
A variant selection framework for genome graphs

Chirag Jain1,*, Neda Tavakoli2 and Srinivas Aluru2

1Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, KA 560012, India and 2School of

Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Variation graph representations are projected to either replace or supplement conventional single gen-
ome references due to their ability to capture population genetic diversity and reduce reference bias. Vast cata-
logues of genetic variants for many species now exist, and it is natural to ask which among these are crucial to cir-
cumvent reference bias during read mapping.

Results: In this work, we propose a novel mathematical framework for variant selection, by casting it in terms of min-
imizing variation graph size subject to preserving paths of length a with at most d differences. This framework leads
to a rich set of problems based on the types of variants [e.g. single nucleotide polymorphisms (SNPs), indels or
structural variants (SVs)], and whether the goal is to minimize the number of positions at which variants are listed or
to minimize the total number of variants listed. We classify the computational complexity of these problems and pro-
vide efficient algorithms along with their software implementation when feasible. We empirically evaluate the mag-
nitude of graph reduction achieved in human chromosome variation graphs using multiple a and d parameter values
corresponding to short and long-read resequencing characteristics. When our algorithm is run with parameter set-
tings amenable to long-read mapping (a¼ 10 kbp, d¼1000), 99.99% SNPs and 73% SVs can be safely excluded from
human chromosome 1 variation graph. The graph size reduction can benefit downstream pan-genome analysis.

Availability and implementation: : https://github.com/AT-CG/VF.

Contact: chirag@iisc.ac.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput technologies enable rapid sequencing of numerous
individuals in a species population and cataloging observed variants.
This is leading to a switch from linear representation of a chosen ref-
erence genome to graph representations depicting multiple observed
haplotypes. Graph representations more accurately reflect the
sampled individuals within a population, and their use in genome
mapping algorithms reduces reference bias and increases mapping
accuracy when sequencing a new individual (Ballouz et al., 2019).
There is abundant research on data structures designed for graph
representations of genomes and pan-genomes (Garrison et al., 2018;
Li et al., 2020), their space-efficient indexing (Chang et al., 2020;
Ghaffaari and Marschall, 2019; Holley et al., 2016; Jain et al.,
2019b; Kuhnle et al., 2020; Marcus et al., 2014; Sirén et al., 2014)
and alignment algorithms (Darby et al., 2020; Ivanov et al., 2020;
Jain et al., 2020; Kuosmanen et al., 2018; Rautiainen and
Marschall, 2020) to map sequences to reference graphs. For review
papers summarizing these developments, see Computational Pan-
Genomics Consortium (2018), Eizenga et al. (2020), and Paten et al.
(2017).

While graph representations have numerous advantages, com-
plete variation graphs that include every variant have certain draw-
backs. The graphs invariably contain paths combining variants
across haplotypes, but never seen in any observed haplotype. The
number of such recombinant paths increases combinatorically with
graph size, and is particularly troublesome when mapping long
reads which span greater distances. Inclusion of all variants also

makes a pan-genome reference more repetitive, i.e. finding a unique
base-to-base alignment per read becomes harder. Accuracy of se-
quence-to-graph mapping algorithms shows diminishing returns at
larger graph sizes, and is even negatively affected eventually (Pritt
et al., 2018; Sirén et al., 2020). A few attempts have been made to
address the first issue by augmenting paths with haplotype informa-
tion and specifically developing haplotype-aware indexing strategies
(Iqbal et al., 2012; Mokveld et al., 2020; Sirén et al., 2020).

The aforementioned factors point to the need for variant selec-
tion algorithms which tame reference graph sizes, and strike the
right balance for subsequent mapping accuracy and speed. This was
primarily approached through selecting variants from a specific
database (Danek et al., 2014; Liu et al., 2016; Schneeberger et al.,
2009), based on allelic frequency (Eggertsson et al., 2017; Kim
et al., 2018; Maciuca et al., 2016), or specific to a biological context
such as limiting to a particular population (Sirén et al., 2014) or gen-
ome loci of interest (Dilthey et al., 2015; Jain et al., 2019a; Vijaya
et al., 2012). Recently, Pritt et al. (2018) developed a more systemat-
ic approach FORGe by developing a mathematical model to priori-
tize variants, and selecting top scoring variants according to the
model. In FORGe, the ranking of each variant is done based on its
frequency in a population, and its contribution to run-time and
space overhead of a read-to-graph mapper.

