier.
They produce anti-microbial peptides and can secrete a variety of mediators that can
modulate immune responses and AM functions. Furthermore, ECs can maintain AMs in a
quiescent state by expressing anti-inflammatory membrane proteins such as CD200.
Thus, AMs and ECs are both very important to maintain lung homeostasis and have to
coordinate their action to protect the organism against infection. Thus, AMs and lung ECs
communicate with each other using different mechanisms including mediators, membrane
glycoproteins and their receptors, gap junction channels, and extracellular vesicles. This
review will revisit characteristics and functions of AMs and lung ECs as well as different
communication mechanisms these cells utilize to maintain lung immune balance and
response to pathogens. A better understanding of the cross-talk between AMs and lung
ECs may help develop new therapeutic strategies for lung pathogenesis.
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INTRODUCTION

The main function of the lung is to perform gas exchange while
maintaining lung homeostasis despite environmental pathogenic
and non-pathogenic elements contained in inhaled air.
Considering that the volume of air inhaled every day is 5 to 8 L
a minute, the prevalence of inflammation and pulmonary
diseases is surprisingly low. Resident lung cells must
discriminate between innocuous and harmful particles without
creating unnecessary inflammation against inoffensive particles,
while initiating an immune response against pathogens when
necessary. Inappropriate or imbalanced immune response may
underpin respiratory diseases. To maintain a proper balance, the
lung needs specialized cells that can efficiently initiate and resolve
inflammatory responses. Alveolar macrophages (AMs) and lung
epithelial cells (ECs) are described in the literature as being the
most important cells in the maintenance of lung homeostasis.
AMs are the main immune cell type in the lung that determine
the orientation and the magnitude of the immune response (1).
In addition, they eliminate pathogens, apoptotic cells, and debris.
On the other hand, a great number of publications claim that
lung ECs are the main cell type keeping lung homeostasis with
their antimicrobial activities acting as a barrier and a sensor of
lung environment content (2). In reality, both AMs and ECs are
the gatekeepers of the lung as they together are the first line of
host defense and innate immunity. Furthermore, they
communicate with each other to coordinate their actions to
preserve lung homeostasis and gas exchange (3). Thus, in this
review, we will briefly delineate the role of AMs and ECs and
then focus on the everlasting cross-talk between AMs and lung
ECs to maintain lung immune balance.
AMs

Origin and Heterogeneity
There are two types of macrophages found in the lung and
named according to their location. AMs are found in the alveoli
and airways and are easy to collect by bronchoalveolar lavage
making them a highly studied cell type (4). There are also
macrophages located in the alveolar septa and in the vascular
adventitia that can be isolated from digested lung (5). These two
macrophage populations can be distinguished using
autofluorescence and surface markers (6). For the purpose of
this review, we will focus on AMs that are found throughout the
respiratory tract and are intimately associated with epithelial
surfaces of both terminal airspaces and conducting airways (7).

For many years it was believed that AMs came from the
differentiation of monocytes in the lung. Although this is true for
some AMs (8), it is now well established that AMs mainly derive
from embryo yolk sac and fetal liver cells (9–11). AMs are long-
lived cells and a subpopulation of them can proliferate in situ to
replenish themselves with a turnover rate of around 40% in one
year (8, 12–14). This in situ proliferation required granulocyte-
macrophage colony-stimulating factor (GM-CSF) and is
controlled by mechanistic target of rapamycin complex 1
Frontiers in Immunology | www.frontiersin.org 2
(mTORC1), a regulator of cell growth and proliferation (6, 15).
Interestingly, GM-CSF also increases the expression of anti-
apoptotic genes leading to long-lived cells (6). This
maintenance of AM number is observed during homeostasis
and under stress condition, but during acute inflammatory
responses more macrophages are needed. Thus, there is rapid
recruitment of monocyte-derived macrophages to the lung to
eliminate pathogens (8, 16). These recruited macrophages
promote lung inflammation whereas resident AMs dampen it
(14, 17). During the resolution of inflammation, the majority of
monocyte-derived macrophages undergo programmed cell
death, while resident AMs survive and persist after the
resolution phase (8). However, some recruited macrophages
become phenotypically and functionally similar to resident
AMs two months after infection showing that a part of AM
population can also be replenished by monocyte-derived
macrophages (18).

