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Sepsis is a leading cause of morbidity and mortality in critically ill children, and acute

kidney injury (AKI) is a frequent complication that confers an increased risk for poor

outcomes. Despite the documented consequences of sepsis-associated AKI (SA-AKI),

no effective disease-modifying therapies have been identified to date. As such, the only

treatment options for these patients remain prevention and supportive care, both of which

rely on the ability to promptly and accurately identify at risk and affected individuals. To

achieve these goals, a variety of biomarkers have been investigated to help augment our

currently limited predictive and diagnostic strategies for SA-AKI, however, these have had

variable success in pediatric sepsis. In this mini-review, we will briefly outline the current

use of biomarkers for SA-AKI, and propose a new framework for biomarker discovery

and utilization that considers the individual patient’s sepsis inflammatory response. Now

recognized to be a key driver in the complex pathophysiology of SA-AKI, understanding

the dysregulated host immune response to sepsis is a growing area of research that can

and should be leveraged to improve the prediction and diagnosis of SA-AKI, while also

potentially identifying novel therapeutic targets. Reframing SA-AKI in this manner – as a

direct consequence of the individual patient’s sepsis inflammatory response –will facilitate

a precision medicine approach to its management, something that is required to move

the care of this consequential disorder forward.
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INTRODUCTION

Sepsis is common in the pediatric intensive care unit (PICU), accounting for 75,000 hospitalizations
annually in the United States (1). Children with sepsis suffer substantial morbidity and mortality,
and those risks are further increased by the co-incidence of acute kidney injury (AKI), a frequent
complication of pediatric sepsis (2, 3). Impacting almost half of critically ill children who meet
criteria for severe sepsis (4), sepsis-associated AKI (SA-AKI) has been associated with poor
outcomes including prolonged lengths of stay, higher mortality, and increased healthcare costs
(3, 5, 6). Unfortunately, despite the burden it imposes on health outcomes, there are currently
no effective disease-modifying therapies for SA-AKI once present (7, 8). As a result, therapeutic
approaches are centered on prevention and supportive care, including employment of renal
protective measures and timely initiation of renal replacement therapy, if indicated (9, 10).
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A primary limitation to the successful development of novel
therapies to treat SA-AKI is an incomplete understanding of
the pathophysiology. Historical perspectives considered SA-AKI
to be the result of renal hypoperfusion during the shock state,
leading to acute tubular necrosis (11). However, the modern
pathophysiologic model of SA-AKI recognizes a much more
complex and heterogeneous disease – a combination of a
dysregulated host inflammatory response to infection, altered
microcirculatory blood flow, and metabolic derangements that
ultimately lead to cell cycle arrest and apoptosis of renal tubular
epithelial cells (12, 13). Difficulties in treatment development
encountered due to this complexity are further exacerbated
by the limited diagnostic strategies for SA-AKI, as it is now
well-established that serum creatinine and urine output –
the current gold standards for diagnosis – are fraught with
issues, particularly among patients with sepsis (14). Indeed,
the limitations of these tools are highlighted by the recent
23rd Acute Dialysis Quality Initiative recommendations, which
suggest incorporating tubular injury biomarker status into
the definition of AKI, when available (15). Taken together,
the lack of precision diagnostics for SA-AKI, coupled with
a limited understanding of the individual heterogeneous
pathophysiology, have prevented advances in therapy
beyond our current standards of prevention and supportive
care (16).

With these issues in mind, it is not surprising that there
is a growing interest in identifying biomarkers for SA-AKI. In
addition to the clear need for validated injury biomarkers to
improve diagnostic precision once present, biomarkers that allow
for early identification of patients at risk for severe, persistent
SA-AKI and those that reflect the patient-specific underlying
pathophysiology are needed, as they might allow for prompt
implementation of renal protective strategies, identification of
biologically important targets for development of novel therapies,
and provide a mechanism for enrichment of future clinical
trials (17). Given the complexity of SA-AKI outlined above, it
is unlikely that one biomarker measured at one moment in
time will be able to achieve these goals, and this reality should
inform our approach to identifying and employing biomarkers
for SA-AKI.

