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Objective: Alterations in the oral or gut microbiotas have been reported in

patients with subjective and mild cognitive impairment or AD dementia.

However, whether these microbiotas change with the severity of the AD

spectrum (mild, moderate, and severe AD) remains unknown. Thus, we

compared alterations in the composition and gene functions of the oral and

gut microbiota between different phases of AD.

Methods: We recruited 172 individuals and classified these into three groups:

healthy controls (n = 40), a mild AD group (n = 43) and a moderate AD group

(n = 89). Subgingival plaques and fecal samples were collected from all

individuals. Then, we conducted 16S ribosomal RNA. sequencing to analyze

the microbiotas.

Results: In order of the severity of cognition impairment (from normal to mild

and to moderate AD), the oral abundances of the phyla Firmicutes and

Fusobacteria showed a gradual upwards trend, while the abundance of the

Proteobacteria phylum gradually decreased. In contrast, the abundance of the

Firmicutes and Bacteroidetes phyla in the gut decreased progressively, while

that of the Proteobacteria, Verrucomicrobia and Actinobacteria phyla

increased gradually. Key differences were identified in the microbiomes when

compared between the mild AD and moderate AD groups when applying the

linear discriminant analysis effect size (LEfSe) algorithm. LEfSe analysis revealed

alterations that were similar to those described above; furthermore, different

bacterial taxa were associated with MMSE scores and age. KEGG analysis

showed that the functional pathways associated with the oral microbiota

were mainly involved in membrane transport and carbohydrate metabolism,

while the gene functions of the fecal microbiota related to metabolism of

amino acids, energy, cofactors and vitamins; identified significant differences

among the three groups. Venn diagram analysis revealed that the number of
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genera that were present in both the oral and gut microbiota increased

progressively from NC to mild AD and then to moderate AD.

Conclusions: This study is the first to report a comparative analysis of the oral

and fecal microbiota of patients with mild and moderate AD. The compositions

and functions of the oral and gut microbiotas differed when compared

between different stages of AD.
KEYWORDS

Alzheimer’s disease, gut microbiome, oral microbiome, 16S ribosomal RNA, oral-gut-
brain axis
Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized by a slow and progressive memory decline and

cognitive dysfunction (Zhao, 2020). Over the last few decades,

the prevalence of AD has been rapidly increasing due to a global

rise in life expectancy (Zhao, 2020). Approximately 50 million

people suffer from dementia, and this number is projected to

increase to 152 million by 2050, rising particularly in low-

income and middle-income countries that already account for

approximately two-thirds of the people with dementia

worldwide (International, Alzheimer’s Disease, and McGill

University. World Alzheimer Report, 2021). However, no

preventative or disease-modifying treatments are available for

AD (Honig et al., 2018). Dementia affects people, their families,

and the economy; furthermore, the global cost of AD is

estimated to be approximately US$1 trillion annually

(Alzheimer’s Disease International and Patterson, 2018).

By focusing on the nervous system, only limited progress has

been made with regards to the Limited progress on the

etiopathology of AD. The etiology of AD is likely to involve an

interplay between genetic and environmental factors and the

central nervous system (CNS) or systemic inflammation

(Lourida et al., 2019). Researchers have suggested that

microbiome dysregulation plays an important role in the

pathogenesis of AD (Cryan et al., 2019; Park et al., 2021). The

gastrointestinal tract and the oral cavity are the main sites for

the distribution of symbiotic microorganisms in the human

body (Ogobuiro et al., 2021). Research on oral microbiota has

attracted considerable attention over the last decade, and several

studies have identified alterations in the oral microbiotas of

patients with AD (Liu et al., 2019; Na et al., 2020; Wu et al.,

2021). Oral microbiotas may be associated with AD owing to the

short route to the brain through the cranial nerves. At autopsy,

oral bacteria have been found in the brain tissue and

cerebrospinal fluid of patients with histopathologically
02
confirmed AD (Miklossy, 1994; Riviere et al., 2002; Dominy

et al., 2019). The density of these oral bacteria was approximately

seven times higher, and their diversity far greater, in the brains of

patients with AD than in cognitively normal individuals

(Miklossy, 2008). These findings suggest that oral microbiome

disorders may increase infections by opportunistic pathogens in

the brain of patients, thereby contributing to AD development.

The human intestinal tract harbors a complex community of

microbes accounting for the vast majority of the resident

microbial population (Human Microbiome Project, 2012).

Studies on the gut–brain axis have highlighted the potential

impacts of the gut microbiota on the brain through a

bidirectional communication system that is connected via

neural, immunity-related, endocrinological, and metabolic

pathways (Cryan et al., 2019). Several studies have reported

patients with AD with altered gut microbiotas, thus suggesting

that these changes may be involved in the pathogenesis of AD

(Vogt et al., 2017; Zhuang et al., 2018; Sochocka et al., 2019;

Bonnechère et al., 2020; Ling et al., 2020).

Many studies have shown that oral and gut microbiotas may

be associated with the occurrence and development of AD (Li

et al., 2019; Liu et al., 2019; Guo et al., 2021; Sheng et al., 2021).

The progression of Alzheimer’s disease, referred to as the

Alzheimer’s disease continuum, consists of three phases:

preclinical Alzheimer’s disease, mild cognitive impairment

(MCI) due to AD, and dementia due to AD. The Alzheimer’s

dementia phase can be further broken down into the stages of

mild, moderate, and severe AD, which reflect the degree to

which symptoms interfere with a patient’s ability to carry out

everyday activities (Marasco, 2020). Based on prior research

findings, two important questions remain: The first is whether

dysbiosis of the microbiome varies with the severity of the AD

phase. Studies have revealed oral or gut microbiome changes in

different stages of the Alzheimer’s disease continuum. Subjective

cognitive decline (SCD) is the earliest symptomatic

manifestation of preclinical Alzheimer’s disease. Holmer et al.

(2021) compared the subgingival microbiotas of people with AD,
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MCI, and SCD with those of cognitively healthy individuals,

revealing higher microbial richness and evenness in cases than in

controls; these authors also reported differences across the four

groups. Sheng et al. (2021) showed that the composition of the

gut microbiota was different in individuals with SCD. Liu et al.

(2019) also showed that the gut microbiome was different

between healthy controls and patients with MCI or AD.

Microbiomes can help distinguish healthy controls from

patients with MCI or AD, or patients with AD from patients

with MCI. Li et al. (2019) showed that patients with MCI had gut

microbiomes that were similar to those of patients with AD. Guo

et al. (2021) further showed that the degree of gut dysbiosis

worsened with the progression of the disease from MCI to AD.

However, whether the dysbiosis of the microbiome varies with

the severity of the AD phase (e.g., mild, moderate, and severe

AD) remains unknown.

The second question pertains to the association between the

oral and gut microbiotas in patients with AD. The oral cavity

initiates the gastrointestinal tract. The oral and gut microbiotas

differ, especially in terms of their resident bacteria, although bacteria

from these locations may interact because the alimentary tract is a

continuous tube running from the oronasal cavity to the anus (Maki

et al., 2021). Associations between these twomicrobial communities

have been extensively investigated. Iwauchi et al. (2019) reported

that the transition of subgingival plaque bacteria to the gut was

more prevalent in older adults than in younger adults. The average

person swallows more than 1000 mL of saliva per day, almost all of

which enters the gastrointestinal tract (Said et al., 2014).

Considering the decline in functionality of the gastrointestinal

tract in the elderly, a higher number of oral bacteria may reach

the gut than in healthy adults owing to diminished extinction by

gastric juices and/or bile acid. Given that AD is a major age-related

neurodegenerative disorder, we hypothesized that the transition of

oral bacteria to the gastrointestinal tract perhaps becomes more

severe as AD progresses. The oral microorganisms that enter the

gastrointestinal tract, to a certain extent, change the structure of the

intestinal microbial community, thus leading to metabolic

endotoxins, which further induce inflammation-related changes

in various tissues and organs (Narengaowa et al., 2021).

Inflammation is a key characteristic of numerous diseases,

including neurodegenerative disorders (Paouri and Georgopoulos,

2019). Sequencing of the 16S ribosomal RNA (16S rRNA) gene has

facilitated the comparison of the composition of oral and gut

microbiotas among individuals with AD and has revealed a

correlation between specific microbial communities and AD.