AMs are characterized by high expression of GM-CSFR,
CD200R, and SIRP1a (Figure 1). Like other tissue
macrophages, AMs show functional heterogeneity and
plasticity depending on the microenvironment (1, 19). Tissue
macrophages were first divided similarly to T helper
lymphocytes; M1 being classically activated macrophages and
M2 alternatively activated macrophages (20). M1 macrophages
express high levels of pro-inflammatory mediators, whereas M2
express anti-inflammatory and wound healing mediators (19, 21)
(Figure 1). The characterization of these populations of
macrophages mostly results from in vitro stimulation.
Macrophages stimulated with lipopolysaccharide (LPS) or
inflammatory cytokines, such as interferon-g (IFN-g), display
M1 phenotype with high expression of inducible nitric oxide
synthase (iNOS), interleukin-1b (IL-1b), and tumor necrosis
factor a (TNFa) (Figure 1) (22–24). These cells also express
high level of MHCII and CD200 (25–27) and have cytotoxic and
antitumoral properties (28, 29). On the other side, M2
macrophages arise in response to Th2 cytokines, IL-4, and/or
IL-13 (30, 31). These macrophages express high level of arginase
and anti-inflammatory cytokines such as IL-10 and transforming
growth factor b (TGFb) (Figure 1). They are involved in wound
healing, tissue repair, and fibrosis, but have poor anti-
microbicidal activity (32, 33), including low nitric oxide
production (NO), as high arginase expression is known to
inhibit NO production (34). Further studies demonstrated the
existence of different subpopulations of M2 macrophages (35).
Benoit et al. suggested dividing M2 macrophage subpopulations
according to exposure agents; M2a referring to macrophages
exposed to IL-4/IL-13, M2b to immune complexes and toll like
receptor (TLR) agonists, M2c to IL-10 and glucocorticoid
hormones, and M2d to TLR agonists through adenosine
receptor (33, 35, 36). Thus, the dichotomous classification of
M1/M2 does not align perfectly with Th1/Th2 immune response
as previously suggested (37). Although M1 and M2a,b,c,d
macrophages are phenotypically and functionally distinct
macrophages (38, 39), they lack specific surface markers
[reviewed by Wang et al. (40)]. Indeed, macrophage
subpopulation identification relies on the relative intensity of
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marker expression and not on induction of expression. Thus,
best practice characterization of macrophage subpopulations
should include several markers of each phenotype (19).

M1/M2 classification of macrophages in vitro is easily done by
adding specific stimuli to differentiate them, but identification of
macrophage subpopulations is more complicated in vivo where
numerous cytokines are present, particularly in inflammatory
diseases. In reality, there is a continuum of macrophage
populations with various functions and phenotypes that can be
shifted from one to the other phenotype depending on the
microenvironment and according to macrophage plasticity
(41). In steady-state lung, AMs are in an immunosuppressed
state and their phenotype is tightly control by the lung
microenvironment. They express high level of CD200 receptor
(CD200R) which is associated with M2 phenotype (42, 43) and
are involved in the downregulation of immune inflammation
(44, 45). This may be important for tolerating innocuous inhaled
agent. However, in humans, there is no consensus on AM
phenotypes. Studies showed data ranging from 8% to 50% of
AMs are M2 in human steady-state lung (46, 47). These
discrepancies may be caused by the infection/inflammation
history long-term impact on AM functions and phenotypes.
Alternatively, it could suggest the presence of multiple AM
Frontiers in Immunology | www.frontiersin.org 3
phenotypes in healthy lung responding to their specific
environment to perform a variety of functions (14).