This mini-review proposes a new framework for the
discovery and utilization of biomarkers for SA-AKI. The
foundational premise is that the pathophysiology of SA-
AKI is directly tied to an individual’s unique sepsis-related
inflammatory response, and thus the diagnostic and treatment
approach to SA-AKI may be different from other forms of
AKI. Within this framework, we will briefly describe the
current state of biomarkers for SA-AKI and discuss their
limitations. We will then evaluate how biomarkers have
been employed for the identification of individual sepsis
molecular signatures, and how these may be leveraged
in SA-AKI. Ultimately, if biomarkers can be biologically
linked to the dysregulated inflammatory response to sepsis,
then a precision medicine approach to the diagnosis
and treatment of SA-AKI can be utilized to improve
patient outcomes.

THE CURRENT APPLICATION OF
BIOMARKERS IN SEPSIS-ASSOCIATED
AKI

To date, a variety of biomarkers for SA-AKI have been studied.
The biological underpinnings of these biomarkers vary, and
include direct markers of tubular injury, regulatory proteins
responsible for promoting cell cycle arrest, and more recently,
proteins involved in the inflammatory cascade induced by
sepsis (18, 19). Thus, far, SA-AKI research utilizing biomarkers
has been limited to improving diagnostic and predictive
capacity, most with modest success (18). Importantly, there have
been no interventional trials to date utilizing biomarkers to
initiate disease-specific therapy in SA-AKI. An overview of the
biomarkers that have been most widely investigated in SA-AKI
is included in Table 1.While the purpose of this review is not to
cover these previously studied biomarkers of SA-AKI in detail,
two deserve more in depth discussion.

Neutrophil Gelatinase-Associated
Lipocalin (NGAL)
As the most widely studied biomarker of AKI, NGAL – a protein
produced by the injured nephron that can be measured in
both urine and serum – has also been studied extensively as
a biomarker of SA-AKI (37). While NGAL has been shown to
successfully identify patients with AKI secondary to a variety
of etiologies (38–40), its utility in sepsis is less clear (41–44).
This is in large part due to an increase in systemic NGAL
production – namely by neutrophils and the liver – as part of
the inflammatory response to infection, independent of injury
to nephrons (20). The consequence of this lack of kidney-
specific production of NGAL has beenmodest performance when
utilized for diagnosis and prediction of SA-AKI, often with high
sensitivity but poor specificity (Table 1) (21, 22). Unfortunately,
difficulty disentangling the fraction of NGAL elevation that is
attributable to AKI, vs. a more generic systemic inflammatory
response among patients with sepsis, likely limits its utility as
a single biomarker for the diagnosis of SA-AKI, although more
study is warranted.

Cell Cycle Arrest Markers
The induction of cell cycle arrest in renal tubular epithelial
cells plays an important role in the early pathophysiology of all
forms of AKI (11). Consequently, the expression of cell cycle
arrest proteins tissue inhibitor of metalloproteinase-2 (TIMP-2)
and insulin-like growth factor-binding protein 7 (IGFBP7) have
been shown to be increased in renal tubular cells in response
to stress or injury (18, 25). The combination of TIMP-2 and
IGFBP7 for the prediction of AKI in high risk patients has been
examined in several landmark studies (Table 1) (26, 28, 45), and
is now approved by the U.S. Food and Drug Administration
for critically ill adults with one or more risk factors for AKI,
including sepsis (25). In adults with sepsis, this tool (known
as NephroCheck R©) demonstrated an area under the receiver
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TABLE 1 | Investigated biomarkers of sepsis-associated acute kidney injury.