However, most previous research on oral and gut microbiomes

was conducted separately in an organ-specific manner, rather than

in an integrative context. The most recent studies have proven the

involvement of themicrobiome in inter-organ networks, such as the

gut–brain and oral–gut microbiome axes (Cryan et al., 2019;

Narengaowa et al., 2021; Park et al., 2021). Therefore, a

comparative analysis of the oral and fecal microbiotas of patients

with ADmight reveal whether there is intestinal colonization of the
Frontiers in Cellular and Infection Microbiology 03
oral microbiota and whether this modulates pathophysiological

processes in patients with AD. Oral and intestinal-specific bacterial

species and their products may be potential biomarkers for the

prevention and clinical diagnosis of AD (Narengaowa et al., 2021).

In this study, we performed bacterial 16S rRNA gene

sequencing with DNA isolated from subgingival plaques and

fecal samples of participants to simultaneously detect oral and

gut microbial communities. We investigated the composition

and functional alterations of the oral and gut microbiotas in

individuals with mild or moderate AD, comparing data to those

in their sex- and age-matched controls with normal cognition

(NC). Finally, we investigated the similarity between the oral and

gut microbiotas.
Materials and methods

Study participants

We recruited 172 individuals (normal cognition controls,

n = 40; mild AD dementia, n = 43; and moderate AD dementia,

n = 89) from the Memory Clinic in Fujian Provincial Hospital

(Fujian, China) between February 2020 and February 2022. Our

study was part of a multicenter-based longitudinal observational

study in China that focused predominantly on individuals with

AD dementia and included cognitively normal subjects as

controls. All patients were evaluated with a complete medical

history evaluation, physical examination, neurological, and

neuropsychological assessment, neuroimaging (magnetic

resonance imaging), and clinical biochemistry examinations.

Blood tests to exclude secondary causes of dementia included

a complete blood count, blood chemistry tests, thyroid function

tests, homocysteine, vitamin B12/folate, and syphilis serology.

Conventional brain MRI or CT scans confirmed the absence of

structural lesions such as brain tumors, traumatic brain injuries,

hydrocephalus, or severe white matter diseases.If routine

diagnostic work-up was unable to identify dementia associated

with Alzheimer's disease, then we used apolipoprotein E (APOE)

or Presenilin-1 genotyping and amyloid PET in a selective

manner based on individual agreement.The clinical assessment

and diagnosis of AD dementia were made by experienced

neurologists and memory clinic specialists independent from

the study and according to the guidelines for dementia due to

AD proposed by the National Institute on Ageing-Alzheimer’s

Association (NIA-AA) workgroups and the criteria of the

Diagnostic and Statistical Manual (DSM)-V (Dubois et al.,

2014). Healthy controls were recruited in the same

proportions according to gender and age population; most of

these were the spouses of the patients who had lived in the same

household and been on the same diet together for at least 20

years. The healthy controls had CDR scores of 0 (no dementia),

and had no significant memory complaints. To eliminate the

influence of regional lifestyles on the oral and gut microbial
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communities (Sandhu et al., 2017; Zhu et al., 2020), all

participants were community-dwelling Han individuals aged

60 to 90 years-of-age and who were ordinary residents of

Fuzhou. Each participant completed a lifestyle questionnaire

with detailed demographic and medical history data (such as

hypertension and diabetes mellitus statuses) and a

neuropsychological assessment including the Chinese version

of the Mini-Mental State Examination (MMSE); see Table 1 and

Supplementary Table 1. Moreover, memory clinic specialists

used the Clinical Dementia Rating (CDR) scale to evaluate the

severity of AD dementia. Patients with AD and a total CDR

score of 1 were diagnosed as suffering from mild AD dementia

and those with CDR score of 2 were diagnosed as having

moderate AD dementia (Morris, 1997; O'Bryant et al., 2008).

The exclusion criteria included: 1) other causes or types of

dementia; 2) a family history of dementia; 3) any other

neurodegenerative disease, such as Parkinson’s disease; 4)

confirmed mental illness, such as schizophrenia; 5) severe

cardiac, pulmonary, hepatic, or renal disease, or any tumor; 6)

intestinal diseases, such as irritable bowel syndrome; 7) the

intake of antibiotics, glucocorticoids, or probiotics within the

previous month; 8) known active viral, bacterial, or fungal

infections, or autoimmune diseases; and 9) severe auditory,

visual or motor deficits that might interfere with cognitive

testing. The participants also underwent an oral health status

check within the two months prior to the study to exclude

individuals with the following conditions: oral surgery or dental

procedures, inflammation of oral or perioral tissues, and other

oral cavity chronic diseases. We did not exclude individuals with

periodontal diseases and did not systematically evaluate the oral
Frontiers in Cellular and Infection Microbiology 04
and dental conditions of the participants. However, they were

subject to the Kayser–Jones Brief Oral Health Status

Examination (BOHSE) (Kayser-Jones et al., 1995).

The Ethics Committee of Fujian Provincial Hospital

approved the study protocol (reference number: K2020-09-

025) and we obtained written and informed consent from each

individual or their spouses before enrollment.
Sample handling and collection

Following enrolment, we performed visual dental

inspections to determine the oral status of all individuals.

After the periodontal examination, the deepest or the most

representative periodontal pocket was selected for subgingival

microbial sampling. A trained dentist collected subgingival

plaques from the subgingival surfaces of the teeth using

periodontal curettes (Graceycurett, Hu-Friedy, USA)

(Cockburn et al., 2012; Haririan et al., 2014). No samples were

collected from patients without teeth or those with dental

implants. All subgingival plaque samples were stored at −80°C

until further processing. Each participant was asked to collect a

fresh fecal sample in the morning. Several community-dwelling

older individuals could not send their samples to the hospital

immediately; these subjects were given fecal collection

containers (SARSTEDT, Germany) containing approximately

5 ml of special cytoprotective agents to preserve the DNA in the

stool at room temperature for 10–14 days until the fecal samples

could be transferred to the laboratory for storage at -80°C prior

to processing.
TABLE 1 General characteristics of participants.

Characteristics CN (n = 40) mild
AD (n = 43)

moderate
AD

(n = 89)

p-
value

CN vs. mild
AD

CN vs. moderate
AD

mild AD vs. moderate
AD

p1 p2 p3

Age, years
medians (IQR)

70.00
(59.25–74.00)

79.00
(73.00–85.00)

82.00
(75.50–86.50)

<0.001** <0.001** <0.001** 0.164

BMI, kg/m², medians
(IQR)

21.91
(20.92–25.24)

22.20
(20.60–23.87)

22.60
(21.40–24.20)

0.652 – – –

Education, medians
(IQR)

8 (5–8) 11 (8–13) 9 (5–12) 0.001** 0.001** 0.006** 0.628

MMSE score, medians
(IQR)

26 (25–28) 22 (21–23) 18 (17–19) <0.001** 0.009** <0.001** <0.001**

Gender, M/F 16/24 15/28 33/56 0.890 0.630 0.752 0.806

Smoking, n (%) 6 (17.14%) 7 (26.92%) 6 (21.43%) 0.654 0.356 0.667 0.637

Drinking, n (%) 11 (27.50%) 10 (37.04%) 7 (25.00%) 0.581 0.409 0.818 0.334

Married, n (%) 20 (60.60%) 26 (63.40%) 47 (56.00%) 0.710 0.804 0.647 0.427
Age, BMI, education and MMSE scores are expressed as medians (IQR). Gender, smoking, drinking and married are expressed as number of individuals (%). p-values among the three
groups were calculated using a Kruskal-Wallis test. p1, p2, and p3 were adjusted for significance with Bonferroni correction for multiple tests. NC, normal cognition controls; mild AD, mild
Alzheimer’s disease; moderate AD, moderate Alzheimer’s disease; BMI, body mass index; MMSE, Mini-Mental State Examination; M, male; F, female; IQR, interquartile range.
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DNA extraction and 16S rRNA gene
amplicon sequencing

Oral and gut DNA samples were processed for

Deoxyribonucleic acid (DNA) extraction, Polymerase chain

reaction (PCR) amplification, and sequencing of the V3–V4

hypervariable regions of the bacterial 16S rRNA gene at the

DNA Sequencing and Genomics Laboratory of Sangon BioTech

(Shanghai). Total community genomic DNA extractions were

performed using an E.Z.N.A. Soil DNA Kit (Omega, USA)

following the manufacturer’s instructions. PCRs were initiated

immediately after extracting the DNA samples. The 16S rRNA

V3–V4 fragment was amplified using KAPA HiFi Hot Start

Ready Mix (2×) (TaKaRa Bio, Japan). Two universal bacterial

16S rRNA gene amplicon PCR primers (Polyacrylamide gel

electrophoresis (PAGE)-purified) were used: a forward primer

(CCTACGGGNGGCWGCAG), and a reverse primer

(GACTACHVGGGTATCTAATCC). The PCR program was

run in a thermocycler (Applied Biosystems 9700, USA) with

the following cycling conditions: 1 cycle of denaturation at 95°C

for 3 min, 5 cycles of denaturation at 95°C for 30 s, annealing at

45°C for 30 s, and elongation at 72°C for 30 s. This was followed

by 20 cycles of denaturation at 95°C for 30 s, annealing at 55°C

for 30 s, elongation at 72°C for 30s, and a final extension at 72°C

for 5 min. The PCR products were checked by electrophoresis in

1% (w/v) agarose gels in TBE buffer (Tris, boric acid, EDTA),

stained with ethidium bromide (EB) and visualized under

UV light.

