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Abstract

Faecal samples were collected from seventeen animals, each fed three different diets (high fibre, high fibre with a starch rich
supplement and high fibre with an oil rich supplement). DNA was extracted and the V1–V2 regions of 16SrDNA were 454-
pyrosequenced to investigate the faecal microbiome of the horse. The effect of age was also considered by comparing
mature (8 horses aged 5–12) versus elderly horses (9 horses aged 19–28). A reduction in diversity was found in the elderly
horse group. Significant differences between diets were found at an OTU level (52 OTUs at corrected Q,0.1). The majority
of differences found were related to the Firmucutes phylum (37) with some changes in Bacteroidetes (6), Proteobacteria (3),
Actinobacteria (2) and Spirochaetes (1). For the forage only diet,with no added starch or oil, we found 30/2934 OTUs
(accounting for 15.9% of sequences) present in all horses. However the core (i.e. present in all horses) associated with the oil
rich supplemented diet was somewhat smaller (25/3029 OTUs, 10.3% ) and the core associated with the starch rich
supplemented diet was even smaller (15/2884 OTUs, 5.4% ). The core associated with samples across all three diets was
extremely small (6/5689 OTUs accounting for only 2.3% of sequences) and dominated by the order Clostridiales, with the
most abundant family being Lachnospiraceae. In conclusion, forage based diets plus starch or oil rich complementary feeds
were associated with differences in the faecal bacterial community compared with the forage alone. Further, as observed in
people, ageing is associated with a reduction in bacterial diversity. However there was no change in the bacterial
community structure in these healthy animals associated with age.
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Introduction

The gastrointestinal tract of mammals contains an extensive

symbiotic microbial population composed of bacteria, phage,

archaea, anaerobic fungi and protozoa. These microbes provide

the host with essential nutrients, as well as modulating the immune

system. In the horse, short chain fatty acids produced by microbial

fermentation of fibre in the large intestine, provides a significant

proportion of the animal’s daily energy requirements [1]. Despite

the importance of microbes in supplying energy, little is still known

about the overall composition of the microbial community

(microbiome) in the equine hindgut. Several recent studies have

characterised the faecal bacterial community of the equid using

next generation sequencing [2–4]. However, none of these studies

have investigated the effect of diet on the gut microbiota.

Carnivores, herbivores and omnivores cluster according to

differences in their gut microbiota [5] and diet is known to be a

large driver of bacterial diversity between different species. In

humans, diets enriched with animal protein and fat result in

greater numbers of Firmicutes in the fecal microbiome, as compared

to a plant based diets that are higher in fibre, that resultin higher

numbers of Bacteroidetes and cellulose and xylan degraders [6–7].

Similarly, in mice fed high fat diets, Firmicutes (Lachnospiraceae,

Ruminococcus, Lactococcus) numbers increased and Bacteroidetes

numbers declined in fecal samples [8].

It has been well documented that sudden introduction of readily

fermentable starch/sugar to a horse’s diet results in marked

alterations in the colonic microbial ecosystem. Changes include a

drop in pH and increases in Streptococcus spp. and lactate

concentration with a subsequent increase in lactate-utilising

bacteria [9–11]. Culture based microbiology has demonstrated

increased counts of Lactobacilli and Streptococci coinciding with a

decrease in cellulolytic bacterial numbers in horses maintained on

a high starch diet compared to high fiber diet [12–13]. However,

few studies have used culture-independent techniques to study the

influence of diet on the bacterial population in healthy horses over

time. Willing et al. [14] used terminal restriction fragment length

polymorphism (TRFLP) to demonstrate a clear impact of high

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e87424



forage versus high carbohydrate diets on the fecal microbiome,

where a high fibre diet resulted in greater stability and reduced

bacteria associated with metabolic dysfunction. Whilst Daly et al.

[15] found higher numbers of the phylum Bacteroidetes, the family

Lachnospiraceae and the Bacillus-Lactobacillus-Streptococcus (BLS) group

combined with lower numbers of Fibrobacter and Ruminococcus

associated with increased dietary hydrolysable carbohydrate

compared to a grass-based diet.