AM Functions and Immune Response
AMs are well known for their role in maintaining lung
homeostasis by phagocytosing microbes, dead cells, and other
airborne particles to prevent unnecessary inflammation (48–51).
Although AMs are considered poor antigen presenting cells (52–
54), they can transport antigens to the draining lymph nodes
(55). However, in the lung, antigen presentation is mainly
mediated by dendritic cells. Interestingly, AMs suppress
dendritic cell function and migration in and out of the airways
to avoid immune responses against innocuous particles (53, 56,
57). Furthermore, AMs are known to downregulate T cell-
dependent immune response in the lung by inducing FoxP3
expression in T cells (58, 59). A defect in this function is observed
in asthma patients demonstrating the importance of AMs in the
initiation of tolerance (60, 61). Depletion of AMs potentiates
allergic asthma development and the severity of influenza
infection, showing the significant role of these cells to dampen
immune responses (48, 50, 51).

In steady-state, AMs execute anti-inflammatory functions to
avoid immunopathology and the development of specific
FIGURE 1 | Markers expressed by alveolar macrophage subsets. Alveolar macrophages (AMs) expressed high levels of CD200R, SIRPa, GM-GSF R, and PPRs,
including TLRs and NLRs. M2 AMs (homeostasis/anti-inflammatory) have high expression of arginase, and secrete anti-inflammatory mediators, such as IL-10, PGE2,
and TGFb. M1 AMs (inflammatory/pathological) increase their expression of CD200 and MHC II, as well as producing inflammatory mediators, such as
metallopeptidase (MMPs), NO-, IL-1b, IFNs, IL-6, TNFa, and MIP-1a. Created with BioRender.com.
October 2020 | Volume 11 | Article 583042
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immune responses to harmless antigens. They are also the source
of anti-inflammatory mediators such as IL-10, TGFb, and
prostaglandin E2 (PGE2) (1, 62, 63), facilitating the resolution
of inflammation (64, 65). However, AMs maintain their capacity
to be activated by pathogens and other danger signals via
immune recognition of pathogen-associated molecular patterns
by pattern recognition receptors (PRRs) including TLR, NOD-
like receptors (NLRs) and C-type lectin receptors to initiate
innate and adaptive immune responses (66–68). AMs are a
primary source of cytokines and chemokines initiating
immune responses, including TNFa, NO, IL-1b, IL-6, IFNs,
and macrophage inflammatory protein (MIP)-1a (69, 70)
(Figure 1). However, over production of these mediators
contributes to the pathogenesis of inflammatory lung diseases
such as acute lung injury, asthma, and chronic obstructive
pulmonary diseases (COPD) (71–73). Thus, a rigorous
regulation of AM secretory mediators is required to maintain
lung homeostasis.

In addition to their role in modulating the immune response,
AMs maintain lung homeostasis, in part, by internalizing and
catabolizing lung surfactant which is critical for lung
biomechanic and immunity (74, 75). A deficiency in GM-CSF
signaling can lead to the dysregulation of AM surfactant
clearance and causes accumulation of proteins and
phospholipids in airspaces leading to pulmonary alveolar
proteinosis (76). Interestingly, transplantation of functional
AMs reduces alveolar proteinosis supporting the assumption
that AMs are essential for surfactant metabolism (77). However,
AMs are not the only cells that control surfactant levels. Alveolar
epithelial type 2 cells are also involved in production and active
removal of surfactant demonstrating the collaboration between
these two cell types to maintain lung homeostasis (78).
ALVEOLAR AND AIRWAY ECS

Origin and Heterogeneity, and
Characteristics
Airway epithelium represents a tight barrier separating the
organi sm from the externa l env i ronment . In the
tracheobronchial airway, the epithelium is pseudostratified,
ciliated, and contains secretory cells. In the small airway, the
epithelium becomes more cuboidal with increased club cells (79)
formerly named Clara cells, which should be avoided given the
origin of the experimentation (80). The alveoli are composed of
two distinct EC types, alveolar epithelial type I cells that are thin
and cover around 95% of the internal surface of the lung, and
alveolar epithelial type II cells that are cuboidal secreting cells
located between type I cells (81). Alveolar type I cells are
specialized in gas exchange and alveolar fluid regulation (82,
83), whereas type II cells have secretory functions and constitute
the progenitor cells of the epithelium (84).