Sequencing was performed using the Illumina MiSeq system

(Illumina MiSeq, USA). The raw sequencing reads were detected

to remove the primer region and low-quality sequences.

Chimera sequences arising from the PCR amplification

products were detected and excluded using Mothur (http://

www.mothur.org) based on the GreenGenes database. High-

quality reads, reaching 97% nucleotide similarity, were clustered

into operational taxonomic units (OTUs) according to the

algorithm in the Ribosomal Database Project (RDP) database.

We constructed summaries of the taxonomic distributions of

OTUs using these taxonomies and used these summaries to

calculate the relative abundances of microbiota at the phylum,

class, order, family, and genus levels. Furthermore, we

performed the Pan/Core OTU species analysis of the oral and

gut microbiomes, and found that the samples were sufficient for

this study (Supplementary Figure 1).
Bioinformatic analysis

We used Quantitative Insights into Microbial Ecology 2

(QIIME2) (Bolyen et al., 2019) and R software to conduct

analyses of a diversity (Shannon, Simpson, observed OTUs,

Chao1 and ACE indices) and b diversity [Bray–Curtis

dissimilarity, and principal coordinate analysis (PCoA)].
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Permuta t i ona l mu l t i va r i a t e ana l y s i s o f va r i ance

(PERMANOVA) was employed to identify the different

microbial communities among groups. We performed

Kruskal–Wallis tests to identify significant alterations of the

predominant oral and gut microbiotas among the three groups

at the different levels. Then, we performed post hoc group

comparisons by applying the Bonferroni adjustment as

appropriate. The key taxa responsible for the differences in the

subgingival and fecal microbiotas between the mild and the

moderate AD groups were identified by using the LEfSe (Linear

discriminant analysis Effect Size) algorithm for biomarker

discovery, which emphasizes both statistical significance and

biological relevance (Segata et al., 2011). We defined a significant

a of 0.05 and an effect size threshold of 2 for all biomarkers

discussed in this study. To determine the associations between

the differential bacterial taxa identified with the LEfSe algorithm

between the two AD groups, and clinical indicators such as their

age, years of education, BMI, and MMSE scores, we performed

correlation analysis using Spearman’s rank correlation. We

applied a Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States (PICRUSt) algorithm to

detect the predicted functions in the microbial communities.

The predicted functional genera were categorized according to

the Kyoto Encyclopedia of Genes and Genome (KEGG)

orthology (KO). Because we characterized gut and oral

microbiota samples from the same individuals, we tried to

construct a Venn diagram to explore the similarity between

the two microbial communities within patients.
Statistical analysis

Results are presented as numbers with percentages, means

with standard deviation (mean ± SD), or medians with

interquartile ranges (medians, IQR). We applied Student’s t or

Mann–Whitney U tests for two groups and one-way Analysis of

Variance (ANOVAs) or Kruskal–Wallis tests for more than two

groups to determine statistical significance. Then, we evaluated

post hoc group comparisons by applying the Bonferroni

adjustment as appropriate. Pearson’s chi-squared test or

Fisher’s exact test were performed to compare categorical

variables. We performed all statistical analyses using IBM

SPSS Statistics 26.0 and R-3.6.3 software (Sheng et al., 2021).

The R package and GraphPad Prism v6.0 were used to generate

graphs. All tests of significance were two sided and p < 0.05 was

considered statistically significant.

Results

Individual characteristics

The general characteristics of individuals in the normal

cognition control (n = 40), mild AD (n = 43) and moderate
frontiersin.org
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AD (n = 89) groups are shown in Table 1. Age, education, and

MMSE score differed significantly among the three groups (p <

0.001, p = 0.001, p < 0.001, respectively). Individuals in the mild

AD and moderate AD groups were significantly older and had

significantly higher education levels than controls with normal

cognition. The MMSE scores were significantly higher in the

NCs than in the mild AD and moderate AD groups (p1 = 0.009,

p2 < 0.001, p3 < 0.001, respectively). Variables such as BMI,

gender, smoking, drinking, and marriage status were similar

among the three groups (p > 0.05).
a and b diversity

Figure 1 shows the fecal microbial diversity as estimated using

the Simpson Index; this was significantly lower in individuals with

moderate AD than in NCs (p = 0.036), although we found similar

oral microbial diversities in these two groups. The oral microbial

richness (the observed OTUs, Chao-1 and ACE index) showed a

progressively decreasing prevalence from theNC to themildAD to

the moderate AD groups; notably, these were significantly reduced

in patients withmild andmoderate AD. In contrast, the richness of

the gut microbiota was significantly higher in the mild AD and

moderate AD groups than in the NC group. Figure 2 demonstrates

significantly different microbial communities of the gut

microbiomes among NC, mild AD and moderate AD groups, as

determined by a PCoA plot based on Bray–Curtis dissimilarity

(PERMANOVA, Bray–Curtis: NC vs. mild AD: R² = 0.022, p =

0.047; NC vs. moderate AD: R² = 0.038, p = 0.002; mild AD vs.

moderate AD: R² = 0.016, p = 0.055). We found a significant

difference in the oral microbiomes between the moderate AD and

NC groups (PERMANOVA, Bray–Curtis: R² = 0.030, p = 0.001).
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a diversity analysis revealed a significantly higher diversity

(Shannon’s and Simpson’s index) and lower richness (the

observed OTUs, ACE, and Chao–1 index) for the oral

microbiota than for the gut microbiota in the three groups

(Supplementary Table 2). PCoA plots based on Bray–Curtis

dissimilarity for the microbiota genus in each sample indicated

that the oral and gut microbiota formed clearly separate groups

(PERMANOVA, Bray–Curtis: p < 0.01; Supplementary Table 2).
Alterations of microbiomes in
the mild AD, moderate AD and
healthy control groups

We found significant alterations of the predominant oral and

gutmicrobiotas among the three groups at the phylum, class, order,

family, and genus levels (Figures 3, 4). The predominant

microbiotas were identified using the microbial taxa with average

relative abundances greater than 1% in any of the three groups. For

theoralmicrobiomes, thephylumFirmicutesand its corresponding

order Selenomonadales, the family Veillonellaceae, the family

Streptococcaceae, the genus Selenomonas, the genus Veillonella,

the genus Streptococcu, and the phylum Fusobacteria and its

corresponding family Leptotrichiaceae, the genus Leptotrichia,

showed a progressively increased prevalence from NC to mild

AD and to moderate AD groups. In particular, the abundances of

these taxawere significantly higher in themoderateADgroup than

in the NC group (p < 0.05). Notably, the abundances of the family

Leptotrichiaceae and genus Leptotrichia of the Fusobacteriia

phylum were significantly higher in the mild AD group than in

the NC group (p = 0.002, p = 0.002). The phylum Proteobacteria

and its corresponding class Gammaproteobacteria, the genus
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FIGURE 1

The a-diversity analysis (Shannon, Simpson, the observed OTUs, ACE, Chao-1 index) of the oral and gut microbiotas among the three groups.
The oral a-diversity analysis (A–E) and the gut a-diversity analysis (F–J) are presented. p-values calculated using Kruskal–Wallis-test among
three groups, and post hoc group comparisons evaluated by Bonferroni adjustment. Pcn, subgingival plaque of normal cognition controls; Fcn,
feces of normal cognition controls; Pmild, subgingival plaque of mild AD; Fmild, feces of mild AD; Pmoderate, subgingival plaque of moderate
AD; Fmoderate, feces of moderate AD.
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Aggregatibacter, and the genusLautropia, showed a trend towards a

progressive decrease from theNC to themildADand themoderate

AD groups; these taxa were significantly less abundant in the

moderate AD group than in the NC group (p < 0.05). Notably,

the genus Lautropia was less abundant in the mild AD group than

in the NC group. There was a trend towards a progressive increase

in the ratio of Firmicutes toBacteroidetes (F/B ratio) in oral bacteria

from the mild AD to the moderate AD groups as compared to the

ratio in the NC group. In particular, this ratio was significantly
Frontiers in Cellular and Infection Microbiology 07
higher in the moderate AD group than in the NC group (p =

0.036) (Figure 4C).

