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Simple Summary: As known breast cancer risk factors do not accurately predict the risk of
developing breast cancer, breast cancer screening is still based solely on age. At the interface
between environmental exposures and gene expression, DNA methylation patterns are potential
biomarkers for assessing breast cancer risk, thus allowing for implementation of personalized
screening and risk-reducing strategies. We used a comprehensive high-throughput DNA methylation
assay in an unprecedented study design of normal breast epithelial tissue to detect methylation
changes that are causally related to breast cancer occurrence and replicated our analyses in two
independent datasets of normal breast tissue and blood. We identified several methylation differences
in cancer-related genes, some of which overlapped between normal breast tissue and blood and were
reported in previous studies. Our findings warrant further investigation on novel biomarkers for
identifying women that will benefit the most from breast cancer screening.

Abstract: Differential DNA methylation is a potential marker of breast cancer risk. Few studies have
investigated DNA methylation changes in normal breast tissue and were largely confounded by
cancer field effects. To detect methylation changes in normal breast epithelium that are causally
associated with breast cancer occurrence, we used a nested case–control study design based on a
prospective cohort of patients diagnosed with a primary invasive hormone receptor-positive breast
cancer. Twenty patients diagnosed with a contralateral breast cancer (CBC) were matched (1:1)
with 20 patients who did not develop a CBC on relevant risk factors. Differentially methylated
Cytosine-phosphate-Guanines (CpGs) and regions in normal breast epithelium were identified using
an epigenome-wide DNA methylation assay and robust linear regressions. Analyses were replicated
in two independent sets of normal breast tissue and blood. We identified 7315 CpGs (FDR < 0.05),
52 passing strict Bonferroni correction (p < 1.22 × 10−7) and 43 mapping to known genes involved in
metabolic diseases with significant enrichment (p < 0.01) of pathways involving fatty acids metabolic
processes. Four differentially methylated genes were detected in both site-specific and regions analyses
(LHX2, TFAP2B, JAKMIP1, SEPT9), and three genes overlapped all three datasets (POM121L2, KCNQ1,
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CLEC4C). Once validated, the seven differentially methylated genes distinguishing women who
developed and who did not develop a sporadic breast cancer could be used to enhance breast cancer
risk-stratification, and allow implementation of targeted screening and preventive strategies that
would ultimately improve breast cancer prognosis.

Keywords: breast cancer risk; DNA methylation; epigenome-wide; case-control study

1. Introduction

As a major and increasing worldwide public health burden, breast cancer prompts the need for
identification of early breast tissue molecular alterations that could be used for risk-tailored early
diagnostic and effective primary prevention strategies. DNA methylation, a covalent addition
of a methyl group to Cytosine-phosphate-Guanine (CpG) dinucleotides, summarizes genetic,
environmental, and stochastic events that contribute to inter-individual variation in gene expression
and ultimately, to variation in common complex diseases risk such as breast cancer [1,2]. In fact,
widespread DNA methylation alterations in normal breast tissue adjacent to cancer that become
enriched with breast cancer progression have been identified, suggesting that DNA methylation
alterations predate the emergence of breast cancer [3].

Demonstrating a mechanistic link between DNA methylation patterns and breast cancer occurrence
remains a considerable challenge due to the cell type specificity of DNA methylation and the cell type
heterogeneity of examined tissues. Such a mechanistic link should be supported by the identification of
tissue-specific DNA methylation changes in normal breast tissue prior to breast cancer occurrence [1].
In fact, many DNA methylation studies have been conducted on blood samples, and the detected
methylation marks were not consistent across studies, even when these marks were validated and
reproduced in independent datasets within the same study. These inconsistencies can mainly be
explained by methodological biases [4] but can also suggest some limitations when considering blood
samples for detecting methylation marks of tissue-specific cancers. The only feasible approach used to
date to identify causative molecular alterations in normal breast tissue is the comparison of normal
tissue from healthy individuals to normal tissue adjacent to cancer. As few as three studies have
attempted this approach for the detection of methylation marks in normal breast tissue [4]. However,
this approach is compromised by the existence of cancer field effects [3]. In fact, genetic and epigenetic
field effects in histologically normal-appearing tissue adjacent to cancer have been reported as far as
4 cm from primary breast tumors [5,6]. These molecular alterations may reflect both precancerous
alterations that led to breast cancer development and alterations induced by the microenvironment of
the adjacent developing cancer [7].

To cancel out field effects secondary to the cancer environment, we used a nested case–control
design to compare the normal breast tissue adjacent to primary tumors between breast cancer patients
who developed a contralateral breast cancer (i.e., a second primary breast cancer in the opposite breast)
to those who did not develop a contralateral breast cancer. The rationale behind this design is that
both breasts of the same patient presumably bear the same precancerous DNA methylation alterations
that summarize the complex interplay between genetic and environmental factors associated with
her individual risk of developing a primary breast cancer in either breast. To further confirm that the
detected DNA methylation alterations predate a second primary breast cancer occurrence, we replicated
our analyses in two independent sets of case–control pairs, in which DNA samples of normal breast
tissue and blood were obtained before or at the time of a first primary breast cancer occurrence.
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2. Materials and Methods

2.1. Study Design and Population

We conducted a nested case–control study based on a cohort of 757 patients diagnosed between
2000 and 2007 with a primary invasive hormone receptor-positive and non-metastatic breast cancer at
a breast cancer reference center, the “Centre des maladies du sein du CHU de Québec”. Biological
characteristics of tumors were extracted from pathology reports. Demographic and clinical data
collected at diagnosis were extracted from medical records and entered into a database by trained
nurses and registrars. Women were eligible if they had no previous diagnosis of cancer other than
non-melanoma skin cancer and did not receive any treatment prior to surgery. Using an incidence
density sampling scheme, 20 patients diagnosed with a contralateral breast cancer (in situ or invasive)
at least 12 months after their first breast cancer (cases) were matched (1:1) with 20 patients who did not
develop a contralateral breast cancer (controls). Matching variables were the year of surgery (±2 years),
age (±5 years), menopausal status, family history of breast cancer (yes/no), histologic type (ductal vs.
lobular) of the primary tumor, human epidermal growth factor receptor 2 (HER2) status of the primary
tumor, and hormone therapy (yes/no). For cases and controls, normal breast tissue was collected from
breast surgery specimens.