Biomarker Site of production Function Pathophysiology Measured Potential applications in SA-AKI Time to AKI Limitations

Neutrophil

gelatinase-associated

lipocalin (NGAL)

Systemic: liver,

circulating neutrophils,

epithelial cells

Binds bacterial siderophores

to inhibit growth; also has

anti-apoptosis effects and

enhances proliferation of

renal tubules (20)

Marker of renal tubular

epithelial injury and systemic

inflammation (20)

Plasma, Urine Plasma NGAL within 24 h of

admission predicted SA-AKI in

children with an AUROC of 0.68 (21)

AKI diagnosed by

day 7 (median 1,

range 1–6) (21)

High sensitivity

with poor

specificity

Kidney: proximal

tubule, thick ascending

limb of Henle’s loop,

distal tubule, and

collecting duct

Meta-Analysis: plasma NGAL

predicted SA-AKI with an AUROC

of 0.86, and urine NGAL with an

AUROC of 0.90 (22)

Elevated in the

setting of systemic

inflammation

Kidney injury

molecule-1 (KIM-1)

Kidney: tubular apical

transmembrane

protein, soluble form

excreted in urine

Involved with repair of renal

tubular epithelial cells (23)

Upregulated during

ischemic and nephrotoxic

AKI (23)

Urine Increased within 6–24 h of

admission in patients with SA-AKI.

Level at 24 h predicted SA-AKI with

an AUROC of 0.91 (24)

AKI diagnosed by

48 h (24)

Limited

investigations in

pediatric SA-AKI

Netrin-1 Systemic: nervous

system, heart, lung,

liver, intestines, blood

vessels

Axon guidance molecule,

inhibits leukocyte migration,

promotes endothelial

chemoattraction (18)

Increased production in

renal tubular epithelial cells

in response to ischemic AKI

(18)

Urine Levels peaked early, within 3-6 h of

admission, in patients SA-AKI. Level

at 3 h predicted SA-AKI with an

AUROC of 0.86 (24)

AKI diagnosed by

48 h (24)

Limited

investigations in

pediatric SA-AKI

Kidney: secreted by

proximal tubule

epithelial cells, present

in renal microvascular

endothelial cells

Tissue inhibitor of

metalloproteinase-2

(TIMP-2)

Renal tubular epithelial

cells

Promotes G1 cell cycle

arrest via increasing p27

expression (25)

In response to tubular

epithelial damage, TIMP-2

and IGFBP7 expression is

increased to initiate cell

cycle arrest and signal to

neighboring cells via

paracrine and autocrine

modalities (26)

Urine Product of urine TIMP-2 · IGFBP7

predicts SA-AKI within 12 h of

admission with an AUROC of 0.84

(27)

AKI diagnosed

within 12 h of

study enrollment

(28)

Limited study in

children, FDA

approval does not

apply to patients

<18 years oldInsulin-like growth

factor-binding protein 7

(IGFBP7)

Renal tubular epithelial

cells

Promotes G1 cell cycle

arrest via increasing

expression of p53 and p21

(25)

Now available as FDA approved

tool known as NephroCheck® in

adults with one or more AKI risk

factors, including sepsis (27)

Soluble triggering

receptor expressed on

myeloid cells 1

(sTREM-1)

Systemic: expressed

by neutrophils and

monocytes

TREM-1 triggers secretion

of pro-inflammatory

mediators in response to

extracellular bacterial

infections (29). sTREM-1 is

a soluble form of TREM-1

that modulates cytokine

production to prevent

hyper-responsive

inflammatory cascade (30)

Plasma sTREM-1 levels

strongly correlate to sepsis

severity (31). It may be

filtered into the urine, or

produced and excreted

locally during acute tubular

necrosis (32)

Plasma, Urine Plasma sTREM-1 predicted SA-AKI

with an AUROC of 0.746 and urine

sTREM-1 with an AUROC of 0.778

24-h prior to diagnosis by SCr (33)

AKI diagnosed by

day 7 (median 2,

range 1–7) (33)

No prospective

studies in pediatric

SA-AKI

(Continued)
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operating curve (AUROC) of 0.84 for the prediction of SA-
AKI, and its predictive performance significantly improved
via the addition of a clinical prediction model (AUROC of
0.94) (27). The use of NephroCheck R© to assess the impact
of directed implementation of standardized renal protection
strategies compared to standard of care in patients with septic
shock will be assessed in the upcoming Limiting AKI Progression
in Sepsis (LAPIS) Trial (NCT04434209) (46). Unfortunately, this
tool has not been studied robustly nor been validated in children.