Figure4showsdiametricallyoppositeabundancetrends for thegut

and oral microbiotas. The phylum Firmicutes and its corresponding

class Erysipelotrichia, the order Erysipelotrichales, the family

Acidaminococcaceae, the genus Ruminococcus2, the genus

Phascolarctobacterium, and the genus Clostridium_IV, demonstrated

a markedly lower abundance in the moderate AD group than in NC

individuals (p < 0.05). Intriguingly, the abundances of the cariogenic
FIGURE 3

Alteration of oral predominant microbiotas among the three groups. Comparison among the three groups by Kruskal–Wallis-test analysis, and
significant taxa classifications obtained by Post Hoc test using Bonferroni adjustment. *p <0.05, ** p<0.01; Pcn, subgingival plaque of normal
cognition controls; Pmild, subgingival plaque of mild AD; Pmoderate, subgingival plaque of moderate AD; IQR, interquartile range.
BA

FIGURE 2

The b-diversity analysis of the subgingival plaque (A) and fecal (B) microbiota among the three groups. PCoA based on the Bray-Curtis of
b-diversity analysis. PERMANOVA tests if the centroids, similar to means, of each group are significantly different from each other. R² statistic
showing the community variation between the compared groups with significant p-values. Pcn, subgingival plaque of normal cognition
controls; Fcn, feces of normal cognition controls; Pmild, subgingival plaque of mild AD; Fmild, feces of mild AD; Pmoderate, subgingival plaque
of moderate AD; Fmoderate, feces of moderate AD; PCoA, principal coordinate analysis.
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dental pathogens (the Lactobacillus (p = 0.023, p < 0.001) and

Streptococcus (p = 0.012, p = 0.020) genera) were also higher in the

mild andmoderateADand groups than in theNCgroup (Figure 4A).

In addition, the phylum Bacteroidetes and its corresponding family

Bacteroidaceae, genus Bacteroides, along with the genus

Parabacteroides, presented a trend towards a progressively decreased

abundance fromtheNCgrouptothemildADgroupandthemoderate

AD group; these taxa showed significantly lower abundances in the

moderate AD group than in the NC group (p < 0.05) (Figure 4B).

However, the phylum Proteobacteria and its corresponding class

Gammaproteobacteria, the order Enterobacteriales, the family

Enterobacteriaceae, the genus Escherichia_Shigella, and the phylum

Verrucomicrobia and its corresponding class Verrucomicrobiae and

genus Akkermansia, and the phylum Actinobacteria and its

corresponding class Actinobacteria, the order Bifidobacteriales, the

family Actinomycetaceae, and the genus Bifidobacterium showed

progressively higher prevalence from the mild AD to the moderate

AD groups as compared to those in the NC group; these taxa were

more abundant in patients withmoderate AD than inNC individuals

(Figures 4D–F). Moreover, the abundance of phylum Actinobacteria

and its corresponding class Actinobacteria, along with the order

Bifidobacteriales, was also significantly higher in the mild AD group

than in the NC group.
The identification of crucial bacteria to
differentiate between patients with mild
and moderate AD

To further explore all alterations in the oral and gut microbiotas

of the mild AD and moderate AD groups, we used LEfSe analysis
Frontiers in Cellular and Infection Microbiology 08
(withaLDAscore cutoff >2.0) to identify thekey taxa responsible for

the differences in the compositions of the subgingival and fecal

microbiotas between the two groups. In the taxa of subgingival

bacteria, 13 taxa were more abundant in the moderate AD group,

including the phylum Firmicutes and its corresponding class

Erysipelotrichia, the order Erysipelotrichales, the Lactobacillaceae

and Erysipelotrichaceae families, the genus Anaeroglobus, the genus

Lactobacillus, the genus Stomatobaculum, the genus Schwartzia, and

the Actinobacteria phylum’s corresponding order Coriobacteriales

and family Coriobacteriaceae, the genus Atopobium; and the genus

Solobacterium. The phylum Proteobacteria and its corresponding

order Pseudomonadales and family Pseudomonadaceae, the genus

Aggregatibacter, the genusPseudomonas; and the genusunclassified_

Pasteurellaceae were less abundant (Figures 5A, B).

In the taxa of fecal microbiotas, the abundance of 16 taxa (the

phylum Synergistetes and its corresponding class Synergistia, order

Synergistales and family Synergistales, thephylumProteobacteria and

corresponding class Gammaproteobacteria, the order Pasteurellales,

the order Enterobacteriales, the family Pasteurellaceae, the family

Enterobacteriaceae, the genus Stenotrophomonas, the genus Proteus,

the genus Escherichia_Shigella, and the phylum Actinobacteria’s

corresponding order Actinomycetales, the family Micrococcaceae,

the genus Rothia, and the genus Alloprevotella) were enriched in the

moderate AD group. However, the abundances of the phylum

Firmicutes and its corresponding genus Ezakiella, the family

Sutterellaceae, and the genusOlsenella, were depleted (Figures 5C,D).

Wewere able to differentiate seven key functional taxa between

the AD and the control groups. The Firmicutes and Proteobacteria

phyla were responsible for most differences in the compositions of

the subgingival microbiotas between the two groups, while the

phylum Firmicutes, and the Proteobacteria’s corresponding genus
B C
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A

FIGURE 4

Alteration of gut predominant microbiotas among the three groups (A–F). Comparison among the three groups by Kruskal–Wallis-test analysis,
and significant taxa classifications obtained by Post Hoc test using Bonferroni adjustment. *p <0.05, ** p<0.01; Fcn, feces of normal cognition
controls; Fmild, feces of mild AD; Fmoderate, feces of moderate AD; IQR, interquartile range.
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Escherichia_Shigella, the order Enterobacteriales, the family

Enterobacteriaceae, and the class Gammaproteobacteria of the

fecal microbiotas had the most differential abundances in the

fecal bacteria when compared between the AD groups. The key

differences in themicrobiomes between themildAD andmoderate

ADgroups showed approximately similar tendency for variation in

the relative abundance of the Firmicutes and Proteobacteria phyla

and their corresponding taxa in different clinical stages of AD

(normal controls, mild and moderate AD). These key taxa may

therefore be used as biomarkers for discriminating between the

groups of patients.
Associations between clinical data and
altered microbiomes in the mild and
moderate AD groups

To determine the associations between clinical indicators, and

the deferential genera of the mild AD and moderate AD groups, we

performed correlation analysis using Spearman’s rank correlation
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(Figure 6). In the subgingivalmicrobiotas, the relative abundances in

the moderate AD group were higher in bacteria of the phylum

Firmicutes and showed positive correlation with age and negative

correlation withMMSE scores. However, the relative abundances in

the moderate AD group were lower for the phylum Proteobacteria;

these were positively correlated with MMSE scores. The phylum

Proteobacteria’s corresponding order Pseudomonadales, the Family

Pseudomonadaceae, the genus Aggregatibacter and the genus

Pseudomonas were negatively correlated with age (Figure 6A). In

the fecal microbiotas, we found that the genus Proteus, from the

family of Enterobacteriaceae, were increased in moderate AD and

positively correlated with age but negatively associated with MMSE

scores (Figure 6B) (p<0.05).
Microbial functional dysbiosis in the mild
AD, moderate AD, and NC groups