Two additional sets of case–control pairs were used to select differentially methylated sites that
predate a second primary breast cancer occurrence. The first set consisted of four breast cancer patients
diagnosed with a first invasive hormone receptor-positive and non-metastatic breast cancer (cases)
drawn from the same cohort described above, and four women diagnosed with a benign breast lesion
(controls) drawn from the tissue biobank of the “Centre des maladies du sein du CHU de Québec”.
Women were matched (1:1) for the year of surgery (±2 years) and age (±5 years). For cases and controls,
normal breast tissue was collected from breast surgery specimens prior to any other treatment.

The second set consisted of six women with high mammographic density (>65%) who eventually
developed an invasive breast cancer (cases), and six women (controls) with low mammographic density
(<15%) who did not develop a breast cancer by the time their matched case developed a breast cancer.
These women were drawn from a cohort of 737 women who attended a mammography screening at
the “Clinique radiologique Audet” (Québec, QC, Canada) between February and December 2001 [8].
Anthropometric data (weight and height measures) were measured at enrollment by a qualified research
nurse, the women’s characteristics were collected using standardized questionnaires administered by
telephone interview, and clinical data were extracted from medical records. Cases and controls were
matched (1:1) for age (±3 years), family history of breast cancer (yes/no), body mass index (BMI, 18.5 to
<25; 25 to <30), number of full-term pregnancies, and breast biopsy (yes/no). For these women, blood
was collected at the time of mammography 5.6 ± 1.7 years on average before breast cancer occurrence
for cases (median = 5.5 years, range 3.4 to 8.1 years).

All participants provided written informed consent. The study protocol was reviewed and
approved by the research ethics committee of the CHU de Québec-Université Laval Research Center.
The data that support the findings of this study are available upon reasonable request from the
corresponding author (C.D.). The data are not publicly available due to legal restrictions to respect
research participant privacy and consent.

The design of the main analysis aimed at identifying differentially methylated CpGs sites in
normal breast epithelium that are causally associated with breast cancer occurrence, i.e., while canceling
out cancer field effects, by comparing normal breast tissue of two groups of patients both exposed to
similar cancer field effects. The rationale behind this design is that once cancer field effect has been
canceled out from the affected breast, normal breast epithelium both from the affected breast and
the non-affected contralateral breast harbor the same epigenetic marks for each individual patient,
because both breasts have been exposed to the same genetic and environmental factors. In other
words, this study design is comparable to having sampled the unaffected breast (i.e., the contralateral
breast) and followed-up patients for the development of a primary breast cancer in this unaffected
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contralateral breast. Matching for factors that are known to be associated with contralateral breast
cancer occurrence ensured that the setting is similar to obtaining normal breast tissue from women
who had never had a previous breast cancer and comparing women who develop a primary breast
cancer to those who do not develop a primary breast cancer.

Beyond a simple validation of our findings in the exact same study design, we decided to select
differentially methylated CpGs sites that replicate in a more traditional (but less robust because of
confounding by cancer field effects) study design. In the secondary dataset #1, we compared women
who have developed a first primary breast cancer to women who had not developed a first primary
breast cancer, which is the setting “artificially” created by the robust design of the main dataset.

Finally, the rationale behind the choice of the secondary dataset #2 was to select those differentially
methylated CpGs that could also be detected in blood-derived DNA, i.e., those methylation marks
that may have been induced early during development and propagated soma-wide and that could
be useful as non-invasive biomarkers for breast cancer screening. Here, we compared women who
developed a primary breast cancer with women who did not develop a primary breast cancer, by
using blood samples prospectively collected several years before breast cancer occurrence in cases.
These women had a mammography screening at time of blood collection, and those who developed
breast cancer during follow-up had higher breast density at baseline than those who did not develop a
breast cancer during follow-up (breast density is a known risk factor for breast cancer occurrence).

Thus, our three datasets compared women who developed a breast cancer (first primary or second
primary breast cancer) to women who did not develop breast cancer, using three different strategies.

2.2. DNA Methylation Measurement

For breast tissue samples, normal breast epithelium located at least 1.0 cm from the primary tumor
of cases and controls was identified on corresponding hematoxylin-eosin (H&E) stained slides. Ten to
fifteen cores of 1.0 mm with at least 75% epithelial cells content were extracted from formalin-fixed
paraffin-embedded (FFPE) tissue blocks and were used to build a tissue microarray (TMA) block for
each patient. TMA blocks were serially sectioned at 10.0 µm. H&E-stained histologic tissue sections
were verified for cellular content in the first, every 10th, and in the last section. A column-based method
for DNA extraction from TMA sections of each patient was performed using GeneRead DNA FFPE
deparaffinization solution (Qiagen, Mississauga, Ontario, ON, Canada) and the QIAamp DNA FFPE
kit (Qiagen, Mississauga, Ontario, ON, Canada) for subsequent extraction steps. Deparaffinization
was done twice to ensure complete paraffin elimination and proteinase K was incubated at 56 ◦C in
ATL buffer for three days with 20 µL of proteinase K added each 24 h.