The predominant cell types constituting the bronchial airway
epithelium include basal progenitor cells, ciliated cells, secretory
club cells, and goblet cells (79, 85). However, rarer and more
specialized airway EC types have recently been better
Frontiers in Immunology | www.frontiersin.org 4
characterized such as neuroendocrine cells, tuft-like cells, and
ionocytes (85–88). Over the past several years newer
methodologies including single cell RNA sequencing (scRNA-
Seq) and lineage tracing using pulse-Seq have allowed for better
characterization, identification of cell type markers, and
improved understanding of the evolution of these cell types in
the airway epithelium in in vivo, ex vivo, and in vitro model
systems (86, 88). Basal cells (identified by expression of P63 and
KRT5) are the airway progenitors or stem cells that have the
ability to differentiate and replenish all subtypes of cells of the
airway epithelium (89). Goblet cells (expressing MUC5B and/or
MUC5AC) secrete mucins (90, 91), and ciliated cells (identified
by expression of FOXJ1 and AcTub) (90, 92) serve the critical
physiologic role of facilitating mucociliary transport by
propelling the airway mucus gel layer that overlies airway
surface liquid proximally in the airways. Secretory club cells
(expressing CCSP, SCGB1A1, and SCGB3A2) serve a protective
role by both metabolizing inhaled toxins using cytochrome P450
in their smooth endoplasmic reticulum and through secretion of
glycosaminoglycans, uteroglobin, and a surfactant-like substance
(90, 93). Tuft cells, originally described in the intestine as
chemosensory cells that facilitate Th2 inflammation through
their production of IL-25 and thymic stromal lymphopoietin
(TSLP), have recently been identified as a rare airway EC type
(identified by expression of POU2F3) (94). The role of
pulmonary neuroendocrine cells (PNECs), present in bronchial
airway epithelium (identified by expression of SYP, CHGA,
PGP9.5, ROBO2, and ENO2), and their secretion of bioactive
amines and peptides, remains poorly understood (95). The
recently identified airway EC type ionocyte (co-expressing
FOXI1 and CFTR), although rare appears to be a major source
of CFTR expression and function in the airway (86, 88). Recent
elegant studies employing scRNA-Seq together with lineage
tracing with pulse-Seq to track differentiation of airway ECs in
vivo in mice, have described how airway basal cells can directly
differentiate into club cells, tuft cells, PNECs, and ionocytes,
whereas ciliated cells and goblet cells are derived secondarily
from club cells (86). In the alveolar lung compartment where gas
exchange occurs, the epithelium is squamous and consists of
alveolar type I cells, identified through their expression ofHOPX,
PDPN, AQP5, and alveolar type II cells identified by their
expression of SPB, SPC, and HT2-280 (96, 97).

The effectiveness of the lung epithelial barrier arises from its
capacity to elaborate apical tight junctions with underlying
adherent junctions (98). These intercellular junctions establish
cell polarity and provide a selective permeability barrier
regulating the movement of ions and macromolecules between
the apical and basolateral face of the epithelium (99). Several
membrane proteins are involved in these tight junctions such as
claudin family, occludin, zonula occludens, and junction
adhesion molecules (100, 101). A disruption in the epithelial
barrier or a dysfunction/dysregulation of junction proteins
contributes to lung pathologies such as asthma, cystic fibrosis,
COPD, and acute respiratory distress syndrome (102–108).