Age has also been shown to influence gastrointestinal bacterial

diversity and community structure in humans. Studies have found

an age-related reduction in diversity [16–17] with a decline in

some Bacteroidetes, Clostridia and Bifidibacteria and an increase in

Proteobacteria and Bacilli [17–19]. However, debate exists as to the

influence of other environmental factors, including diet and

geographical location [20]. To the authors’ knowledge, the

influence of age has not been explored in relation to the bacterial

community in the hindgut of the horse.

Here we present an investigation into the effect of three different

diets (high fiber, fibre plus an oil rich supplement and fibre plus a

starch rich supplement) on a group of seventeen healthy horses

utilising 454 pyrosequencing to characterise the bacterial com-

munity of faeces. A cross over design was used allowing data to be

collected from all 17 animals for each diet. Furthermore, the study

group included 8 adult (5–12 yrs old) and 9 elderly individuals

(19–28 yrs old).

Materials and Methods

Animal Nutrition Trial and Sample Collection
Faecal samples for microbiological investigation were collected

as part of a wider nutritional study carried out at Michigan State

University (USA). All animal procedures were approved by

Michigan State University’s (MSU) Animal Care and Use

Committee (approval #11/09-174-00). Seventeen healthy (with

no dental abnormalities and that had recieved recent appropriate

anthelmintic treatment) stock-type mares were chosen for their

similar body type, size, body condition score (BCS) [21] and

nutritional background (Table S1). The horses were classified as

either adult (8 horses aged 5–12 yrs) or elderly (9 horses aged 19–

28 yrs). Within each age group, horses were stratified by age and

BCS in order to pair one adult and one aged horse together with

one group of three containing the additional elderly horse. The

study was a modified Latin Square, cross over design with horse

pairs randomly assigned to one of three diets for each 6 week

feeding period (Diet composition Table 1): hay alone (HAY), hay

plus a high fibre, high oil and low cereal starch based

complementary feed (OIL), and hay with a lower oil, cereal

starch-rich concentrate (CHO). The hay used for all diets was

timothy/mixed grass, the OIL diet was formulated with soya oil

and the CHO diet was formulated using corn (cracked & crimped),

oat pellets and soya oil. During the study period all horses received

each of the three diets, therefore data collected for each diet was

from 17 animals. The HAY diet was initially fed at 1.6%

bodyweight (BW) but this was increased after 31 days to 1.84%

BW in order to maintain BW. The OIL and CHO diets were fed

initially at 0.6% BW combined with hay at 1.0% BW hay but this

was increased to 0.69% BW concentrate and 1.15% hay 31 days

into the study. All diets were divided between two daily feedings at

0800 and 2000 hours. Horses changing to the OIL and CHO diets

were fed gradually increasing amounts adjusted over a four-day

period. Throughout, the horses were allowed ad libitum access to

water. During each dietary period, each pair was housed in an

individual dry lot paddock for 3 weeks of outdoor feeding. Horses

were moved to MSU’s Veterinary Teaching Hospital and housed

individually in 2.463 m box stalls for the final 3 weeks of the

feeding periods. While stalled, the horses were turned out in a dry

lot paddock for a minimum of 1 hour three times a week.

Faecal samples were collected during the final day of each

dietary period. Three samples were taken during each sampling

day (early morning, mid-day & evening). Freshly voided faeces

were selected and sub-sampled (approx 500 g) from the central

portion to minimise contamination by bedding and flooring. After

collection samples were stored on ice until frozen at 280uC prior

to freeze drying.

DNA Extraction
Prior to extraction of nucleic acids, freeze dried samples were

disrupted by bead beating. Freeze- dried samples (100 mg) were

added to a 2 ml screw top tube and one autoclaved glass ball was

added (4 mm, undrilled, G/0300/53, Fisher Scientific, UK).

Samples were beaten for 90 s at 5000 rpm (maximum speed) in a

Mini-BeadbeaterTM (Biospec products Inc., Bartlesville, OK).

DNA was then extracted using QIAGEN QIAampH DNA stool

mini kits (Qiagen Ltd., UK) using the method described by

Skřivanová et al. [22].