For blood samples, DNA was extracted from buffy coats using the Gentra Puregene DNA extraction
kit (QIAGEN Inc., Canada) following the manufacturer’s protocol.

Quantification of DNA methylation was carried out at McGill University and Génome Québec
Innovation Centre (Montreal, Quebec, QC, Canada) using the Infinium Human Methylation 450K
(HM450k) BeadChip (Illumina Inc., San Diego, CA, USA), after bisulfite conversion, Infinium FFPE
quality control, and DNA restoration, according to the manufacturer’s instructions. The HM450k has
been extensively validated and provides reliable coverage of 485,512 CpG sites across 99% of RefSeq
genes and 96% of CpG islands in the human genome [9]. In order to test for potential batch effects,
eight samples were replicated between or within batches. Hybridized and processed arrays were
scanned using Illumina iScan (Illumina Inc., San Diego, CA, USA) to produce. IDAT files with raw
probe intensities.

2.3. Data Preprocessing and Statistical Analyses

Raw methylation data preprocessing and statistical analyses were performed using R software
version 3.6.2 [10] and Bioconductor packages [11]. The same preprocessing steps were performed
separately for breast tissue samples and blood samples.
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Data from IDAT files were read using the minfi package [12]. Quality control plots for bisulfite
conversion, extension, and hybridization were generated using the minfi and ENmix [13] packages.
Probes that failed in one or more samples based on detection p-value > 0.01, probes overlapping a CpG
site or single-base extension of the measured methylation loci, cross-reactive probes [14], probes with
multimodal methylation distributions identified using ENmix package [13], and probes from the X and
Y chromosomes were filtered out. Probes from the X chromosome were excluded to avoid a higher
probability of both type 1 and type 2 errors associated with analyses of data from sex chromosomes,
compared to autosomal data [15].

The data-driven separate normalization method from the wateRmelon package was used for
background adjustment and between-array normalization [16]. The regression on correlated probes
method from the ENmix package was used for probe type bias adjustment [17]. Using multidimensional
scaling (MDS) plots, no obvious batch, chip, or slide effect was detected and no outlier sample was
identified. Intra- and inter-batch samples (n = 4) were then removed from the analyses. Beta-values
were logit-transformed into M-values for statistical analyses. Of the 485,512 CpG sites included on the
array, 409,741 autosomal CpG sites were included in the analyses of breast tissue samples (Figure S1)
and 429,014 in the analyses of blood samples (Figure S2). In total, 40 samples (20 case-control pairs) were
included in the main analysis of normal breast tissue samples (patients who developed a contralateral
breast cancer vs. patients who did not develop a contralateral breast cancer). Eight samples (four
case-control pairs) were included in the secondary analysis of normal breast tissue samples (patients
with a primary breast cancer vs. patients with a benign breast tumor) and twelve samples (six
case-control pairs) were included in the analysis of blood samples (women who developed a breast
cancer vs. women who did not develop a breast cancer).

Global methylation differences between cases and controls for each set were compared using
the Wilcoxon signed-rank test and mean beta-values, both globally and by CpG island and gene
spatial distribution.

Probe-wise differential methylation analysis using M-values was performed with the limma
package robust linear models. Robust empirical Bayes method was used to generate moderated paired
t-test statistics and associated p-values for each CpG site. For blood samples, white blood cell type
proportions were estimated using the method described by Houseman et al. [18] within the minfi
package. Confounding by cell type proportions was identified, and differentially methylated CpGs
associated with cell type proportions were excluded from further analyses. To determine biological
plausibility, differentially methylated CpGs with Benjamini and Hochberg-adjusted p-values (FDR
q-values) < 0.05 were selected for functional annotations (Gene Ontology, KEGG) and were analyzed
using the gometh function of the missMethyl package [19]. CpG sites passing the FDR threshold in the
main nested case-control analysis of normal breast tissue samples were considered replicated in the
two secondary sets (normal breast tissue and blood samples) if the nominal p-value in these secondary
analyses was < 0.05 with the same direction of association. CpG sites passing the strict Bonferroni
correction (nominal p-value < 1.22 × 10−7) in the main analysis and those replicated in the secondary
analyses were further compared to the CPGA SAGE database, using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) v6.8 to select differentially methylated genes for
which significant methylation changes are consistent with their differential expression in breast cancer.

To identify concordant differentially methylated regions of several consecutive CpG sites (distance
to the next consecutive site less than 1000 nucleotides), differential methylation analysis of regions
with Benjamini and Hochberg correction for multiple comparisons was performed using the DMRcate
package [20]. Regions with Stouffer p-value < 0.05, maximum difference > 0.05, and containing at least
two or more CpG sites were selected. Genes identified by the region approach were compared to those
identified by the individual CpG site approach.
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3. Results

3.1. Participants Characteristics

The 40 patients included in the main analysis were aged between 33 and 69 years (mean± standard
deviation (SD, 51.0 ± 8.2), were mainly postmenopausal, and 75% reported a family history of breast
cancer. They had stage I to III estrogen receptor (ER)-positive invasive breast carcinomas. All received
hormone therapy and 70% received chemotherapy. Their characteristics, according to case or control
status, are summarized in Table 1. Distribution of contralateral breast cancer risk factors was similar
for cases (patients who developed a contralateral breast cancer) and controls (patients who did not
develop a contralateral breast cancer). There were more grade 3 primary breast cancers among controls,
whereas cases received radiotherapy slightly more often. These two factors are not known to be
associated with contralateral breast cancer risk [21,22].