Another type of intercellular contact that enable intercellular
communication and metabolites and signaling molecules
October 2020 | Volume 11 | Article 583042
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exchange between ECs is the gap junctions (109). These
junctions, formed by channel proteins called connexins, play a
major role in cellular coordination of cell functions and ensure
the integration of metabolic activity of attached cells. Lung
cellular interactions also involve pannexin glycoproteins and
connexin proteins unopposed to gap junctions that form
hemichannels allowing paracrine cell-cell communication (110,
111). These various junctions between airway ECs are important
for epithelium barrier and functions.

Lung EC Model Systems
The current “gold-standard” for studying the airway epithelium
in vitro or ex vivo using primary airway ECs is the air-liquid
interface (ALI) model system. In this approach, airway ECs are
seeded into collagen-coated permeable transwells, and when they
become confluent apical media is removed and cultures are
maintained in an ALI environment and epithel ia l
differentiation medium (e.g. PneumaCult ALI™; Stemcell™)
for at least 21 days, generating an organotypic differentiated
airway epithelial culture that closely resembles the in vivo airway
(97, 112, 113). This model can be used to study EC responses to
environmental insults (114, 115) and viral infection (116, 117),
and can be modified to support co-cultures of airway ECs with
stromal and/or immune cells (118–121). Model systems that
closely approximate the in vivo characteristics of alveolar ECs are
less well developed. When primary cultures of pediatric alveolar
lung ECs are cultured in vitro they expand as KRT5 expressing
basal-like cells, however, when cultured at an ALI they
demonstrate increased expression of markers for airway, but
not alveolar ECs (122). Recently progress has been made
developing distal lung directed differentiation protocols that
utilize lung progenitor cells cultured in a 3D organoid phase,
with or without mesenchymal cells (97, 123, 124). Although
some of these models do generate alveolar type II-like cells (123,
124), these cultures are grown in submerged culture conditions
and therefore are suboptimal in that they do not yet model the in
vivo ALI environment (97).

Alveolar and Airway EC Functions
In addition to its role as a physical barrier, the epithelium is
crucial for lung biomechanics (78, 125). Secretion of surfactant
by alveolar epithelial type II cells is critical to stabilize the
structure of alveoli by reducing surface tension at the air-liquid
interface to avoid alveolar collapse (74). The absence or
deficiency/inactivation of surfactant causes severe respiratory
disorders such as neonatal respiratory distress syndrome and
acute respiratory distress syndrome (126). On the other hand,
impaired surfactant catabolism by AMs and/or alveolar epithelial
type II cells leads to accumulation of surfactant in alveoli and is
associated with lung proteinosis causing respiratory failure (127).
Pulmonary surfactant is composed of around 90% lipids, mainly
phospholipids (80%–85%) and some neutral lipids (5%–10%),
and 8%–10% proteins, including two hydrophilic proteins,
surfactant protein (SP)-A and SP-D, and two hydrophobic
proteins, SP-B and SP-C. The proportion of all the
constituents of pulmonary surfactant is important for the
biomechanical functions of the film at the air-liquid interface
Frontiers in Immunology | www.frontiersin.org 5
reducing surface tension (125) and also for protecting
against pathogens.

Protection against microbes entering the lung is crucial to
maintain gas exchange. One line of defense of airway ECs is the
production of a plethora of antimicrobial proteins and peptides
such as b defensins, LL-37, lysozyme, lactoferrin, NO, and
secretory leukocyte proteinase inhibitor (128, 129). The
surfactant proteins, SP-A and SP-D, produce by type II
alveolar ECs are also involved in pathogen clearance via
several mechanisms including binding, agglutination, anti-
microbial and fungal effects, and enhancement of neutrophil
and AM phagocytosis and killing (130, 131). The production of
antimicrobial peptides is stimulated by the activation of PRRs on
lung ECs such as TLR. There are at least 10 TLRs expressed by
lung ECs that recognise distinct pathogen-associated molecular
patterns derived from viruses, bacteria, mycobacteria, fungi, and
parasites (129, 132). Lung ECs express other PRRs such as the
RIG-I-like receptor viral sensors RIG-1, MDA5, and LPG2, in
addition to NLRs, C-type lectin, and inflammasome components
(133–137) that participate to the immune responses.