In this work, we propose a rigorous algorithmic framework for
variant selection from the perspective of preserving subsequent map-
ping accuracy. Consider a complete variation graph constructed
from a set of given haplotypes. Any substring of a haplotype has a
corresponding path in the complete variation graph. Not including

VC The Author(s) 2021. Published by Oxford University Press. i460

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37, 2021, i460–i467

doi: 10.1093/bioinformatics/btab302

ISMB/ECCB 2021

https://github.com/AT-CG/VF
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab302#supplementary-data
https://academic.oup.com/

some variants will introduce errors in the corresponding paths. If
the number of such errors is matched with the error tolerance built
into sequence-to-graph mapping algorithms, the same identical
paths can still be found. We make the following contributions:

• We develop a novel mathematical framework for variant selec-

tion subject to preserving paths of length a while allowing at

most d differences. We separately consider the problems of mini-

mizing the number of positions at which variants are retained,

and minimizing the total number of variants selected.
• We show that both problems are optimally solvable in polyno-

mial time when only SNPs are considered and the goal is to pre-

serve all paths of length a found in the complete variation graph.
• These problems become challenging when deletions and inser-

tions are considered. We present efficient heuristics that guaran-

tee preserving paths of length a while allowing at most d edits,

but do not guarantee optimal reduction in graph size.
• We empirically evaluate run-time performance and reduction in

variation graph sizes achieved by the multiple algorithms that

are proposed in this article. For testing, we utilize human

chromosome sequences, SNPs and short indels from the 1000

Genomes Project (Consortium et al., 2015), and structural var-

iants (SVs) from 15 diverse humans (Audano et al., 2019). When

chromosome 1 variation graph is built using SNP variants, and

parameters amenable to short reads (a¼150 and d¼8) are used,

the reduced graph excludes 94.44% SNPs. With parameters

adjusted for long reads (a¼10 kbp and d¼1000), 99.99% SNPs

are excluded. When SVs are considered, the (a¼150 bp, d¼8)

and (a¼10 kbp, d¼1000) settings result in excluding 0% and

73% SVs, respectively.
• Finally, we consider the complexity of haplotype-aware versions

of the above problems where the goal is to only preserve paths of

length a actually found in the input haplotypes (i.e. not recom-

binant paths), and prove that they are NP-hard even for d¼1.

2 Proposed framework

Let R1;R2; . . . ;Rm be m input reference haplotype sequences. To be
consistent with current literature, we assume one of these (say R1) is
a special reference and the other haplotypes are described as varia-
tions from it. A (complete) variation graph of these sequences is rep-
resented using an edge-labeled directed multigraph GðV;E; rÞ as
follows. The graph consists of haplotype R1 as a linear backbone,
augmented with the set of variants present in R2;R3; . . . ;Rm,
assumed to be known a priori. Each variant represents a deviating
base from R1 (SNP) or an insertion/deletion (can be multiple bases).
The function r : E! R [f�g specifies edge labels, where R denotes
the alphabet and � denotes the empty character. The haplotype R1 is
represented in G as a directed chain with character labeled edges
such that the chain spells the sequence R1. This chain will have
jR1j þ 1 ordered vertices v0; v1; . . . ; vjR1 j. These vertices serve as a
convenient coordinate axis for the variation graph. Each SNP vari-
ant is an additional labeled edge between vertices at two adjacent
coordinates. A deletion variant is an edge-labeled � between a pair
of vertices, whose coordinates are separated by the deletion length.
An insertion variant is represented as a chain of one or more labeled
edges that starts and ends at the same vertex. In this setup, the total
number of variants at coordinate i (0 � i � jR1j) equals out-degree
of the vertex vi minus one. See Figure 1 for an illustration.

Any path in graph G with a nonempty edges spells a string of
length a. We place the restriction that a path is allowed to visit a ver-
tex at most twice. This restriction avoids traversal of more than one
insertion variant at the same coordinate. Note that any recombin-
ation of variants that occur at different positions is allowed. Thus,
the graph contains paths corresponding to each haplotype and any
substrings thereof, but also numerous additional paths (genotypes)

that are not present in any haplotype. It is unknown whether such a
recombinant genotype exists in the population or not. Restricting
paths to only those that belong to at least one input haplotype can
also be useful, and will be considered separately (Section 4).