Table 1. Characteristics of patients who developed (cases) and who did not develop (controls) a
contralateral breast cancer, in the main analysis of normal breast tissue.

Characteristics * Cases (n = 20) Controls (n = 20)

Age (years)

Mean ± SD 50.9 ± 8.1 51.1 ± 8.4
Median [range] 51.5 [33.0–67.0] 51.0 [33.0–69.0]

Postmenopausal 12 (60%) 12 (60%)

Family history of breast cancer (yes) 15 (75%) 15 (75%)

Parity (yes) 11 (55%) 15 (75%)

Age at first pregnancy (years)

Mean ± SD 25.0 ± 3.2 27.0 ± 6.2
Median [range] 24.0 [21.0–31.0] 26.0 [19.0–40.0]

Breastfeeding (yes) 6 (30%) 7 (35%)

Ever smokers 12 (60%) 7 (35%)

Alcohol consumption (yes) 14 (70%) 11 (55%)

Body mass index (kg/m2)

Mean ± SD 25.3 ± 5.5 23.2 ±3.5
Median [range] 23.6 [16.3–41.0] 22.0 [18.7–32.9]

Histologic type

Ductal, invasive 19 (95%) 19 (95%)
Lobular, invasive 1 (5%) 1 (5%)

Positive lymph nodes

0 12 (60%) 12 (60%)
1–3 6 (30%) 6 (30%)
≥4 2 (10%) 2 (10%)

Grade

1 8 (40%) 3 (15%)
2 9 (45%) 10 (50%)
3 1 (5%) 6 (30%)

Stage

I 8 (40%) 8 (40%)
II 11 (55%) 9 (45%)
III 1 (5%) 3 (15%)



Cancers 2020, 12, 3088 7 of 16

Table 1. Cont.

Characteristics * Cases (n = 20) Controls (n = 20)

ER status

Negative 0 0
Positive 20 (100%) 20 (100%)

HER2 status

No evaluation 4 (20%) 4 (20%)
Negative 15 (75%) 15 (75%)
Positive 1 (5%) 1 (5%)

Chemotherapy 14 (70%) 14 (70%)

Radiotherapy 18 (90%) 16 (80%)

Hormone therapy 20 (100%) 20 (100%)

* at time of diagnosis of the primary breast cancer; n = number; SD—standard deviation.

The eight patients included in the secondary analysis of normal breast tissue were aged between
47 and 66 years (mean ± SD, 55.5 ± 7.0), were mainly postmenopausal, and 63% reported a family
history of breast cancer. Their characteristics, according to case or control status, are summarized
in Table S1. Cases were less likely to have a family history of breast cancer than controls and had
stage I to II invasive ER-positive breast carcinomas, all of which received hormone therapy and 50%
received chemotherapy.

The twelve women included in the secondary analysis of blood samples were aged between 38
and 53 years (mean ± SD, 43.6 ± 4.7), were all premenopausal, and 16.7% reported a family history of
breast cancer. Their characteristics, according to case or control status, are summarized in Table S2.
Cases were more likely to have breastfed their children. Cases developed an invasive breast carcinoma
6.0 ± 1.6 years on average after their blood sample, for which 33.3% received chemotherapy and
66.7% received hormone therapy. They were aged between 45 and 62 years at diagnosis (mean ± SD,
50.0 ± 6.1) and 16.7% of them were postmenopausal.

3.2. Global Methylation and Breast Cancer Risk

There was no global methylation difference between cases and controls, both for average
methylation across all included CpGs sites and when CpGs were grouped by island location or by
gene region (Table 2, Tables S3 and S4).

Table 2. Mean methylation beta-values of patients that developed a contralateral breast cancer (cases)
and patients who did not develop a contralateral breast cancer (controls), in the main analysis of normal
breast tissue.

Number of CpGs Cases (n = 20) Controls (n = 20) p-Value *

All Included CpGs 409,741 0.516 0.516 0.784

Distribution relative to island

Island 134,756 0.278 0.278 0.841
N_Shelf 19,957 0.729 0.729 0.648
N_Shore 53,628 0.506 0.506 0.571
OpenSea 141,767 0.694 0.694 0.756
S_Shelf 17,738 0.734 0.734 0.648
S_Shore 41,895 0.495 0.494 0.701
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Table 2. Cont.

Number of CpGs Cases (n = 20) Controls (n = 20) p-Value *

Distribution relative to gene

TSS1500 72,345 0.383 0.383 0.784
TSS200 55,782 0.246 0.246 0.189
5’UTR 57,346 0.356 0.356 0.621

1stExon 34,812 0.263 0.263 0.177
Body 150,226 0.626 0.626 0.571

3’UTR 16,606 0.712 0.713 0.927
Intergenic 94,333 0.604 0.605 0.898
Promoter 83,922 0.181 0.180 0.154

* Wilcoxon signed-rank test; TSS—transcription start site; CpG—Cytosine-phosphate-Guanine.