We used PICRUSt to predicte KEGG functional orthologs in

level-2 KEGG pathways to identify functional changes in the oral
B

C D

A

FIGURE 5

Key taxonomic differences of subgingival plaque and fecal microbiota in patients with mild andmoderate AD. Cladogram using LEfSe method
indicating the phylogenetic distribution of the subgingival (A, B) and fecal (C, D)microbiotas. Each circle’s diameter is proportional to the taxon’s
abundance. As is shown in the histogram of the LDA scores for differentially abundant taxa, positive LDA scores indicate the enrichment of taxa in
moderate AD group (green) relative to the control group (red), and negative LDA scores indicate the depletion of taxa. LDA scores (log10) > 2 and p <
0.05; Pcn, subgingival plaque of normal cognition controls; Fcn, feces of normal cognition controls; Pmild, subgingival plaque of mild AD; Fmild, feces
of mild AD; Pmoderate, subgingival plaque of moderate AD; Fmoderate, feces of moderate AD; LEfSe, linear discriminant analysis (LDA) effect size.
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and fecalmicrobiotas among the three groups.As shown inTable 2,

in the oral microbiota, the progressively modified orthologs that

were more abundant in the mild and moderate AD groups than in

theNC groupwere enriched inmembrane transport, carbohydrate

metabolism, and signalingmolecules and interaction pathways and

low in energymetabolism, cellular processes and signaling, folding,

sorting and degradation, signal transduction, endocrine system,

neurodegenerative diseases and cancers. Importantly, the nine

important functional orthologs showed significant alterations in

the moderate AD group when compared with healthy subjects.

In the gut microbiota (Table 3), seven functional orthologs,

including membrane transport, poorly characterized, genetic

information processing, metabolism, infectious diseases, and

cancers showed a trend towards a progressive increase from

NC to mild AD to moderate AD groups. In contrast, amino acid

metabolism, energy metabolism, metabolism of cofactors and

vitamins, biosynthesis of other secondary metabolites, and the

endocrine system, showed a progressively decreasing trend from

the NC to the mild AD to the moderate AD groups. All of these

were significantly altered in the moderate AD group when

compared with the NC group.
Overlapping genera between the oral
and gut microbiotas

Because we characterized gut and oral microbiota samples from

the same individuals, we tried to explore the similarity between these

microbiotas within patients. Venn diagram analysis showed that in

the NC group, the 459 genera fell into three categories: 51 (11.1%)

were predominantly fecal, 202 (44.0%)were predominantly oral, and

the remaining 206 (44.8%) overlapped between the subgingival and

stool samples (Figure 7A). In the mild AD group, of the 456 genera,
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74 (16.2%) were predominantly fecal, 77 (16.9%) were

predominantly oral, and the remaining 305 (66.9%) overlapped

between the two samples (Figure 7B). The moderate AD group

had 468 genera; 75 (16.0%) were predominantly fecal, 73 (15.6%)

were predominantly oral, and the remaining 320 (68.4%) overlapped

between the subgingival and stool samples (Figure 7C). The number

of oral-gut overlapping genera showed a trend towards a progressive

increase from NC to mild AD to moderate AD groups.
Discussion

To our knowledge, this is the first study to co-analyze the

oral and gut microbiomes of Chinese elderly patients with AD.

We found that a tendency for variation in the relative abundance

of the Firmicutes and Proteobacteria phyla in different clinical

stages of AD (normal controls, mild and moderate AD) and that

difference was clearest with the moderate AD group. The key

differences in the microbiomes between the mild AD and

moderate AD groups showed approximately similar alterations

in variation tendency, and the differing bacterial taxa were

associated with MMSE scores and age. KEGG analysis showed

that the oral and gut functional pathways exhibited significant

changes among the three groups. Venn diagram analysis of the

number of oral-gut overlapping genera showed a gradual

upwards trend from NC to mild AD to moderate AD groups.
Alterations of oral microbial
compositions and gene functions among
different AD phases

The gastrointestinal tract begins in the oral cavity where a

diverse array of microbes resides. The mouth harbors over 700
BA

FIGURE 6

Correlations of altered oral (A) and gut (B) microbiomes with clinical characteristics in mild and moderate AD groups. Spearman’s rank correlation
coefficient (R) and probability (p) were used to evaluate statistical importance. R-value showing the correlation between the microbiota and clinical
factor, with significant p-values indicated. *p <0.05, **p <0.01; BMI, body mass index; MMSE, mini-mental state examination.
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TABLE 3 PICRUSt-based examination of the gut bacterial functions among the three groups.

Fcn Fmild Fmoderate
p-

Value

CN vs
Mild

CN vs
Moderate

Mild vs
Moderate

medians (IQR) medians (IQR) medians (IQR) p1 p2 p3

Membrane Transport 12.017 (11.444-
13.145)

13.047 (11.559-
13.955)

13.247 (11.928-
14.182)

0.044* – 0.037* –

Poorly Characterized 5.045 (4.855-5.318) 5.081 (4.916-5.417) 5.267 (5.010-5.522) 0.007** – 0.011* –

Genetic Information Processing 2.830 (2.683-3.073) 2.886 (2.738-3.165) 3.119 (2.844-3.516) 0.000** – 0.000** 0.041*

Metabolism 2.751 (2.499-2.960) 2.645 (2.476-2.876) 2.851 (2.552-3.176) 0.040* – – –

Infectious Diseases 0.431 (0.381-0.479) 0.434 (0.394-0.525) 0.492 (0.417-0.578) 0.004** – 0.005** –

Neurodegenerative Diseases 0.115 (0.091-0.138) 0.116 (0.081-0.157) 0.132 (0.096-0.170) 0.024* – – –

Cancers 0.102 (0.092-0.119) 0.106 (0.096-0.12) 0.116 (0.102-0.131) 0.014* – 0.028* –

Amino Acid Metabolism 9.389 (8.970-9.765) 9.297 (8.475-9.667) 9.017 (8.285-9.466) 0.013* – 0.014* –

Energy Metabolism 5.663 (5.443-5.911) 5.593 (5.172-5.986) 5.396 (5.084-5.825) 0.011* – 0.016* –

Metabolism of Cofactors and Vitamins 4.245 (4.369-4.393) 4.183 (4.012-4.393) 4.127 (3.956-4.291) 0.047* – – –

Biosynthesis of Other Secondary
Metabolites

0.948 (0.830-1.04) 0.905 (0.751-0.988) 0.846 (0.715-0.956) 0.004** – 0.003** –

Replication and Repair 8.250 (7.862-8.823) 8.385 (7.486-8.888) 7.920 (7.172-8.552) 0.014* – – 0.035*

Translation 5.063 (4.786-5.534) 5.173 (4.502-5.695) 4.859 (4.289-5.422) 0.032* – – –

Nucleotide Metabolism 3.813 (3.998-4.048) 3.893 (3.553-4.048) 3.735 (3.452-3.956) 0.047* – – –

Signal Transduction 1.734 (1.489-1.985) 1.684 (1.397-2.303) 1.984 (1.550-2.375) 0.011* – – 0.032*

Cell Motility 1.679 (1.275-1.932) 1.484 (1.207-1.932) 1.843 (1.509-2.282) 0.034* – – –

Cell Growth and Death 0.467 (0.433-0.493) 0.476 (0.397-0.515) 0.433 (0.352-0.492) 0.038* – – –

Endocrine System 0.292 (0.249-0.334) 0.292 (0.233-0.326) 0.263 (0.221-0.308) 0.029* – 0.033* –
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PICRUSt-based examination of the fecal bacterial functions among the three groups.
Comparisons between the groups for each KEGG functional category (levels 2) are shown by medians (IQR). p-value was calculated using a Kruskal-Wallis test among the three groups. p1,
p2, and p3 adjusted for significance with Bonferroni correction for multiple tests. Fcn, feces of normal cognition controls; Fmild, feces of mild AD; Fmoderate, feces of moderate AD.
*p <0.05, **p <0.01.
TABLE 2 PICRUSt-based examination of the oral bacterial functions among the three groups.