PCR Amplification of 16S rDNA
Amplification of the V1–V2 hyper-variable regions of 16S

rRNA was carried out with primers 27F and 357R [23]. The

forward primer (59-AGAGTTTGATCMTGGCTCAG-39) car-

ried the 454 Lib-L adaptor sequence B (59-

CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-39) and the

reverse primer (59-ACGAGTGCGTCTGCTGCCTYCCGTA-

39) carried the 454 Lib-L adaptor sequence A (59-CCATCT-

CATCCCTGCGTGTCTCCGACTCAG-39) followed by a 10

nucleotide sample specific barcode sequence (See Table S2). For

each sample replicate PCR was performed in duplicate; a 25 ml

reaction was prepared containing 5U ml21 FastStart High Fidelity

Enzyme Blend, 10x FastStart High Fidelity Buffer with 18 mM

MgCl2(Roche Diagnostics Ltd., Burgess Hill, UK), 0.2 mM of

each dNTP (Promega UK Ltd. Southampton, UK) with each

primer used at 0.2 mM. For each reaction 1 ml DNA template at

2.5–125 ng/ml (as per Roche FastStart high Fidelity system

recommendations) was used. The conditions used were a hot start

of 95uC for 10 min, 95uC for 2 min followed by 22 cycles of 95uC
for 30 s, 60uC for 30 s and 72uC for 45 s with a final extension at

Table 1. Diet composition of complete diets HAY (hay only),
CHO (hay supplemented with starch), and OIL (hay
supplemented with oil).

HAY CHO OIL

Energy (kcal/g) 4.14 3.98 4.15

NDF (%) 61.4 25.0 42.3

CP (%) 7.9 13.2 14.9

Fat (%) 3.56 5.28 8.30

Calcium (g/kg) 7.9 11.4 15.9

Phosphorus (g/kg) 1.6 7.5 5.4

Lignin (%) 6.9 2.8 4.1

WSC (%) 10.6 7.6 8.6

ESC (%) 5.7 7.0 6.9

Starch (%) 0.5 35.2 5.4

doi:10.1371/journal.pone.0087424.t001

Age, Diet and the Faecal Microbiome of the Horse
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72uC for 7 min. Reactions were amplified in a T100TM thermal

cycler (Bio-Rad, Hemel Hempstead, UK). Resultant amplicons

were visualized on a 1% (w/v) TAE agarose gel to assess quality of

amplification before pooling the duplicate reactions.

Short Fragment Removal and Pooling of Libraries and
Sequencing

Pooled PCR reaction products for all sample replicates were

purified as per Roche technical bulletin 2011-007 (January 2012)

‘Short Fragment Removal Procedure for the Amplicon Library

Preparation Procedure’ using Agencourt AMpure XP beads

(Beckman Coulter Inc.,Fullerton, USA). DNA concentration of

the purified PCR products was assessed using an Epoch

Microplate Spectrophotometer with a Take3 Micro-Volume plate

(BioTek UK, Potton, UK) to enable equi-molar pooling of samples

into four libraries each containing 36 to 39 samples with unique

barcode sequences. Each library was further purified using the E-

GelH System with E-GelH SizeSelectTM 2% Agarose gel (Life

Technologies Ltd, Paisley, UK). A final purification step using

Agencout AMpure XP beads standard PCR purification proce-

dure (Beckman Coulter Inc.,Fullerton, USA) was carried out for

each library. To assess purity of the sample libraries a quality

control PCR was carried out for each as detailed in Roche

technical bulletin 2011-007. 25 ml reactions were prepared

containing: 5U ml21 FastStart High Fidelity Enzyme Blend, 10x

FastStart High Fidelity Buffer with 18 mM MgCl2 (Roche

Diagnostics Ltd., Burgess Hill, UK), 0.2 mM of each dNTP

(Promega UK Ltd. Southampton, UK) with each primer used at

0.2 mM. Primers used were the same as the Lib-L adapter

sequences (described previously) as recommended in the Roche

Technical Bulletin 2011-007. For each reaction 1 ml of each

library containing 26108 molecules/ml was used. The conditions

used were 94uC for 11 min followed by 20 cycles of 94uC for

1 min, 60uC for 1 min and 72C for 1 min with a final extension at

72uC for 10 min. On completion PCR products were incubated

for 30 min at 37uC with 0.5 ml of Exonuclease I (New England

BioLabs (UK) Ltd. Hitchin, UK). Reactions were amplified in a

T100TM thermal cycler (Bio-Rad, Hemel Hempstead, UK).