As noted above and in Table 1, there are several limitations
to the use of these biomarkers in pediatric SA-AKI. First and
foremost, the data for their use in pediatric sepsis is scare, and
this is especially problematic given a growing host of literature
to suggest fundamental differences in the sepsis inflammatory
response – and thus, the risk of SA-AKI – based on age (47–50).
Furthermore, the biologic action of many of these biomarkers
appear to be non-specific to sepsis (38, 51, 52), thereby providing
no information regarding the patient’s underlying inflammatory
state, which is likely necessary to identify effective, patient-
specific therapies for SA-AKI. Taken together, these realities
suggest that additional approaches to biomarker discovery and
utilization is required.

THE SEPSIS MOLECULAR SIGNATURE
AND ITS ROLE IN SEPSIS-ASSOCIATED
AKI

As outlined above, sepsis is a complex syndrome that stems from
a dysregulated host immune response to an infectious trigger,
and is a leading cause of death and disability in critically ill
children (53). Given these consequences, substantial resources
have been focused on improving the care of patients with
sepsis, however, these efforts have failed to produce meaningful
therapeutic advances beyond the mainstays of supportive care
and antibiotics (54). Failures are undoubtedly tied to the
heterogeneity of the disease expression on the individual patient
level (17). As such, attempts to resolve this heterogeneity by
identifying the sepsis molecular signature of a patient are
becoming more common, as successful strategies for doing so
could allow for more targeted employment of therapies (55–
61).

This concept of separating a heterogeneous group of patients
into more homogenous subgroups to guide management is
termed enrichment, a fundamental tenant of precision medicine
(62). Prognostic enrichment refers to selecting a subgroup of
patients who share a similar likelihood of suffering an outcome
of interest, such as mortality, while predictive enrichment
selects a subgroup who are more likely to respond to a
particular therapy based on underlying biology (63). This
general concept, and how it may be employed to direct a
precision medicine approach to SA-AKI therapy, is depicted in
Figure 1.

In pediatric sepsis, prognostic enrichment strategies have
been used to develop a set of serum biomarkers – known as
the Pediatric Sepsis Biomarker Risk Model (PERSEVERE) –
capable of reliably assigning baseline risk of 28-day mortality
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FIGURE 1 | A heterogeneous group of patients with sepsis is divided first using a prognostic enrichment tool into those at high and those at low risk of

sepsis-associated acute kidney injury [for example, the PERSEVERE Biomarker Model (64)] or associated poor outcomes such as delayed renal recovery or mortality

[for example, FINNAKI Study subphenotypes (65)]. Patients who are at low risk may be treated with standard therapy, while patients at high-risk may receive more

aggressive care aimed at renal protection, earlier consideration of renal support in the form of renal replacement therapy, and be considered for informed enrollment in

clinical trials aimed at identifying therapies for sepsis-associated acute kidney injury. Ultimately, the goal is to utilize predictive enrichment tools to further subdivide

patients on the basis of biology [for example, using direct renin levels to inform the use of angiotensin II (66)], allowing for the implementation of patient-specific

therapies.

(67). This model incorporates five serum protein biomarkers
measured in the first 24 h of septic shock that were originally
identified utilizing discovery-oriented genome-wide profiling of
children with septic shock (68, 69), and then narrowed further
using classification and regression tree (CART) modeling for
estimation of baseline mortality risk (67). An updated version
of the model (PERSEVERE-II) incorporates platelet count, and
has been recently prospectively validated for the prediction
of mortality (70). Similarly, predictive enrichment has also
been utilized to subgroup patients based on gene expression,
which led to the identification of two distinct endotypes that
may require different treatment approaches (58). For example,
one particular endotype – endotype A – is associated with
increased repression of genes that regulate adaptive immunity
and glucocorticoid receptor signaling, and patients with this
endotype have demonstrated an increased mortality rate when

treated with corticosteroids (71, 72). This association between

endotype A and poor outcome in response to corticosteroids

was recently corroborated among adults with septic shock (73).

Given our current understanding of the significant role that

the host inflammatory response plays in the pathophysiology

of SA-AKI (12, 13), it is reasonable to consider leveraging this

pediatric sepsis enrichment work to improve the care of SA-AKI,
a similarly heterogeneous disorder (11, 12).