Pcn Pmild Pmoderate
p-Value

CN vs Mild CN vs
Moderate

Mild vs
Moderate

Median (IQR) Median (IQR) Median (IQR) p1 p2 p3

Membrane Transport 10.584 (9.790-11.394) 10.977 (10.276-11.709) 11.320 (10.349-12.183) 0.013* – 0.009** –

Carbohydrate Metabolism 9.089 (8.866-9.441) 9.126 (8.925-9.478) 9.301 (9.072-9.747) 0.015* – 0.044* –

Signaling Molecules and Interaction 0.190 (0.177-0.209) 0.202 (0.182-0.233) 0.215 (0.195-0.250) 0.001** – 0.001** –

Energy Metabolism 5.866 (5.760-6.061) 5.825 (5.593-5.969) 5.735 (5.564-5.971) 0.027* – 0.022* –

Cellular Processes and Signaling 4.048 (3.745-4.408) 4.037 (3.717-4.269) 3.830 (3.579-4.068) 0.003** – 0.012* 0.023*

Folding, Sorting and Degradation 2.830 (2.748-2.871) 2.792 (2.688-2.848) 2.736 (2.669-2.814) 0.000** – 0.000** –

Signal Transduction 1.308 (1.200-1.399) 1.243 (1.149-1.319) 1.195 (1.113-1.305) 0.007** – 0.005** –

Endocrine System 0.303 (0.281-0.334) 0.280 (0.257-0.305) 0.275 (0.258-0.309) 0.003** 0.025* 0.003** –

Neurodegenerative Diseases 0.288 (0.201-0.327) 0.270 (0.183-0.346) 0.226 (0.171-0.303) 0.021* – – –

Cancers 0.103 (0.091-0.118) 0.095 (0.086 -0.104) 0.091 (0.076-0.104) 0.002** – 0.001** –
PICRUSt-based examination of the oral bacterial functions among the three groups.
Comparisons between the groups for each KEGG functional category (levels 2) are shown by medians (IQR). P-value was calculated using a Kruskal-Wallis test among the three groups. p1,
p2, and p3 adjusted for significance with Bonferroni correction for multiple tests. Pcn, subgingival plaque of normal cognition controls; Pmild, subgingival plaque of mild AD; Pmoderate,
subgingival plaque of moderate AD. *p <0.05, ** p<0.01.
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bacterial taxa, most residing in the anaerobic environment of the

subgingival surface as a biofilm (Arweiler and Netuschil,

2016).The oral microbiota is the second most diverse

community in the human body after the gut microbiota (Chen

et al., 2017). In this study, we found that the oral abundances of

the Firmicutes and Fusobacteria phyla showed a gradual

upwards trend from NC to mild to moderate AD groups,

while the abundance of the Proteobacteria phylum decreased

gradually in the same order. Previous studies have reported

results consistent with our current findings. A study by Ling

et al. (2015) defined oral supragingival plaque bacterial

sequences in healthy 37- to 59-year-old adults that were

identical to those that we found with enriched Firmicutes,

Actinobacteria, Bacteroidetes, and Fusobacteria phyla. Wu

et al. (2021) reported a general increase in Firmicutes,

Actinobacteria, and Bacteroidetes, and a reduction in

Fusobacteria in the dental plaques of elderly patients with AD

when compared with the abundances in controls; in addition,

one indicator of aging (Mariat et al., 2009), the ratio of

Firmicutes to Bacteroidetes (F/B ratio), was also increased in

the patients. In our study, the moderate AD group showed a

higher F/B ratio (p = 1.098) than the NC group. A higher F/B
Frontiers in Cellular and Infection Microbiology 12
ratio (>1) reflects an imbalance of the oral Firmicutes and

Bacteroidetes in moderate AD patients, thus suggesting an

increased systemic inflammatory response (Verdam et al.,

2013; Emoto et al., 2016). The cause of these variations may

be correlated with the changes in the oral microbiota that occur

with age (Wu et al., 2021). We found consistent results in our

study, with the patients in the moderate AD group being older

and presenting with worse cognitive functions than those in the

mild AD and NC groups. The relative abundance of the

Firmicutes phylum was positively correlated with age and

negatively correlated with MMSE scores, thus suggesting that

the increased abundance of the oral Firmicutes phylum in the

moderate AD group may be correlated with worse cognitive

function; moreover, the positive correlation of the

Proteobacteria phylum with MMSE scores is in line with the

reduction in abundance with worsening cognitive dysfunction.

KEGG analysis showed that the oral functional pathways in

the mild and moderate AD groups were mainly involved in

membrane transport and carbohydrate metabolism, which

showed a progressively increased prevalence from the mild AD

to the moderate AD groups as compared to that in the NC group.

These pathways were most abundant in the moderate AD group.
B
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FIGURE 7

The similarity and overlap with oral and fecal microbiotas. The Venn diagrams illustrate all overlapping genera identified in the oral and gut
microbiota in the normal control (A), the mild AD (B), and the moderate AD (C) groups. Subgingival and gut microbiomes are colored in blue
and yellow nodes, respectively. Pcn, subgingival plaque of normal cognition controls; Fcn, feces of normal cognition controls; Pmild, subgingival
plaque of mild AD; Fmild, feces of mild AD; Pmoderate, subgingival plaque of moderate AD; Fmoderate, feces of moderate AD.
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The enrichment in membrane transport indicated that oral

transmembrane transport was more active in the moderate AD

group. With regards to the carbohydrate metabolism pathway, a

previous study reported that enhanced carbohydrate activity in

the oral microbiota was a contributing factor for the pathogenesis

of caries (Peterson et al., 2011). In our study, the moderate AD

group was enriched in the oral Firmicutes phylum, bacteria

secreting glycoside hydrolases (GHs) involved in the

degradation of carbohydrate main chains (White et al., 2014).

Thus, an increase of Firmicutes in the oral cavity can increase

carbohydrate catabolism in the human body. Moreover, the early

colonizing and resident bacteria of the dental plaque biofilms are

known to have different types of GHs. We found that the relative

abundance of the cariogenic dental pathogens Lactobacillus and

Streptococcus in subgingival plaques was higher in the moderate

AD group than in the mild AD and NC groups. Lactobacillus is a

supragingival saccharolytic bacteria that degrades carbohydrates

(such as sugars) into organic acids as well as metabolizing amino

acids into acids and ammonia, thus leading to the

demineralization of tooth surfaces and the development of

caries (Takahashi, 2015). A previous study also reported that

the proportions of the cariogenic dental pathogens Lactobacillales

and Streptococcaceae were increased in the dental plaques of

elderly patients with AD (Emery et al., 2017).

Notably, we found that the abundance of the Fusobacteria

phylum was significantly higher in the moderate AD group than

in the NC group. In agreement with this finding, Vera et al.

(Panzarella et al., 2020) reported a significantly higher

Fusobacteria load in patients with AD than in controls. Stein

et al. (Sparks Stein et al., 2012) also reported higher antibody

levels to Fusobacteria in patients with AD than in controls.

Fusobacteria is one of the commonest species in the human

gingiva and has a crucial role in the development and

progression of periodontal disease (Diaz et al., 2002). In

another study, colonization by Fusobacterium nucleatum

contributed to the development of a more aggressive

periodontal disease in an AD group than in controls, with a

consequent increase in the number of lost teeth (Panzarella et al.,

2020). Accordingly, the patients in the moderate AD group in

the current study had a marked reduction in the number of teeth

and a higher BOHSE score than those in the mild AD group

(Supplementary Table 1). These data imply that patients in the

moderate AD group presented with worse overall oral health

conditions. Pathogenic bacteria in the oral cavity need to cover a

shorter distance to invade the brain than gut bacteria in the

colon (Cryan et al., 2019). Postmortem brain examinations of

patients with AD have reported higher isolation rates for

Actinobacteria, Lactobacillus, and Streptococcaceae (Emery

et al., 2017). These pathogens penetrate the BBB, continuously

causing neuroinflammation and promoting neurodegeneration

that may lead to cognitive impairment and promote the

pathogenesis of AD.
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Alterations of gut microbial compositions
and gene functions among different AD
phases

Growing evidence indicates that the gut microbiota

influences brain function and behavior via the microbiota–

gut–brain axis (Cryan et al., 2019). In our comparison of gut

microbiotas among the three groups, we found that the phylum

Firmicutes showed a trend towards a progressive decrease with

worsening cognitive decline, while the Proteobacteria phylum

increased gradually from the mild AD to the moderate AD

groups as compared to its abundance in the NC group. These

findings agree with previous results demonstrating lower

abundances of Firmicutes and higher abundances of

Proteobacteria in patients with AD. In the human gut

microbiome, the Firmicutes, Bacteroidetes and Proteobacteria

phyla are the most dominant (Kristina et al., 2012). Liu et al.