Modulation of Immune Response
Lung ECs contribute to local immune response through the
production of a multitude of modulatory mediators. The
stimulation of PRRs on lung ECs by viruses induces
the production of type I and III IFNs which in turn induce
expression of hundreds of interferon-stimulated genes (ISGs)
(117), the protein products of some of which have local direct
antiviral effects while others promote cellular immunity.
Stimulation of lung EC PRRs also induce a number of pro-
inflammatory cytokines and chemokines including IL-1b, IL-6,
IL-8, TNF, GM-CSF, MIP-1a, RANTES, and monocyte
chemoattractant protein (MCP)-1 (138–140). Together these
ISGs and mediators promote the recruitment and activation of
inflammatory cells to eliminate pathogens.

In addition to the production of inflammatory mediators,
lung ECs contribute to the regulation of inflammation and
airway remodeling through the production of anti-
inflammatory products including IL-10, TGFb, lipoxins,
resolvins, protectins, and PGE2 (139, 141–143). Overall, the
secretion of cytokines, chemokines, and lipid mediators by
lung ECs help to shape a balanced immune response.
However, EC aberrant secretion of pro-inflammatory cytokines
lead to lung pathologies, as observed in pulmonary allergic
inflammation where lung EC production of IL-25, IL-33, and
TSLP are linked to the initiation and progression of the disease
(116, 144, 145). Lung ECs also contribute to the pathogenesis of
COPD through the production of a plethora of inflammatory
mediators (146).

Lung ECs can also modulate immune cells through physical
interaction via immunomodulatory surface molecules such as
CD200, program death-ligand (PDL)-1, and CD47 (147–149).
The binding of CD200 to its receptor, CD200R which is highly
expressed on AMs, downregulate the secretion of inflammatory
cytokines upon LPS stimulation (42), suggesting an
immunomodulatory function of lung ECs. This regulation
affects other immune cells such as T cells and dendritic cells
October 2020 | Volume 11 | Article 583042
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that also express CD200R (150). Similarly, the binding of PDL-1
to its receptor PD-1 dampens AM secretion of inflammatory
cytokines and negatively regulates T cell effector functions (151,
152), whereas binding of CD47 to SIRP1a expressing
macrophages downregulate phagocytosis (153, 154). Thus,
there is a breadth of evidence demonstrating the importance of
lung ECs in regulating local immune responses, by interacting/
communicating with immune cells, including AMs.
CROSS-TALK BETWEEN AMS AND
LUNG ECS

Given that lung ECs and AMs are the first cell types being in
contact with pathogens, they must coordinate their actions to
eliminate pathogens without causing too much damage to the
lung, either via direct cell-cell contact or secretion of molecules
(Figure 2). In steady-state, ECs maintain AMs in a quiescent
state. AMs adhere to the epithelium via extracellular membrane
proteins such as CD200R, PD-1, and SIRP1a and their ligands
on ECs, respectively CD200, PDL-1, and CD47 (42, 147, 149,
151, 155, 156). In addition to maintaining cells in close proximity
to increase paracrine communication, these protein interactions
Frontiers in Immunology | www.frontiersin.org 6
downregulate AM activation. The contiguity of these two cell
types may also allow the regulation of AMs by anti-inflammatory
cytokines secreted by lung ECs such as IL-10 and TGFb (139,
141). The loss of these regulatory interactions, either due to
epithelial damage or sensing of pathogens in the airways, lead to
the activation of AMs and initiation of inflammatory response.
Whether the epithelium is the first to stimulate AM pro-
inflammatory reaction is still a matter of debate, and may
depend on the nature of the pathogen, but both of them are
needed for adequate immune response.