Products from the quality control PCR were assessed for quality

and purified libraries were quantified on an Agilent 2100

Bioanalyzer with a High Sensitivity DNA chip (Agilent Technol-

ogies UK Ltd, Stockport, UK). The sample libraries were

subsequently sequenced using the Roche 454 GS FLX Titanium

series sequencer following ‘emPCR Method Manual-Lib-L’.

Sequence Filtering, Processing and Statistical Analysis
Following sequencing data were combined and sample identi-

fication assigned to multiplexed reads using the MOTHUR

software environment [24]. Data were denoised, low quality

sequences, pyrosequencing errors and chimeras were removed

then sequences were clustered into operational taxonomic units

(OTU’s) at 97% identity using the CD-HIT-OTU pipeline

(available from http://eeizhong-lab.ucsd.edu/cd-hit-otu [25]).

OTU’s containing fewer than four reads per individual diet/

animal combination were excluded due to the likelihood of them

being a sequencing artifact. Samples were normalised by randomly

resampling the sequences used to the lowest number of sequences

per sample (each diet/animal combination) using Daisychopper

(http://www.festinalente.me/bioinf/). Taxonomic classification of

OTU’s was carried out using the Ribosomal Database Project

(RDP) Classifier [26].

Data were prepared and tables and figures produced using

Microsoft Excel and the ‘R’ software environment (version 2.15;

http//www.r-project.org/). Simpson and Shannon-Wiener diver-

sity indices were calculated using normalised data as recommend-

ed to reduce over-inflation of true diversity in pyrosequencing data

sets [27]. Species richness and diversity were then analysed by two-

way ANOVA using GenStatH 12th edition. Each individual OTU

was analysed for effects of diet and age by ANOVA (using

GenStatH 12th edition). Although it was not possible to calculate

skewness of the data, due to having only one replicate per

treatment/animal combination, skewness was considered across all

animal/treatment combinations for each OTU. Many of the

OTUs showed marked skewness. Nevertheless ANOVA was

performed as there is no non-parametric equivalent for a multi-

factorial experiment. However to minimise the false discovery rate

only OTUs with more than 100 occurances (across all samples)

were analysed by ANOVA (579 OTUs). Furthermore, P values

were adjusted using the method of Benjamini and Hochberg [28]

where significance was set at Q ,0.1. A phylogenetic tree was

constructed to display OTUs found to be significant for diet. The

tree was constructed by 1) Sequences were aligned using the

Ribosomal Database Project (RDP) Pyrosequencing pipeline

Aligner which utilizes the Infernal aligner [29] 2) Tree built by

UPGMA using Molecular Evolutionary Genetic Analysis tool

(MEGA) version 5.2. [30] 3) Tree was graphically manipulated

using the interactive tree of life (iTOL) tool [31]. The core

community at OTU level in faeces was defined by being present in

all samples (each animal/diet combination) included in the study.

When considering the core community in faeces for each diet, it

was defined by being present in all animals for each diet.

Nucleotide Sequence Accession Numbers
16S rDNA sequences were deposited with the European

Nucleotide Archive under study accession number: PRJEB4523

found at http://www.ebi.ac.uk/ena/data/view/PRJEB4523.

Results

All horses remained healthy throughout the study with no

gastrointestinal disturbances. One million, four hundred and sixty

thousand, one hundred and twenty four sequences of average

length 358 bp were obtained from the 454 FLX Titanium

sequencing. Quality filtering resulted in 749,437 high quality

sequences that were clustered into 5689 unique OTUs. Construc-

tion of a phylogenetic tree (data not shown) indicated that all

samples from an animal on a sampling day (three across the day)

clustered tightly together which allowed data from these samples

to be pooled providing a minimum of 6197 sequences per sample

day after normalisation. Rarefaction curves calculated from non-

normalised data (Figure S1) showed that for each sample the

corresponding curve had not plateaued indicating that complete

sampling of these environments had not yet been achieved. Good’s

coverage estimates, however, indicated that a large part of the

diversity in all samples had been captured with the average

coverage being 96.3% (s.d. 1.6).