3.3. Individual CpG Sites and Breast Cancer Risk

Of the 409,741 included CpGs in the main analysis of normal breast tissue, 7315 CpGs were
differentially methylated at FDR q-values < 0.05, of which 954 CpGs had a q-value < 0.01 (Table S5).
Functional annotation analyses indicated that genes related to these 7315 differentially methylated
CpGs are mainly enriched in pathways involving epithelial cells (Table S6). Fifty-two CpGs passed the
strict Bonferroni correction (p-value < 1.22 × 10−7). These 52 CpGs were predominantly located in CpGs
islands and gene body regions, and 56% were hypomethylated. Forty-three of them were mapped to
known reference genes involved in metabolic diseases. Pathway analysis of these 43 genes identified
six enriched pathways (p-value < 0.01) involving fatty acids metabolic processes (Table S7). One gene,
LHX2, harbored significant methylation changes at two different CpG positions. Of the 43 genes, 24 are
known to be enriched in breast cancer tissues, of which 9 are also enriched in normal breast epithelium
(Table 3), and 15 genes, namely ELOVL6, LHX2, CLIC6, CAMK2N1, FAT1, TFAP2B, HOXA11, TOLLIP,
SEPT9, JAKMIP1, CAND2, PODNL1, C12orf41 (KANSL2), GLS2, and NCOR1, harbored significant
methylation changes consistent with their differential expression in breast cancer.

Of the 409,741 included CpGs in the secondary analysis of normal breast tissue, 56,510 CpGs
were differentially methylated at a nominal p-value < 0.05, of which 15,505 CpGs had a nominal
p-value < 0.01. None were differentially methylated at an FDR q-value < 0.05 (Table S8).

Of the 429,014 included CpGs in the secondary analysis of blood tissue, after exclusion of CpGs
associated with cell type composition, 29,526 CpGs were differentially methylated at a nominal
p-value < 0.05, of which 8707 CpGs had a nominal p-value < 0.01. Fifty-nine CpGs were differentially
methylated at an FDR q-value < 0.05, of which six CpGs had a q-value < 0.01 (Table S9). Of these, five
CpGs passed the strict Bonferroni correction (p-value < 1.22 × 10−7), of which three were mapped to
known reference genes (Table 4).

Of the 7315 CpG sites passing the FDR of 0.05 in the main analysis of normal breast tissue, 86 CpGs
were also differentially methylated in both secondary analyses (normal breast tissue and blood samples)
at a nominal p-value < 0.05 (Table S10). Of these, 9 CpGs were differentially methylated in the same
direction of association between the main analysis and the secondary analysis of normal breast tissue,
34 CpGs were differentially methylated in the same direction of association between the main analysis
and the secondary analysis of blood tissue, and 6 CpGs had the same direction of association in all
three datasets (Table 5). Of these, three genes, POM121L2, KCNQ1, and CLEC4C, harbored significant
methylation changes consistent with their differential expression in breast cancer.
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Table 3. CpG sites associated with breast cancer risk in the main analysis of normal breast tissue and
passing strict Bonferroni correction (p-value < 1.22 × 10−7).