We seek to compute a reduced variation graph G0ðV0;E0;r0Þ,
where V 0 � V; E0 � E, and for all e 2 E0; r0ðeÞ ¼ rðeÞ. The reduced
graph G0 corresponds to removing some variants in graph G. Our
goal is to reduce graph GðV;E;rÞ to the maximum extent possible
while ensuring that any a-long string corresponding to a path in G
can be mapped to the same starting vertex (coordinate) in G0 with-
out exceeding a user-specified error-threshold d. In practice, a
should be a function of read lengths whereas d is determined based
on sequencing errors and error tolerance of read-to-graph mapping
algorithms.

We formulate four versions of the problem based on what types
of variants are allowed and the reduction objective. First consider
the case where all variants are SNPs.

Definition 1.: Graph G0 is said to be ða; dÞh-compatible if all a-long

strings in graph G can be mapped to their corresponding paths in graph

G0 with Hamming distance � d.

Problem 1. Compute an ða; dÞh-compatible reduced variation graph G0

with minimum number of coordinates containing one or more variants.

Problem 2. Compute an ða; dÞh-compatible reduced variation graph G0

with minimum number of variants.

In Problem 1, we seek to ‘linearize’ the graph, whereas in
Problem 2, we intend to remove as many variants as possible. A user
can choose either version based on downstream analysis. For the
next two problem versions, suppose the variant set also contains
indels.

Definition 2.Graph G0 is said to be ða; dÞe-compatible if all a-long strings

in graph G can be mapped to their corresponding paths in graph G0 with

edit distance � d.

Problem 3. Compute an ða; dÞe-compatible reduced variation graph G0

with minimum number of coordinates containing one or more variants.

Problem 4. Compute an ða; dÞe-compatible reduced variation graph G0

with minimum number of variants.

In Problems 1 and 2 that consider only SNP variants, a-long
paths will begin at a vertex along the coordinate axis as there are no
other vertices introduced in the graph. In Problems 3 and 4, how-
ever, a path can also begin at other vertices due to insertion variants.
In this case, we assume an a-long string that maps to G must also be
mappable starting from the corresponding vertex in G0 if that inser-
tion variant is preserved. If the variant is not preserved, it must be
mappable to the closest vertex along the coordinate axis.

3 Proposed algorithms

3.1 Results for variation graphs with SNPs
3.1.1 Greedy algorithm for Problem 1

Here, the goal is to minimize the count of coordinates (positions
along the special reference R1) at which variants occur. Based on
this objective, we should either fully remove or fully retain all the
variants at each variant coordinate. When removing variants at a co-
ordinate, its outgoing edge label is chosen to be the base from R1.
However, the ða; dÞh-compatibility is sustained even if the base is
chosen from a different haplotype, or any arbitrary character in R.

A path of length a naturally corresponds to a line segment of
length a starting at an integer coordinate. Observe that in any a-long
segment, we cannot remove variants at > d coordinates without vio-
lating the ða; dÞh-compatibility of reduced graph G0 (Fig. 2a). A vari-
ant coordinate i is contained in a segments of length a each, whose

A variant selection framework for genome graphs i461

starting positions are in ½i� aþ 1; i�. For each variant position, we
associate two events with coordinates starti ¼ maxf0; i� aþ 1g
and endi¼ i, respectively. Assuming that the n SNP coordinates are
given as sorted array, the corresponding 2n events can be sorted in
O(n) time. When two events have equal coordinates, the start event
type should be placed earlier than the end event type in the sorted
order.

Our greedy algorithm works as follows. Begin by placing an a-
long segment at position 0, and remove variants in the left-most d
variant positions and retain the rest (if any). Keep a count of the num-
ber of positions within the current segment at which variants are
removed. Iteratively consider each event in the sorted order. If the
event is of type starti and the count is less than d, the variants at pos-
ition i are removed and the count is incremented by one. If the event is
of type starti but the count is equal to d, the variants at position i are
retained. If the event is of type endi and the variants at i were previ-
ously removed, the count is decremented by 1. As can be seen, the al-
gorithm maintains ða; dÞh-compatibility and runs in O(n) time.

Proof of optimality: Suppose the greedy algorithm retains var-
iants at coordinates g1; g2; . . . ; gp in ascending order. Let
o1;o2; . . . ; oq be the ordered variant coordinates retained by an opti-
mal solution. Let k be the first position where the solutions differ,
i.e. gj¼oj for j<k and gk 6¼ ok. Due to our greedy strategy, ok< gk.
Though ok was chosen by the optimal algorithm, ða; dÞh-compatibil-
ity is not violated until start event for gk is reached. For any path
starting at a later coordinate, retaining variants at gk offers the same
benefit as retaining at ok. Thus, replacing ok with gk will maintain
optimality and ða; dÞh-compatibility. Hence, the greedy solution is
also optimal.