The bacterial community within faeces of horses on different

diets was found to be highly diverse and even (as indicated by the

Simpson and Shannon-Weiner diversity indices, Table 2) with no

significant differences between diets. The bacterial community was

significantly less diverse in the elderly horses (Shannon-Wiener

P = 0.018, species richness P = 0.042). When exploring the data by

principle component analysis (Figure S2) no pattern was observed

according to either diet or age. As principle component 1 (PC1)

and principle component 2 (PC2) only accounted for 25% of the

variance within the data discriminant function analysis with cross

validation was conducted, however the model would not validate.

Little difference could similarly be seen in the relative abundance

Age, Diet and the Faecal Microbiome of the Horse
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of bacterial phyla under different diet/age combinations (Figure 1)

with the only notable difference being an increase in Proteobacteria

in the high oil and high starch diets.For all diet/age combinations

the bacterial population in faeces was dominated by the Firmicutes

(45%) followed by the Bacteroidetes (37%) with smaller quantities

(0.5–3.5%) of Proteobacteria, Spirochaetes, Actinobacteria and Tenericutes

and very small amounts (0–0.4%) of Elusimicrobia, TM7, Synergis-

tetes, SR1 and Cyanobacteria/Chloroplast. Values shown for each phyla

show little variation between individual animals (Table S3).

Although little difference was seen at Phyla level when each

individual OTU was compared by ANOVA, 52 were significantly

different between diets but none were significantly different

between age groups (corrected P,0.1). For the OTUs that

differed according to diet, 37 were Firmicutes, 6 Bacteroidetes, 3

Proteobacteria, 3 Unclassified, 2 Actinobacteria and 1 Spirochaetes. A

comparison of how the three diets varied specific to these OTUs

can be seen in Figure 2. The relative abundance of each OTU

significant for diet is shown in Table S4 with classification of these

OTUs to genus level in Table S5.

A small number of OTUs were identified which made up the

core community in all faecal samples (all diets), 6 OTUs

accounting for 2.3% of total sequences (Figure 3). When

identifying a core community for each individual diet, a larger

core was found than across all three diets; HAY diet-30 OTUs

accounting for 15.9%, OIL diet-25 OTUs accounting for 10.3%,

and CHO diet-15 OTUs accounting for 5.42%. When classified to

family level (Table S5), it can be seen that the core community

found in all diets is dominated by the order Clostridiales

(Lachnospiraceae, Clostridiales_Incertae Sedis XIII & Ruminococcaceae)

with one unclassified Bacteroidetes. For each diet, when selecting

only families accounting for over 1% of the total sequences, all

were dominated by Lachnospiraceae but diet specific differences were

clear with the remainder. For the hay diet, this included

Porphyromonadaceae, Fibrobacteraceae, Unclassified Clostridia and Pre-

votellaceae, with Fibrobacteraceae not identified as part of the core

community on either of the other diets. For the CHO diet, only

the Lachnospiraceae were found at 1% or greater with no families

identified that appear to be unique to the core community for this

diet. Lastly, the OIL diet, similar to the HAY diet, included

Porphyromonadaceae as the second largest component, followed by an

unclassified Firmicutes then an unclassified Bacteroidetes. Other than

these more abundant members of the core community associated

with the oil diet, there were two families not identified as part of

the core of the other two diets; Spirochaetaceae and a Proteobacteria

order Rhizobiales.