(2019) conducted a Chinese cohort study and found that the

relative abundance of Firmicutes was significantly reduced, and

the proportion of Proteobacteria was highly enriched, in patients

with AD when compared to those in patients with MCI and

controls. In addition, similar alterations were observed at the

order, class, and family levels of these two phyla. Sheng et al.

(2021) revealed that the abundances of the Firmicutes phylum

and its corresponding class, order, family, and genus taxa were

progressively reduced from NC to SCD and to Cognitive

Impairment (CI) groups (the last group showed a significantly

decreased abundance of the Firmicutes phylum). Similarly, Hou

et al. (2021) showed that the abundances of the phylum

Pro t eobac t e r i a and the Esche r i ch i a - Sh i g e l l a and

Ruminococcaceae_UCG_002 genera were increased in patients

with AD when compared with those in healthy controls. Both

Nagpal et al. (2019) and Zhang et al. (2021) reported the

abundances of Proteobacteria and Gammaproteobacteria were

higher in participants with MCI when compared with those in

healthy controls. A meta-analysis further showed that the

abundance of the Proteobacteria phylum increased

progressively from an NC group to a MCI and an AD group

(Hung et al., 2022).

Based on our results and those of previous studies, the

relative abundance of the Firmicutes phylum decreases

progressively, while that of the Proteobacteria phylum

increases gradually with the progression of the AD spectrum

(NC, SCD or MCI, and AD). Thus, these clinical stages have

been considered as moderators for alterations in the microbiota

(Liu et al., 2019). In discriminating models for the oral and gut

microbiomes, alterations of the Firmicutes and Proteobacteria

phyla are reversed. In addition, similar alterations have been

seen at the order, class, family and genus levels of these two

phyla. The novelty of our study is the further discovery of the

tendency for variation in the relative abundance of the

Firmicutes and Proteobacteria phyla between patients with
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different AD phases. Our study provides further evidence that

human AD is likely to be associated with the progressively

diminishing abundance of Firmicutes and the gradually

increasing abundance of Proteobacteria in affected patients

from healthy individuals to those with moderate AD dementia.

The microbiota may affect neuroinflammation by modulating

neurochemical and neurometabolic pathways. In this study, the

fecal microbial gene functions related to the metabolism of amino

acids, energy, cofactors, and vitamins were significantly lower in

the moderate AD group than in the NC group. Binyin Li et al.

(2019) reported a similar reduction in functional fecal orthologs

reduction in an AD group when compared with that in healthy

individuals. Although the specific bacteria responsible for these

functional alterations may differ between conditions, alterations in

the microbiota of patients with AD may change the balanced

metabolism and biosynthesis of fatty acids in the human body (Li

et al., 2019). For instance, the presence of the Firmicutes phylum is

associated with inflammatory responses, the modulation of

metabolic function, and the production of SCFAs (Kumar et al.,

2014; Bhat and Kapila, 2017; Welcome, 2019). The reduced

abundance of the Firmicutes phylum and its corresponding taxa

(e.g., family Acidaminococcaceae, genus Phascolarctobacterium,

and genus Clostridium_IV) may promote the production of toxic

metabolites and proinflammatory cytokines and reduce the

quantities of beneficial substances, such as SCFAs. The bacteria

in the family Acidaminococcaceae and genus Clostridium_IV are

well-known butyrate producers. The effects of butyrate include a

reduction in inflammation, an improvement in oxidative status,

and improvements in the integrity of the blood–brain barrier

(Canani et al., 2011; Fung et al., 2017); these factors play an

important role in the maintenance of brain function in patients

with AD. Bacteria in the Phascolarctobacterium genus are

substantial acetate/propionate producers that might be associated

with the metabolic state and mood of the host (Wu et al.,

2017). These are all important molecules with regards to

maintaining an environmental balance in the intestine and the

prevention of inflammation (Kim et al., 2014). Abnormal levels of

SCFAs have been proposed to negatively affect disease progression

and maintenance, potentially through immune activation and

systemic inflammation (Morris et al., 2015) and can lead to

damage of the gut epithelial barrier and subsequent blood-brain

barrier dysfunction (Welcome, 2019). Neuroinflammation

contributes to the progression of neuropathological changes in

AD and to the formation of amyloid-b plaques and neurofibrillary

tangles (Kauwe et al., 2014; Stella et al., 2014). Interestingly, we also

found that microbial infectious diseases increased from the mild

AD to the moderate AD groups as compared to those in the NC

group. Thus, dysbiosis of the intestinal microflora may contribute

to the pathogenesis of AD viametabolic pathways. However, more

detailed work is now needed to provide specific insights into the

effects of these metabolites upon the pathogenesis of AD.

Pro-inflammatory Proteobacteria have been suggested to be

a predictor for AD pathogenesis (Hou et al., 2021; Liu et al.,
Frontiers in Cellular and Infection Microbiology 14
2021). The Proteobacteria are a major phylum of Gram-negative

bacteria with lipopolysaccharide (LPS) and are capable of

triggering systemic inflammation and the release of pro-

inflammatory cytokines after translocation from the gut to the

systemic circulation (Cani et al., 2007). Moreover, a recent study

reported that the levels of LPS and gram–negative Escherichia

coli were higher in postmortem brain tissues and blood vessels of

patients with AD than those in a control group (Zhan et al.,

2016). Notably, we found that the Proteobacteria phylum and its

cor re spond ing c las s Gammaproteobac te r i a , order

Enterobacteriales, family Enterobacteriaceae, and genus

Escherichia_Shigellaa, were broadly enriched in the moderate

AD group when compared with their abundance in the NC

group. Furthermore, the abundance of Proteobacteria has been

shown to be increased and associated with worsening memory

dysfunction levels (Hossain et al., 2019; Jeong et al., 2019).

Consistent with these earlier findings, we found that the genus

Proteus, from the family of Enterobacteriaceae, was increased in

moderate AD and negatively associated with MMSE scores.

Similarly, Liu et al. (2019) revealed that Gammaproteobacteria,

Enterobacteriales, and Enterobacteriaceae were progressively

enriched from the prodromal MCI to the AD stages as

compared to their abundance in NCs. More importantly,

models based on the family of Enterobacteriaceae could clearly

distinguish individuals with AD from those with MCI or NCs.

Similarly, Hou et al. (2021) showed that the abundances of the

Proteobacteria phylum, along with the Escherichia-Shigella and

Ruminococcaceae_UCG_002 genera were increased in AD

individuals when compared with their abundance in healthy

controls, thus suggesting that the presence of this phylum is a

distinctive biomarker to predict the development of AD.

Cattaneo et al. (2017) reported that the abundance of fecal

Escherichia/Shigella, the major genus of Enterobacteriaceae,

was increased in patients with AD. These lines of evidence

indicate that the Proteobacteria phylum, and its related taxa,

might have important roles in the initiation and progression of

AD, and suggest the potential for using these taxa as non-

invasive biomarkers of cognitive function and to discriminate

between mild and moderate AD.

In parallel with other similar studies (Li et al., 2019; Ling

et al., 2020), we also found that the abundances of the

Actinobacteria and Verrucomicrobia phyla had clearly

increased in moderate AD patients, while the abundance of

Bacteroidetes had significantly decreased at the phylum level.

Similar with the findings of Ling et al. (2020) and Li et al. (2019),

we found that the abundances of the lactate-producing genus

Bifidobacterium of the Actinobacteria was increased in the

moderate AD group; this bacterium is known to be highly

beneficial in humans (David et al., 2011). Thus, we still need

to investigate the therapeutic potential of Bifidobacterium in

terms of maintaining cognitive function and treating dementia

(Ling et al., 2020). Zhuang and colleagues (Zhuang et al., 2018)

demonstrated a similar result in Chinese patients with AD. Li
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et al. (Liu et al., 2019) reported that the genera in the phylum

Bacteroides dominated the reduced genera in patients with AD.

However, a previous study undertaken in the USA, reported an

opposite change in abundance (Vogt et al., 2017), thus

suggesting that the composition of Bacteroidetes varies by

country (Hung et al., 2022).
Similarity between the oral and
gut microbiotas

Alterations in the bacterial microbiotas in patients with AD

may represent candidates for modulating the pathological

processes of AD, unless the changes in their abundance is

simply caused by AD pathology. The oral–gut–brain axis

signaling represents a new avenue in psychiatry that is expected

to provide novel targets for the diagnosis and treatment of AD,

and for deciphering its pathogenesis (Narengaowa et al., 2021).