CpG Chr Gene Gene Region CpG Island Region logFC p-Value

cg03835987 chr4 ELOVL6 * TSS1500 S_Shore −0.546 1.61 × 10−11

cg19462193 chr12 VPS33A TSS200 Island 0.288 9.98 × 10−11

cg11051893 chr13 MPHOSPH8 TSS200 Island 0.337 2.45 × 10−10

cg08716396 chr1 SDHC TSS1500 Island 0.299 4.01 × 10−9

cg09155575 chr17 ORMDL3 TSS200 Island 0.247 4.47 × 10−9

cg27160524 chr2 PXDN * Body OpenSea −0.314 9.57 × 10−9

cg00982919 chr9 LHX2 Body Island −0.618 1.13 × 10−9

cg15295166 chr21 CLIC6 TSS1500 N_Shore −0.291 1.39 × 10−9

cg13401911 chr1 CAMK2N1 1stExon;5′UTR Island 0.334 1.64 × 10−9

cg14291745 chr10 - - N_Shore −0.379 3.14 × 10−9

cg24410535 chr4 FAT1 TSS200 Island −0.459 3.96 × 10−9

cg19066273 chr17 - - Island −0.516 4.08 × 10−9

cg11031869 chr7 - - OpenSea −0.298 4.28 × 10−9

cg14910241 chr3 TGFBR2 Body Island −0.221 5.98 × 10−9

cg13492692 chr9 LHX2 Body Island −0.378 7.30 × 10−9

cg13322131 chr6 TFAP2B 3′UTR S_Shore −0.537 7.91 × 10−9

cg13170891 chr6 PPP1R10 3′UTR OpenSea 0.322 7.92 × 10−9

cg00705992 chr7 HOXA11 Body;TSS1500 N_Shore −0.308 1.13 × 10−8

cg05992226 chr14 SMEK1 Body Island −0.254 1.21 × 10−8

cg23695222 chr8 - - OpenSea −0.329 1.22 × 10−8

cg06562570 chr14 VRK1 TSS200 Island 0.232 1.86 × 10−8

cg05508048 chr13 INTS6 TSS200 Island 0.306 2.15 × 10−8

cg11170179 chr19 KLK10 * 5′UTR Island 0.362 2.26 × 10−8

cg00954771 chr11 TOLLIP Body Island 0.307 3.04 × 10−8

cg01868405 chr1 - - Island −0.427 3.10 × 10−8

cg14011789 chr17 SEPT9 * Body;5′UTR OpenSea 0.486 3.43 × 10−8

cg10332787 chr14 C14orf106 TSS200 Island 0.205 3.54 × 10−8

cg16724588 chr4 JAKMIP1 Body Island −0.585 3.62 × 10−8

cg07557790 chr3 CAND2 * TSS1500 N_Shore −0.391 3.78 × 10−8

cg05559558 chr6 KIAA1244 1stExon;5′UTR Island 0.204 4.08 × 10−8

cg20430816 chr4 STBD1 Body Island −0.259 4.16 × 10−8

cg10092770 chr20 NCRNA00029 TSS200 S_Shore 0.365 4.40 × 10−8

cg05335186 chr13 - - N_Shore 0.285 4.48 × 10−8

cg14255751 chr15 PTPLAD1 TSS200 N_Shore 0.252 4.83 × 10−8

cg03171770 chr10 - - Island −0.476 4.86 × 10−8

cg24354933 chr19 PODNL1 Body;TSS200 OpenSea 0.414 4.93 × 10−8

cg02457207 chr16 SPG7 Body N_Shelf −0.315 4.97 × 10−8

cg14047370 chr7 HECW1 Body OpenSea −0.461 5.23 × 10−8

cg01764116 chr1 VPS45 5′UTR;1stExon Island 0.276 5.40 × 10−8

cg22606205 chr1 PKP1 5′UTR;1stExon Island −0.316 5.79 × 10−8

cg23535449 chr17 AATK TSS200;Body N_Shelf 0.250 6.17 × 10−8

cg21352943 chr12 C12orf41 TSS200 Island −0.261 6.25 × 10−8

cg06380356 chr2 - - Island −0.371 7.02 × 10−8

cg24014538 chr13 FARP1 * Body OpenSea −0.405 7.15 × 10−8

cg10938586 chr10 - - Island 0.336 7.60 × 10−8

cg14319655 chr19 AKAP8 TSS200 Island 0.217 7.88 × 10−8

cg09103187 chr6 TRERF1 * Body OpenSea −0.250 8.69 × 10−8

cg17939432 chr22 ZC3H7B Body S_Shore 0.311 8.82 × 10−8

cg12241297 chr5 HNRNPA0 * TSS1500 Island 0.239 1.08 × 10−7

cg05295557 chr14 NKX2-1 Body;1stExon Island −0.249 1.14 × 10−7

cg20877313 chr12 GLS2 1stExon Island −0.326 1.21 × 10−7

cg00253204 chr17 NCOR1 * 1stExon;5′UTR Island −0.212 1.21 × 10−7

In bold: genes enriched in breast cancer (CGAP); * genes enriched in the normal epithelium (CGAP); CGAP—Cancer
Genome Anatomy Project; Chr—chromosome.
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Table 4. CpG sites associated with breast cancer risk in the secondary analysis of blood samples and
passing strict Bonferroni correction (p-value < 1.22 × 10−7).

CpG Chr Gene Gene Region CpG Island Region logFC p-Value

cg13449967 chr11 ATG2A Body N_Shore 1.113 7.00 × 10−10

cg00876501 chr4 EIF4E 5’UTR;1stExon;
TSS1500 S_Shore 0.896 2.22 × 10−9

cg24858233 chr3 - - OpenSea 1.272 1.84 × 10−8

cg11601932 chr3 - - OpenSea 0.645 3.52 × 10−8

cg27202913 chr16 CDH15 Body Island −1.055 5.45 × 10−8

In bold: genes enriched in normal breast tissue and breast cancer (CGAP); CGAP: Cancer Genome Anatomy
Project; Chr—chromosome.

Table 5. CpG sites associated with breast cancer risk, passing the false discovery rate of 0.05 in the
main analysis of normal breast tissue and replicated in the same direction in both secondary analyses
(normal breast tissue and blood samples).

CpG Chr Gene Gene Region CpG Island Region logFC p-Value q-Value

cg09434832 chr19 ZNF616 5′UTR N_Shore 0.148 1.98 × 10−5 0.01
cg16927253 chr6 POM121L2 TSS1500 Island −0.215 0.0001 0.02
cg13585675 chr7 NPTX2 Body S_Shelf 0.289 0.0002 0.02
cg27639104 chr11 KCNQ1 1stExon;5′UTR;Body OpenSea 0.181 0.0002 0.02
cg20754261 chr2 - - Island −0.456 0.0006 0.04
cg03938369 chr12 CLEC4C * Body OpenSea 0.197 0.0006 0.04

In bold: genes enriched in breast cancer (CGAP); * genes enriched in the normal epithelium (CGAP); CGAP—Cancer
Genome Anatomy Project; Chr—chromosome.

3.4. Differential Methylation of Regions and Breast Cancer Risk

There were 1105 differentially methylated regions (DMRs) associated with breast cancer risk in
the main analysis of normal breast tissue (Table S11). Pathway analysis of genes associated with these
1105 DMRs identified three enriched pathways (p-value = 0.0003) involving negative regulation of
cholesterol/sterols biosynthetic processes (Table S12). Ninety-six DMRs had a Stouffer p-value < 0.05,
a maximum difference > 0.05, and contained two or more CpG sites (Table S11). The 20 most significant
DMRs are presented in Table 6.

Of the 43 differentially methylated genes associated with breast cancer risk in the individual CpG
sites analysis of normal breast tissue main analysis, LHX2 was included in three DMRs, TFAP2B in two
DMRs, JAKMIP1 in one DMR, and SEPT9 in one DMR.
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Table 6. Characteristics of the 20 most significantly differentially methylated regions (DMRs) in the main analysis of normal breast tissue, out of 96 significant DMRs.