Discussion

The horse is reliant on intake of large quantities of fibre that can

be fermented by the microbiota found predominantly within the

large intestine, to yield short chain fatty acids which in turn can be

utilised for energy by the host. Due to increased demands placed

on the equid for athletic performance, modern nutritional

practices involve supplementation of this fibre-based diet with

varying quantities of high energy-providing feedstuffs, in particular

cereal grains and oil. When cereal starch is fed in small quantities,

it is subjected to enzymatic breakdown and absorption of sugars in

the small intestine, however when fed in large quantities, the small

intestine’s capacity for starch digestion can be overloaded and a

considerable amount may be passed to the hindgut where it

undergoes rapid microbial fermentation [10–11,32]. To accurately

document how different diets influence the bacterial community in

the caecum and colon, direct sampling following controlled

feeding trials would be ideal. However, this is not practical and

involves either cannulation or euthanasia. A more practical

alternative is to document changes in the hindgut through

Figure 1. Phyla identified and relative proportion of each associated with different diets and age of horse. Data shown from the
bacteria community in faeces from horses fed three diets; Hay- high fibre diet, Oil- high oil diet, CHO- high starch diet. Horses fed these diets were
also assigned to two age groups adult or elderly.
doi:10.1371/journal.pone.0087424.g001
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exploration of the faecal microbiota which might be expected to

contain representative organisms from all regions of the large

intestine as they are moved physically with the digesta. In human

studies, it has been suggested that faecal samples do not accurately

reflect the population of the rest of the intestinal tract [33–34].

Our previous work has demonstrated that there are differences in

the microbial community found in the caecum compared to the

right dorsal colon and faeces of horses and ponies with the main

change in composition occurring at the point of the pelvic flexure

between the ventral and dorsal colon. However, the microbiota of

the distal hindgut (right dorsal colon through to the rectum) shares

a similar composition to that of faeces [35–36], which, considering

the importance of the right dorsal colon [37] in fibre fermentation,

means that studying the microbiota of faeces can provide useful

information.

From the limited published work which has utilised next

generation sequencing to document the bacterial community in

the large intestine of the horse [2–4], the dominant phylum

appears to be Firmicutes (43–69%). We have similarly found this

both in our previous work (46% [36]) and in the current study

regardless of diet or age (average 45%). There is, however,

inconsistency over the next most abundant phylum (Bacteroidetes

Figure 2. Phylogenetic tree showing significant OTUs (corrected P,0.1) for diet. Tree shows only those OTUs found to be significant
(corrected P,0.1) and was built using UPGMA. The coloured outer ring indicates the bacterial phyla each OTU belongs to while the outer circles show
the relative abundances of each OTU for the different diets; 1 layer of circles for Hay- high fibre diet,1 for Oil- high oil diet and 1 for CHO- high starch
diet.
doi:10.1371/journal.pone.0087424.g002

Age, Diet and the Faecal Microbiome of the Horse
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14.2%, Proteobacteria 10.2% [2], Proteobacteria and Verrucomicrobia

4.1% each, Bacteroidetes 3.65% [3] or Verrucomicrobia 18.1%,

Bacteroidetes 5.7% [4]). The higher numbers of Bacteroidetes found

in both this study (average 37%) and our previous work (43%) is in

agreement with older culture-independent work [14,38]. We have

identified smaller quantities (,5%) of Fibrobacteres, Proteobacteria,

Spirochaetes and Actinobacteria, again regardless of diet or age which

Table 2. Diversity and Richness of the microbial communities in faeces of horses from two different age groups (adult or elderly)
and receiving three different diets (Hay, CHO, Oil).

Diet Age Diet x Age

Hay CHO Oil P Value Adult Elderly P Value (S.E.D.) P Value

Species Richness 671 623 698 P= 0.105(34.6) 727b 601a P = 0.042 (54.6) P = 0.83

Simpson’s Diversity 0.992 0.989 0.989 P= 0.559(0.003) 0.992 0.988 P = 0.074(0.002) P = 0.56

Shannon-Wiener Diversity 5.758 5.576 5.785 P= 0.066(0.092) 5.831b 5.582a P = 0.018 (0.0895) P = 0.95

Different superscript letters denote significant differences.
doi:10.1371/journal.pone.0087424.t002

Figure 3. The core bacterial community associated with different diets and age of horse. The core community for All is defined as those
OTUs (clustered at 97% similarity) present in all animals for all diets and which abundances are 0.1% (or greater) of the total number of sequences.
The core for each of the three diets is defined as those OTUs (clustered at 97% similarity) present in all samples from each individual diet and which
abundances are 0.1% (or greater) of the total number of sequences for each diet. The lower pale blue section of the bar indicates the proportion that
is not part of the core. The remaining individual coloured sections represent each OTU of which the core is comprised; All (6), HAY(30), CHO (15),
OIL(25). For details of classification and abundance of individual OTU’s see table S6.
doi:10.1371/journal.pone.0087424.g003

Age, Diet and the Faecal Microbiome of the Horse
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is in agreement with our previous work and that of others [3–4,36]

with a notable lack of Verrucomicrobia [2].