THE GOAL: SEPSIS-SPECIFIC
BIOMARKERS FOR A PRECISION
MEDICINE APPROACH TO
SEPSIS-ASSOCIATED AKI

A precision medicine approach to SA-AKI will require both
prognostic enrichment tools to identify high risk patients early
and accurately, and predictive enrichment tools to deliver
the right treatment to the right patient. Biomarkers play an
important role in achieving these goals, however, we believe that a
shift to include biomarkers of the dysregulated immune response
to infection is prudent. Such a shift will also require a reframing of
AKI in sepsis, recognizing that it is not simply “associated” with
sepsis (as suggested by the term SA-AKI), but a disease state that
is induced by the host inflammatory response. In this section,
we will outline the current application of precision medicine to
the study of SA-AKI within this framework, and highlight the
remaining critical knowledge gaps.

Prognostic Enrichment Tools for SA-AKI
The first step to improving outcomes for patients with SA-AKI
is early identification of those at highest risk. While sepsis is
perhaps the most significant risk factor for AKI in critically ill
patients, a significant proportion of patients with septic shock do

Frontiers in Pediatrics | www.frontiersin.org 5 April 2021 | Volume 9 | Article 632248

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Odum et al. Biomarkers in Pediatric Sepsis-Associated AKI

not develop AKI. Therefore, further delineation of an individual’s
risk profile via the development of prognostic enrichment tools is
required. To date, few validated prognostic enrichment strategies
for SA-AKI that incorporate sepsis-specific biomarkers exist, as
outlined below.

Leveraging work done in the more advanced field of sepsis
precisionmedicine, researchers have utilized “omic” technologies
(notably genomics, transcriptomics and proteomics) to identify
patients at high risk for persistent SA-AKI (10, 64, 74). Using
microarray technology to study SA-AKI related transcriptomics,
one group retrospectively identified 21 candidate biomarkers
for the prediction of SA-AKI based on the upregulation of
mRNA gene probes in patients with persistence of severe SA-
AKI at day 7 of septic shock (74). The expression pattern of
these 21 upregulated genes were shown to predict the presence
of this severe, persistent form of SA-AKI with high sensitivity
(98%) and reasonable specificity (80%) (74). Results from this
work informed a second study in which the protein products
of five of the aforementioned 21 genes–elastase 2 (ELA2),
fibroblast growth factor 13, matrix metalloproteinase 8 (MMP8),
olfactomedin 4 (OFM4), and proteinase 3 (PRTN3) – were
incorporated into a new CART-derived model to predict the
presence of SA-AKI at day 3 of septic shock (10). The test
characteristics of this model in the derivation cohort were robust,
with an AUROC of 0.95; when tested in a validation cohort, the
predictive capacity of the model remained reasonable with an
AUROC of 0.82, which was superior to knowledge of AKI stage
by serum creatinine on the day of septic shock development alone
(AUROC 0.73) (10). Using a similar approach, a more recent
study utilized the PERSEVERE biomarkers and AKI stage by
serum creatinine on the day of admission to develop a model for
prediction of severe SA-AKI at day 3. This model had similarly
impressive test characteristics, with an AUROC of 0.95 (64).
Unfortunately, while these models represent potentially feasible
prognostic enrichment tools for SA-AKI, they have not yet been
prospectively validated nor utilized to inform patient care, which
represent areas of future study.

Another strategy incorporating biomarkers that has been
utilized for prognostic enrichment in SA-AKI is latent class
analysis (LCA). This approach allows for the incorporation
of multiple variables– including comorbidities, clinical data
and biomarkers – to allow for the identification of potential
subphenotypes of heterogeneous disease states. Using this
methodology, a recent post-hoc analysis of the FINNAKI Study
described two subphenotypes of critically ill patients with
SA-AKI who have significantly different rates of mortality
and renal recovery (65). Patients categorized as subphenotype
2 – which was associated with increased mortality and
decreased short-term renal recovery – demonstrated elevations
in biomarkers associated with endothelial dysfunction and
an overall increased inflammatory state. Interestingly, four
of the significantly upregulated inflammatory biomarkers in
subphenotype 2 (ELA2, OFM4, MMP8 and PRTN3) overlapped
with the above mentioned AKI prediction model derived by
Wong and colleagues (10). Using a similar approach, a second
group also identified two SA-AKI subphenotypes (AKI-SP1 and
AKI-SP2) via the application of LCA to a panel of 29 clinical and