Chr Start Position End Position Width(bp) N CpGs Stouffer p-Value Max Difference Mean Difference Overlapping Genes

chr19 58545001 58546307 1307 11 0.0000002 −0.056 −0.027 ZSCAN1

chr9 126775263 126778017 2755 9 0.0000025 −0.104 −0.041 LHX2

chr4 24796689 24797176 488 8 0.0000063 0.069 0.045 SOD3, SNORD74, SNORA3, snoR442,
snoU2_19, SNORD65

chr8 145104971 145107199 2229 10 0.0000088 −0.099 −0.048 CTD-3065J16,6, OPLAH

chr5 115298079 115299828 1750 10 0.0000100 −0.057 −0.033 AQPEP, snoZ6, SNORA27, SNORA68,
SNORA57, 7SK, SNORD45, SNORD95

chr17 42091713 42093050 1338 15 0.0000113 0.096 0.040 SNORA69, TMEM101

chr11 75139390 75139736 347 4 0.0000151 −0.096 −0.083 KLHL35

chr13 95357042 95359203 2162 14 0.0000217 0.091 0.051 SNORD36

chr19 58220080 58220837 758 11 0.0000255 −0.070 −0.044 ZNF551, AC003006,7, ZNF154

chr17 37365885 37366501 617 5 0.0000378 −0.071 −0.041 SNORA69

chr14 24422368 24423864 1497 10 0.0000452 0.081 0.026 DHRS4-AS1, DHRS4, SNORA79

chr1 203320190 203320541 352 6 0.0000549 −0.088 −0.060

snoU13, Y_RNA, SNORD112, U3, SNORA51,
SNORA25, SCARNA20, SNORA70,

SNORA77, SNORA26, SNORA72, U8, FMOD,
SNORD60, SNORD116

chr15 34806349 34807143 795 5 0.0001300 −0.072 −0.030 GOLGA8A

chr19 18811575 18812017 443 4 0.0001515 0.062 0.046 CRTC1

chr16 50913892 50914024 133 3 0.0003178 −0.079 −0.068 SNORD111, SNORD33

chr6 50813341 50814305 965 6 0.0003740 −0.086 −0.046 SNORA38, SNORA8, SCARNA15, TFAP2B,
SNORA20

chr5 102898223 102898729 507 5 0.0003923 −0.069 −0.038 snoZ6, SNORA27, SNORA68, SNORA57, 7SK,
NUDT12, SNORD45, SNORD95

chr9 126784855 126785097 243 2 0.0005461 −0.063 −0.050 LHX2

chr4 6107021 6107791 771 8 0.0006567 −0.099 −0.043 SNORA3, JAKMIP1

chr8 144267518 144267725 208 2 0.0006981 −0.063 −0.045 -

In bold: genes also identified in the individual CpG analysis; DMR—differentially methylated regions; Chr—chromosome.
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4. Discussion

The present study aimed at identifying normal breast tissue methylation patterns that may
predispose to breast cancer development, using a robust study design unprecedented in previous
breast cancer epigenome-wide association studies. To cancel out field effects, our main nested
case–control analysis compared normal breast tissue adjacent to primary tumors of breast cancer
patients who developed and those who did not develop a contralateral breast cancer. We identified
7315 individual CpG sites with an FDR q-value < 0.05 and 52 CpG sites at the strict Bonferroni nominal
p-value < 1.22 × 10−7, of which 43 were mapped to known genes involved in metabolic diseases.
Pathway analysis of these 43 distinct genes identified six enriched pathways (p-value < 0.01) involving
fatty acids metabolic processes.

One gene, LHX2, harbored significant methylation changes at two different CpG positions, while
15 genes harbored significant methylation changes consistent with their differential expression in
breast cancer. Of these, LHX2, TFAP2B, JAKMIP1, and SEPT9 were also included in significantly
differentially methylated regions. The LHX2 gene codes for the LIM homeobox 2 protein, a transcription
factor downstream of p63 and NF-κB, and upstream of Wnt/β-catenin, Bmp, and Shh [23], that has a
critical role during the epithelial–mesenchymal transition in normal and cancerous breast epithelial
cells [24]. This gene has been shown to harbor aberrant methylation in primary breast tumors [25].
The TFAP2B gene codes for the transcription factor AP-2 beta, a sequence-specific DNA-binding protein
that has been recognized as an oncogene that mediates cancer cell proliferation, apoptosis, invasion,
and migration via the COX-2 signaling pathway in vitro and in vivo [26]. TFAP2B is also expressed in
breast tissue, where it is thought to coordinate HER2 and ER [27] and has been associated with breast
cancer prognosis [28]. The JAKMIP1 gene codes for the Janus kinase and microtubule interacting protein
1 and has been shown to be highly expressed in tumor samples, where it enhances the proliferation of
cancer cells [29]. Its upregulation affects cell proliferation via the Wnt and beta-catenin pathways [29].
The SEPT9 gene codes for Septin 9, a protein involved in cytokinesis and cell cycle control that has been
implicated in early breast cancer development [30]. The SEPT9 gene methylation has been detected in
breast cancer tissue [31].

To further detect DNA methylation alterations that predate a second primary breast cancer
occurrence, we used two independent sets of case–control pairs in which DNA samples of normal
breast tissue and blood were obtained before a second breast cancer occurrence. Out of the 7315
individual CpG sites identified in the main nested case–control analysis, six CpG sites were also
differentially methylated with the same direction of association in both secondary sets’ analyses, of
which five mapped to known reference genes. Of these, three genes, namely POM121L2, KCNQ1,
and CLEC4C, harbored significant methylation changes consistent with their differential expression in
breast cancer. The POM121L2 gene codes for POM121 transmembrane nucleoporin like 2, which has
been shown to be upregulated in triple negative breast cancer [32]. KCNQ1 codes for the potassium
voltage-gated channel subfamily Q member 1, which has been shown to play important physiological
roles in the mammary epithelium [33] and has been suggested to act as a tumor suppressor and regulator
of the epithelial–mesenchymal transition in colorectal cancers [34,35]. CLEC4C codes for a lectin-type
cell surface receptor that may play a role in antigen capturing by dendritic cells, inflammation,
and immune response, and has been shown to be upregulated in triple negative breast cancer [36].