The concept of a core microbial population in the gut of

mammals has recently received attention with a core community

in the human gut identified, but differing in size dependent on the

study design [39–41]. What constitutes a core microbiome has not

been well defined and factors such as sequencing depth and OTU

clustering methods may influence identification of the presence of

a core, estimation of the true size of that core (both the number

and relative abundance of OTUs) and detection of core members

[40–42]. In the horse, a core bacterial community in faeces has

been suggested; with 123 out of 1620 identified OTUs present in

each of 4 animals, with 6 of these having an abundance of greater

than 25 occurrences per animal [2]. Our previous work [36] also

identifies a core, but smaller in size (25/2566 OTUs accounting

for 13.7% of sequences). When considering the core community

associated with a forage only, HAY diet in the current study, a

similar size of core is seen to our previous work (30/2934 OTUs

accounting for 15.9% of sequences). However, the core associated

with the OIL diet was somewhat smaller (25/3029 OTUs

accounting for 10.3% of sequences) and the core associated with

a high starch providing, CHO diet was much smaller (15/2884

OTUs accounting for 5.4% of sequences). Interestingly, the core

associated with samples across all three diets is extremely small in

comparison to both the individual diets (6/5689 OTUs accounting

for 2.3% of sequences) and other core communities from other gut

environments such as in the rumen of the cow (157/4986 OTUs)

[43]. Another feature of the core community in the horse is that it

is comprised of low abundance OTUs and is not dominated by

any individual OTUs or bacterial families; the largest family found

in the core associated with all diets is responsible for only 1.3% of

all sequences. Core populations in other environments such as the

oral cavity of dogs [44] and humans [45] and the tonsils of pigs

[46] are characterised by having a few highly dominant OTUs.

Regardless of the approach used, clostridia have been consistently

identified as the most prevalent class of bacteria in the core

community of the human gut [39–40,42,47–48]. Members of this

class that have been identified as part of the human core are

Ruminococcaceae, Lachnospiraceae, Clostridiaceae and Streptococcaceae [39–

40,42,48]. Bacteroidetes have also been shown to be core, but at

low numbers [42,48]. Our data for the horse would interestingly

seem to mirror this pattern with Lachnospiraceae being the most

abundant in the core in the current work (also found by Costa et al.

[2]). Our previous data [36] identified Prevotellaceae followed by

Ruminoccocaceae, Fibrobacteraceae, then Lachnospiraceae as being the

most abundant members of the core community and is similar to

what has been reported in cattle [43,49–50]. As Lachnospiraceae, in

particular, have been shown to exist in most mammals [39–40,42]

and have been found in 71% of the order Perissodactyla [51], this

would be suggestive that this family may appear in the intestinal

core of all mammals. The importance of this family in a gut core

bacterial population is perhaps not surprising given that

Lachnospiraceae are known butyrate producers [42,52] and butyrate

is known to have a protective function on colonocytes in the gut

wall [53–54].

The lack of a substantial bacterial core combined with a lack of

obvious ‘key’ members may help explain why the horse is so

susceptible to disruption in its microbiota from its normal state

resulting in subsequent gastrointestinal disorder [36]. Further-

more, the reduction in core size when horses are fed a diet other

than one high in fibre and, particularly when fed a high starch

supplemented diet, may increase the risk for subsequent metabolic

dysfunction.