biomarker variables (75). This study similarly showed decreased
survival and renal recovery in patients with upregulation
of biomarkers associated with endothelial dysfunction and
inflammation, although the included biomarkers differed. While
these LCA-driven studies identified high-risk subphenotypes
of patients already known to have SA-AKI, they represent
potentially viable prognostic enrichment tools, specifically to
help delineate patients most likely to benefit from enrollment
in clinical trials, as well as from potentially high-risk and
high-resource utilizing therapies such as renal replacement
therapy (RRT).

Predictive Enrichment Tools for SA-AKI
The identification of predictive enrichment tools for SA-AKI–
those that provide insight into the underlying pathophysiology
and thereby reveal potential treatment strategies–remains an
elusive goal. Predictive enrichment tools are particularly
helpful in heterogeneous disease states, as they may identify
subphenotypes of patients who might benefit from a specific,
biologically-based therapy. While Figure 1 outlines an ideal
circumstance in which predictive enrichment occurs in an
identified high risk subset of patients, it is important to note
that the development and use of predictive enrichment tools
does not necessarily rely on the availability of reliable prognostic
enrichment strategies. However, the identification of effective
predictive enrichment tools requires a deep understanding of
the patient-specific pathophysiology, which remains a significant
barrier in SA-AKI.

Thus far, the only proposed predictive enrichment strategy
that is clinically feasible was elucidated via a series of post-hoc
analyses of the Angiotensin II for the Treatment of High-Output
Shock (ATHOS-3), a clinical trial of adults with vasodilatory
shock treated with angiotensin II (76). In these studies, the
authors were able to demonstrate that patients who were treated
with angiotensin II had improved 28-day survival and earlier
discontinuation of RRT (77), and that these advantages were
best seen in patients who had higher serum renin levels prior
to angiotensin II administration, suggestive of sepsis-induced
angiotensin converting enzyme deficiency (and thus angiotensin
II deficiency) in the setting of endothelial injury (66). From
these findings, the authors postulated that administration of
exogenous angiotensin II to patients with vasodilatory shock
may be beneficial beyond simply increasing blood pressure, as
it was also demonstrated to normalize high renin levels, which
have been known to be proinflammatory (66). Given that serum
renin levels can be easily measured, this example of predictive
enrichment can and should be applied prospectively in future
studies examining the effect of angiotensin II on mitigation
of SA-AKI.

CONCLUSION

SA-AKI is a common and consequential diagnosis in critically
ill children, yet successful diagnostic and treatment strategies
remain unacceptably scarce. In order to improve the care
of patients with SA-AKI, researchers must move toward a
precision medicine approach that considers the heterogeneity
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of the disease on the individual patient level. While biomarkers
will undoubtedly play an important role in these endeavors,
the complex pathophysiology of SA-AKI requires that we
consider the use of biomarkers specific to the individual sepsis
inflammatory response, a key driver of renal injury in these
patients. To do this, researchers must leverage and build
upon existing sepsis precision medicine work, facilitating the
development of prognostic and predictive enrichment tools that
could advance the care of SA-AKI beyond prevention and renal
support. A necessary and feasible first step in this process is the
development and validation of reliable tools for the prediction of
patients at highest risk for SA-AKI, as such a tool could facilitate
the implementation of early and aggressive renal protection
strategies, and perhapsmore importantly in pediatrics, reduce the
number of patients needed to study by informing enrollment in
clinical trials aimed at identifying disease-modifying therapies.

While the use of individual patient biology-driven therapies
via predictive enrichment remains an elusive goal, reframing
SA-AKI as a heterogeneous disease that will likely require an
individualized approach to therapy is an important first step that
should inform future research.
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