Alveolar Gap Junction Channel
Gap junctions are usually an intercellular contact between ECs,
but they are also found between AMs and alveolar ECs. In
mouse, a subset of AMs express connexin 43 enabling the
formation of gap junctions with ECs (157). These gap
junctions allow waves of Ca2+ signal to travel from AMs to
ECs and vice-versa, as observed with LPS stimulation causing
cyclic and synchronized calcium spikes in both cell types. Mice
with macrophages deficient in connexin 43 had higher levels of
pro-inflammatory cytokines in bronchoalveolar lavage that
originated from both AMs and airway ECs (157). This
supports the bi-directional anti-inflammatory role of AM-
epithelium gap junction channel, and is essential to reduce LPS
FIGURE 2 | Intercellular communication between AMs and ECs. Epithelial cells (ECs) and alveolar macrophages (AMs) communication involves surface protein
interaction, as well as mediator secretion and extracellular vesicles (EVs). AM activation is regulated by EC expression of PDL1, CD200, and CD47, which activate
AM cognate receptor, respectively PD1, CD200R, and SIRPa. EC also regulate AM functions via paracrine secretion of mediators, such as IL-10 and PGE2. AM and
EC functions can also be regulated with the release of EVs which can have inflammatory or anti-inflammatory functions, via EV surface proteins, cytokines or
miRNAs. Of note, AMs constitutively secrete EVs containing SOCS. Finally, AMs and ECs can form gap junctions to allow bi-directional intercellular metabolic
synchronicity, including Ca2+ waves. Created with BioRender.com.
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induced lung inflammation and injury. The presence of connexin
43 gap junctions between macrophages and ECs was also shown
using human cells (158, 159), suggesting its involvement in
human lung cell communication. However, the exact role of
this communication is still undetermined.

Extracellular Vesicles
Recently, extracellular vesicles (EVs) have emerged as a novel
communication mechanism to exchange proteins, lipids, and
genetic material between cells. These vesicles are divided into
three categories, apoptotic bodies, exosomes, and microvesicles.
The release of apoptotic bodies during apoptosis is well known
and will not be discussed here [reviewed by Battistelli M et al.
(160)]. Exosomes and microvesicles are released in steady-state
conditions. The main difference between these two EVs resides in
their size and origin. Exosomes are 40-120 nm in diameter and
are released from endosomes fusing with the membrane, whereas
microvesicles (also called microparticles or ectosomes) are 50–
1,000 nm and are formed by the outward budding and fission of
the plasma membrane (161, 162). Given the overlapping range of
size and composition, and the difficulty of isolating exosomes
and microvesicles separately to discriminate their specific
functions (163), we will refer to EVs as an umbrella term for
both exosomes and microvesicles in this review.

EVs are found in most human body fluids, including
bronchoalveolar lavages (164). These EVs express membrane
surface proteins, cytoskeletal and cytoplasmic proteins,
cytokines, mRNAs, and miRNAs (Table 1). EVs may explain
in part how cytokines/chemokines reach physiologic
concentrations to affect target cells. In steady-state, EVs in
bronchoalveolar lavages come largely from AMs and lung ECs
(Figure 2), but during inflammatory response, infiltrating cell
types also produce them (166–168, 171, 172, 174–177), as they
are involved in immune responses, inflammation, bacterial and
viral sequestration.

EVs released by AMs and lung ECs canmodulate each other in
a pro- and anti-inflammatory manner. AMs constitutively secrete
Frontiers in Immunology | www.frontiersin.org 7
EVs containing suppressor of cytokine signaling (SOCS) proteins,
which inhibit the inflammatory STAT pathway (Figure 2) (169).
Lung ECs barely express SOCS proteins, however they secrete
mediators, such as PGE2 and IL-10, that increase SOCS protein
secretion by AMs. EVs containing SOCS proteins are taken up by
lung ECs and downregulate cytokine-induced STAT activation,
maintaining ECs in a quiescent state and limiting tumor
transformation of normal ECs (170). Furthermore, vesicular
SOCS can dampen allergic airway inflammation by inhibiting
EC production of type 2 cytokines (178). Thus, EVs are crucial to
maintain lung homeostasis through cell-cell communication, but
they can also be involved in lung pathogenesis.