The gastrointestinal tract of humans is initially colonised by

bacteria at birth and the population increases in diversity over the

first three years of life [55]. As the individual moves into

adulthood, the composition remains relatively stable over time

providing there is no disruption such as disease or antibiotic usage

[42,56]. It is widely acknowledged that as humans become elderly,

the microbial population in their gastrointestinal tract changes

and, in particular, bacterial diversity declines [16–17,57]. Reduc-

tion in diversity may similarly be attributed to physiological

changes associated with ageing such as increased digesta transit

time and a reduced requirement for dietary energy [58]. However,

elderly people are often undergoing drug treatment regimens to

support a range of conditions and the effects of these drugs on the

gut bacteria are not always known [59]. Differences between

studies in the proportion of Bacteroidetes found in the elderly may

result from these confounding factors as an increase has been

reported in some cases [57,59] but others have seen a decrease

[18,20]. A decline in Clostridia cluster XIV [17–18,20] and cluster

IV [18,60] has been reported. While other bacteria shown to

change with age include Bifidobacteria (decline), Proteobacteria and

Bacilli (increase) [17,19,57,60]. Here we report a reduction in

diversity in the aged animals similar to that demonstrated in

humans, althougth no significant differences in individual species

of bacteria were found and in the larger study relating to our

group of horses no difference in digestibility was found between

the adult and elderly horses [61].

In other mammals (human, mouse, cow), diet has been shown to

be a strong driver of gut microbiota with obvious clustering of

individuals according to type of diet [6–8,50]. In this study, such a

pattern was not seen when analysing the total bacterial population,

which is in a contrast with recent work in cows where samples

clustered separately when starch was added to the diet [62]. Only

when individual OTUs were analysed were differences found, a

possible explanation for this may be that as the core bacterial

community in the faeces of the horse accounts for only a small

proportion of the total community, changes may not be big

enough to be seen at a general level of investigation. Furthermore,

the effect of individual animals would appear to have a highly

significant effect on the bacterial community and may indeed mask

any dietary effects [14]. Of the 52 OTUs found to show significant

differences between diets (corrected P,0.1), the majority are

classified as Firmicutes (37 OTUs) with some Bacteroidetes (6 OTUs),

Proteobacteria (3 OTUs), Actinobacteria (2 OTUs) and Spirochaetes (1

OTU). Different OTUs belonging to the family Lachnospiraceae

were found at different numbers in each of the three diets, with

specific OTUs belonging to this family being significantly higher

for each diet. When feeding the forage only diet, the OTUs that

are significantly more abundant than in the other two diets are

primarily Clostridiales. For the forage only and OIL diets, a member

of the Firmicutes phylum, genus Acidaminococcus was significantly

more abundant than with the starch supplemented diet. The OIL

diet also shows most significant increases in abundance associated

with the Clostridiales, including elevated numbers of Ruminococcus

Oscillibacter. Although little is known about the function of this

genus, it has been found to increase in abundance associated with

high fat diets of mice [63] and humans [64]; indicating a role in fat

metabolism. When considering the starch supplemented diet, yet

again the biggest changes seen centre around the Clostridiales,

including Lachnospiraceae, similar to the influence of starch in cattle

[62], and Roseburia. Also of note is an increase in abundance of an

OTU belonging to the Proteobacteria phylum, genus Succinivibrio.

Both Roseburia and Succinivibrio have been shown to significantly

increase in cattle changed from a high fibre to a high starch diet

[50]. Roseburia is a butyrate producer and although little is known
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about the function of Succinivibrio, it is found to be more abundant

in cattle on a high starch diet [50,65] and it has also been

identified as an important component of the gut microbiome in the

bee which relies on a starch rich diet [66]. Enrichment of

Succinivibrio in these gut environments may be suggestive of a role

in starch metabolism. Previous work in relation to dietary change

in the horse has identified increases in Lachnospiraceae and the

Bacteroidetes phylum associated with a high starch diet [15]. The

fact that the Clostridiales appear to be the most influential across all

diets in this study is consistent with findings in humans that the

Clostridia Clusters IV and XIVa are very sensitive to dietary

influence [59].

Conclusions

Characterisation of the bacterial community from the hind gut

of healthy horses is essential to enable comparison to disease state

and thus develop diagnostic tests, prophylactic measures and

appropriate treatments. Here we show that feeding different diets

results in significant changes in the faecal bacterial microbiome.

Also identified is a reduction in bacterial diversity in older horses.

Furthermore we confirm the presence of only a small core

bacterial community which is found in all horses regardless of age

or diet, composed predominantly of the Lachnospiraceae. The

presence of such a small core may begin to explain why the horse

is so susceptible to metabolic dysfunction.
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