The oral and gut microbiomes are well segregated due to the

presence of an oral–gut barrier, represented by their physical

distance and the presence of gastric acid and bile (Tennant et al.,

2008; Segata et al., 2012; Ridlon et al., 2014). However,

impairment of the oral–gut barrier can allow inter-organ

translocation and communication. Aging is associated with

oral–gut barrier dysfunction and can increase gut permeability

(“leaky gut”) and bacterial translocations (Ulluwishewa et al.,

2011; Tran and Greenwood-Van Meerveld, 2013; Iwauchi et al.,

2019). Thus, elderly people have fewer functional barriers in the

body (Nagpal et al., 2017; Sovran et al., 2019) and have more

prevalent oral bacteria transferred to the intestine, thus colonizing

these two locations (e.g., Porphyromonas, Fusobacterium, and

Pseudoramibacter) to a greater extent than healthy adults

(Odamaki et al., 2016; Iwauchi et al., 2019). As a major age-

related neurodegenerative disease, intriguingly, we found that

cariogenic dental pathogens Lactobacillus and Streptococcus were

enriched in the feces of mild AD and moderate AD subjects when

compared with normal cognition controls. Furthermore, we

analyzed the oral–gut overlapping microbiota in the post-AD

spectrum (NC, mild AD, moderate AD); Venn diagram analysis

revealed 206 (44.8%), 305 (66.9%), and 320 (68.4%) genera that

overlapped across the three groups (NC, mild AD, moderate AD),

respectively; with a trend towards a progressive increase from the

NC to the mild AD and to the moderate AD groups. These

findings are similar with those in the shared oral and gut

microbiome taxa analysis performed at the genus level by Segata

et al. (2012). As estimated by the observed OTUs, ACE, and

Chao–1 index data, we found that the oral microbial richness

showed a progressively decreased prevalence, while the gut

microbial richness showed an upwards trend from the NC to

the mild AD and to the moderate AD groups. Thus, we

hypothesized that patients with moderate AD may have had

more mouth-to-gut microbial transmissions than those with
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mild AD or healthy individuals. The oral microorganisms that

enter the gastrointestinal tract, to a certain extent, change the

structure of the intestinal microbial community, thus leading to

metabolic endotoxins that will further induce inflammation-

related changes in various tissues and organs. For example, P.

gingivalis can enter the intestine by swallowing and then change

the composition of the intestinal microbiome and further increase

the permeability of the intestinal epithelium (Arimatsu et al., 2014;

Feng et al., 2020). Other studies have shown that the

administration of P. gingivalis can cause changes in the

intestinal microbiota, and even induce the upregulation of the

mRNA expression of various proinflammatory cytokines (Kato

et al., 2018; Ohtsu et al., 2019). There is now increasing evidence

to suggest that inflammation holds a pivotal role in the

pathogenesis of AD and that immune pathways can potentially

comprise primary therapeutic targets (Paouri and Georgopoulos,

2019). Further shotgun metagenomic sequencing should be used

to provide a deeper understanding of the oral-gut relationships at

the species level (Maki et al., 2021). Schmidt et al. (2019) indicated

that 40% of the total identified species were present in both the

oral (saliva) and gut communities at the species level in the elderly.

In short, the bidirectional crosstalk between these microbiomes

may help develop the oral–gut microbiome axis which plays a

crucial role in regulating the pathogeneses of various human

diseases, including AD.
a and b diversity

We found that the fecal microbial diversity, as estimated by

the Simpson Index, decreased significantly in individuals with

moderate AD when compared to healthy elderly adults, although

there was no statistically significant difference in terms of oral

microbial diversity. Reduced gut microbial diversity in patients

with AD has been reported in previous studies (Liu et al., 2019;

Sheng et al., 2021). Liu et al. (2019) associated the reduced gut

microbial diversity with an increased risk of AD progression. In

addition, a diversity analysis showed a significantly higher

diversity and lower richness in the oral microbiota than in the

gut microbiota. This is consistent with findings reported by Huse

et al. (2012) in which stool samples had the highest estimated

richness, followed by those of the mouth and other body sites.

Consistent with previous reports (Human Microbiome Project,

2012; Russo et al., 2017; Uchino et al., 2021), the compositions of

the oral and gut microbiotas were found to differed greatly in the

present study and the habitat specificity was high.
Limitations

Previous studies mainly analyzed the differences in microbial

composition between healthy controls and AD groups. In this

study, we further subdivided participants with AD into mild AD
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and moderate AD groups according to their CDR scores.

Compared with individuals in the NC group, more alterations

were found in the moderate AD group in terms of oral and gut

microbial compositions and gene functions than those in the

mild AD group. In this study, the MMSE scores of moderate

patients with AD averaged 18 and were similar to the MMSE

scores ranging from 4 to 19 in most of previous studies; this may

account for the more extensive alterations in the microbiotas of

subjects with moderate AD. Moreover, in this study, participants

in the mild AD group had a larger number of educational years

than those in the NC and moderate AD groups. A previous study

reported that individuals with higher education levels were more

likely to consume colorful fruits and vegetables (Parker and

Rhee, 2021) and have a higher cognitive reserve. We

hypothesized that the higher education levels of the mild AD

group may affect the microbial composition via the diet (Coman

and Vodnar, 2020; Solch et al., 2022) and owing to their

cognitive reserve (Ng et al., 2021); this may explain the smaller

difference between the mild AD and NC groups. Further

investigations are now needed to explore the microbial

alterations in larger cohorts of different patients with AD from

different grades with individuals of matching age, gender, and

educational level.

Our study has some limitations that need to be considered.

First, while we found alterations of the oral and gut microbiota

compositions and gene functions between different clinical

stages of AD, we used 16S rRNA amplicons rather than

metagenomic sequencing, thus limiting our ability to identify

specific bacteria at the species level. Second, due to the impact of

COVID-19, most patients with severe AD did not visit the

memory clinic available during the study. Thus, we only

recruited patients with mild and moderate AD. Third, our

study was a cross-sectional study; therefore, we are unable to

draw conclusions about the causal relationship between changes

in the microbiota and AD. To decipher the dynamic interplay

between microbiota and AD, a longitudinal follow-up study

should include different stages of AD, such as subjective

cognitive decline, mild cognitive impairment, and severe AD,

the stages that mark the transition from health to AD.

Radiomicrobiomics-based approaches (Sheng et al., 2021),

characterized by integrating features of brain neuroimaging

and information relating to the oral–gut microbiota, may

provide novel insights into the potential mechanisms of

mouth–gut–brain interactions in the progression of AD.
Conclusions

To the best of our knowledge, this is the first study to co-

analyze alterations in the composition and gene functions of the

oral and gut microbiota between different late clinical stages of

AD, including mild and moderate AD by comparing variables

with healthy elderly individuals in China. In addition, we
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explored the similarities of the gut and oral microbiotas. Our

findings demonstrate that the alterations of the oral and gut

microbiomes across the three groups predominantly involved

SCFA-producing Firmicutes and inflammation-promoting

Proteobacteria. In addition, functional alterations in the oral

and fecal microbiotas also suggested that changes in the oral and

fecal microbiotas are associated with alterations in the

functionality and metabolic activity of patients and may play

vital roles in the pathogenesis and development of AD. Further

shotgun metagenomic sequencing efforts will provide a deeper

understanding of the oral–gut microbiome axis and may provide

a potential new therapeutic target for the treatment of late AD.
Nomenclature

AD, Alzheimer’s disease; mild AD, mild Alzheimer’s disease;

moderate AD, moderate Alzheimer’s disease; BMI, body mass

index; BOHSE, Kayser-Jones brief oral health status examination;

MMSE, mini-mental state examination; NC, normal cognition

controls; PCoA, principal coordinate analysis; IQR, interquartile

range; Pcn, subgingival plaque of normal cognition controls;

Pmild, subgingival plaque of mild AD; Pmoderate, subgingival

plaque of moderate AD; Fcn, feces of normal cognition controls;

Fmild, feces of mild AD; Fmoderate, feces of moderate AD; LEfSe,

linear discriminant analysis (LDA) effect size.
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