Indeed, content and concentration of EVs in bronchoalveolar
lavage change during lung inflammation. However, there is still
controversy on which cell types initiate immune responses.
Under hyperoxia-induced oxidative stress, lung ECs secrete
EVs to activate pro-inflammatory functions of AMs, facilitating
the recruitment of immunomodulatory cells involved in lung
injury (171, 176). In contrast, after pulmonary LPS exposure,
AMs are the first producers of EVs containing inflammatory
mediators which activate lung EC inflammatory response
(168). In allergic inflamed lung, inhibition of EV secretion
alleviates asthma features, although the cellular origin of EVs is
unknown (166). Interestingly, intranasal transfer of EVs from
bronchoalveolar lavage of tolerized mice prevent allergic
sensitization, including production of IgE, Th2 cytokines, and
lung inflammation (179). Yet, the functions of EVs produced by
AMs and lung ECs are underexplored, and may have beneficial
or detrimental effects depending on the context. More research is
needed to better understand the communication between these
two cell types in lung homeostasis and diseases.
CONCLUSION

AMs close proximity to lung ECs allow them to communicate
using gap junctions, surface membrane molecules, soluble
mediators, and EVs. In steady-state, AMs and ECs
downregulate each other to avoid unnecessary inflammation.
However, each cell type can activate the other one to initiate an
immune response when required.

There is a plethora of publications on AMs and lung ECs; yet,
very few of them investigate their interactions under lung
homeostatic conditions and how this interaction is altered in
pathological conditions. Furthermore, numerous studies use
macrophages derived from bone marrow or monocytes as
surrogate for AMs, even though AMs are functionally and
phenotypically different from other macrophages. Thus, to
extend our knowledge on the interaction between AMs and
ECs in lung steady-state and diseases, it is essential to perform in
vivo experiments or to harvest AMs from bronchoalveolar lavage
for in vitro co-culture with human primary lung ECs which show
normal differentiation patterns (unlike epithelial cell lines) (180).
In addition, in vitro co-culture systems of AMs and ECs should
be performed at air-liquid surface, which mimics more closely
the in vivo situation, including the formation of functional tight
TABLE 1 | Extracellular vesicle content.

Categories Examples References

Membrane
surface
proteins

CD3, CD14, CD40, CD54, CD63,
CD80, CD81, CD86, MHCI, MHCII,
tetraspanin, mucin, ion transport and
ion channel proteins

Admyre et al. (164)
Gupta et al. (165)
Kulshreshtha et al. (166)

Cytoskeletal
proteins

Tubulin, actin, moesin, radixin, ezrin Gupta et al. (165)
Kesimer et al. (167)

Cytoplasmic
proteins

Heat chock proteins, mucin, annexin,
cytokines, chemokines, complement
C3, suppressor of cytokine signaling 1
(SOCS1), SOCS3

Kesimer et al. (167)
Gupta et al. (165)
Soni et al. (168)
Bourdonnay et al. (169)
Speth et al. (170)

Nucleic
acids

mRNAs Kesimer et al. (167)
Lee et al. (171)

miR-210, miR-320a, miR-221, miR-17,
miR-3960, miR-1246, miR-4497

Fugita et al. (172)
Lee et al. (171)
Lee et al. (173)
Gupta et al. (165)
October 2020 | Volume 11 | Article 583042

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bissonnette et al. Alveolar Macrophages and Lung Epithelial Cells
junctions (181). This more representative model may help
improving our knowledge on AMs and lung ECs
communication and their collaboration in the maintenance of
lung homeostasis and response to pathogens and injuries. A
better understanding of AMs and lung ECs cross-talk may help
develop new therapeutic strategies for lung pathogenesis.
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