Many epigenome-wide studies have investigated the association between DNA methylation
and breast cancer risk using blood-derived DNA and the HM450k BeadChip, while as few as three
studies measured breast tissue DNA methylation [4]. These studies identified between 0 and 2761
differentially methylated CpGs, with none of the identified differentially methylated sites overlapping
between these studies, and suffered major methodological issues, especially pertaining to incomplete
control of confounding and suboptimal preprocessing methods [4]. Nevertheless, four of our detected
differentially methylated CpGs in the main analysis were also differentially methylated in the same
direction of association (all hypomethylated in breast cancer) in previous epigenome-wide studies,
namely cg07180460 (ZSWIM6), cg22731164 (GPR176), and cg18726036 (FKBP5) in a study of blood
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DNA methylation from the Sister Study [37], and cg02168584 (DLX2-AS1) in a study of genetically
predicted DNA methylation of patients from the Breast Cancer Association Consortium [38], all of
which have been shown to be dysregulated in breast cancer cell lines [39–42].

Taken together, our findings support the hypothesis that detectable methylation differences in
cancer-related genes in normal breast tissue predate the occurrence of breast cancer. Some of these
methylation changes were also detectable in blood DNA, suggesting that these methylation changes
may have been induced early during development and propagated soma-wide [2,43], and could be
useful as biomarkers for non-invasive screening to identify women with increased risk of developing
breast cancer. Methylation changes that were specific to normal breast tissue may have occurred
during adulthood as a result of ageing and lifetime exposure to known and unknown risk factors [2,43],
and could be useful for identifying these unknown risk factors and for potential targeted interventions
based on epigenetic agents to prevent breast cancer occurrence [1].

Using an original and novel study design, we were able to assess methylation changes in normal
breast epithelial tissue while minimizing the risk of confounding by cancer field effects. The main
strengths include the use of conventional epidemiological approaches to control for selection bias
(nested case–control design) and confounding bias (matching for breast cancer risk and prognostic
factors), two important drawbacks in previous epigenome-wide DNA methylation studies of breast
cancer [36]. We used a priori, up-to-date, and recommended data preprocessing methods and workflow,
which prevent inflation of the false-positive rate resulting from data-driven selection of preprocessing
methods. In addition, we conducted both site-specific and DMR analyses, and we replicated the
analyses in two independent datasets. The main limitation of the study is the relatively small sample
size, which could have limited the detection of genuine methylation differences (i.e., low study power).
However, by using the appropriate data preprocessing methods coupled with the doubly robust
statistical modeling approach, which minimizes the risk of false-negative rate, we were able to detect
more differentially methylated CpG sites than larger studies [36].

While robust and promising, our results need to be validated in other populations and with other
DNA methylation measurement methods. Epigenome-wide DNA methylation methods are particularly
suitable for hypothesis generation as they capture the dynamics of several sites simultaneously across
the entire genome, thus being less prone to bias than candidate gene methylation studies [44]. The next
step would be to validate the differentially methylated sites and related genes detected by these
methods using a different measurement method, such as a PCR-based method, in a candidate-gene
methylation study. A transcriptional or protein expression analysis should then be performed to
confirm the functional impact of the detected methylation differences and its association with breast
cancer occurrence [45].

5. Conclusions

We identified four breast cancer risk-related genes that are differentially methylated in both
site-specific and DMR analyses (LHX2, TFAP2B, JAKMIP1, and SEPT9) in the main analysis of
normal breast tissue, and three genes overlapping the main analysis and two independent datasets of
normal breast tissue and blood (POM121L2, KCNQ1, and CLEC4C). No significant global methylation
differences were observed between cases and controls in any of the three datasets. Once validated,
our identified genes could be used to enhance risk stratification for prevention of breast cancer and for
developing new strategies for primary breast cancer prevention and treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3088/s1,
Figure S1: Flow diagram representing data preprocessing methods and workflow for breast tissue samples,
Figure S2: Flow diagram representing data preprocessing methods and workflow for blood samples, Table S1:
Characteristics of patients with breast cancer (cases) and patients with a benign tumor (controls), in the secondary
analysis of normal breast tissue, Table S2: Characteristics of patients who developed a primary breast cancer (cases)
and patients who did not develop a primary breast cancer (controls), in the secondary analysis of blood samples,
Table S3: Mean beta-values of patients with breast cancer (cases) and patients with a benign tumor (controls), in the
secondary analysis of normal breast tissue, Table S4: Mean beta-values of patients who developed a primary breast
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cancer (cases) and patients who did not develop a primary breast cancer (controls), in the secondary analysis of
blood samples, Table S5: Differentially methylated CpG sites in the main analysis of normal breast tissue, Table S6:
Functional annotation analyses of the differentially methylated CpG sites in the main analysis of normal breast
tissue, Table S7: Functional annotation analyses of the top 43 differentially methylated genes in the main analysis
of normal breast tissue, Table S8: Differentially methylated CpG sites in the secondary analysis of normal breast
tissue, Table S9: Differentially methylated CpG sites in the secondary analysis of blood tissue, Table S10: CpG
sites associated with breast cancer risk, passing the false discovery rate of 0.05 in the main analysis of normal
breast tissue and replicated in both secondary analyses (normal breast tissue and blood samples), Table S11:
Differentially methylated regions associated with breast cancer risk in the main analysis of normal breast tissue,
Table S12: Functional annotation analyses of differentially methylated regions associated with breast cancer risk in
the main analysis of normal breast tissue.
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