Lemma 1.: The above greedy algorithm solves Problem 1 in O(n) time.

3.1.2 A linear programming solution to Problem 2

Here, we seek to minimize the total number of variants retained.
Interestingly, we can show that optimal solutions still retain or re-
move all variants at a coordinate.

Lemma 2.An optimal solution to Problem 2 either retains or removes all

variants at a coordinate.

Proof. By contradiction. Suppose there exists an optimal reduced graph

G0 with partially removed variants at coordinate i. Coordinate i already

induces an error in some a-long paths in G that contain the coordinate.

Accordingly, removal of all variants at coordinate i can be tolerated by

all a-long paths containing that coordinate, further implying that graph

G0 must be suboptimal. h

Suppose we choose to remove all variants at coordinate i, then
this choice reduces the overall count of variants by outðviÞ � 1,
where outðviÞ is the out-degree of vertex vi. As can be seen, Problem
2 is harder than Problem 1 because the number of variants at differ-
ent coordinates can be different, leading to variable gains. We ad-
dress this problem by using an Integer Linear Programming (ILP)
system that is polynomially solvable using LP relaxation.

Let p1; p2; . . . ; pn be the n variant coordinates in G in ascending
order. Let X be an n� 1 Boolean column vector where X½i� ¼ 1 iff
variants are removed at coordinate pi in creating G0. Let C be an-
other n� 1 column vector where C½i� ¼ outðvpi

Þ � 1, i.e. the reduc-
tion achieved in variant count by removing variants at pi. The goal
is to maximize CTX. Next, we specify constraints to ensure ða; dÞh-
compatibility of graph G0, by not allowing removal of variants at >
d coordinates in any a-long segment. Similar to the observation
made while addressing Problem 1, it suffices to check this constraint
only in the subset of a-sized segments that end at the n variants.
Accordingly, let A be a Boolean n�n matrix such that A½i�½j� ¼ 1 iff
coordinate pj is within the a-sized segment range ðpi � a;pi� of co-
ordinate pi. Then, ILP constraints required to ensure ða; dÞh-com-
patibility of G0 can be specified as A �X � B, where B is an n� 1
column vector with each value ¼ d. We also need to ensure that the
X½i�’s are Boolean. This can be achieved by expanding A to a 2n� n
matrix with the bottom n rows being the n�n identity matrix, and
similarly expanding B to a 2n� 1 vector with the bottom n entries
set to 1. Now, maximizing CTX while satisfying A �X � B leads to
an optimal reduced graph G0 that is ða; dÞh-compatible.

Run-time complexity: Matrix A exhibits a special structure that
guarantees integral optimal LP solutions. Observe that A is a 0–1
matrix, and the 1’s appear consecutively in each row of A which
makes it an interval matrix (Fulkerson and Gross, 1965). As a result,
the above ILP can be solved in polynomial time by solving the corre-
sponding LP, which has OðnxÞ run-time complexity where x is the
exponent of matrix multiplication (van den Brand, 2020).

Lemma 3. The above LP-based algorithm solves Problem 2 in OðnxÞ
time.

Fig. 1. An example to illustrate construction of variation graph from three haplotype sequences

(a) (b)

Fig. 2. (a) Execution of the greedy algorithm on an example variation graph containing SNPs only. The black horizontal bar represents an a-long segment corresponding to

a¼4 and solid circles represent variant coordinates p1; p2; p3 and p4. In the current iteration, variant loci p4 is being retained by the greedy algorithm to avoid exceeding the

error-threshold d¼2. (b) Execution of the LP algorithm on the same variation graph. LP constraints are shown to maximize the count of variants that can be removed from

the variation graph without exceeding the error-threshold d. Edge labels are not shown as they do not affect the execution of either algorithm

i462 C.Jain et al.

3.2 Results for variation graphs with SNPs and indels
Variation graphs with indels introduce additional complexity. When
considering only SNPs, we benefited from the fact that end vertices
of any a-long paths will be located on the coordinate axis. In add-
ition, right end of a path was a fixed distance away from its left
along the coordinate axis. When indels are permitted, these proper-
ties are no longer true, making Problems 3 and 4 more challenging.
We present two heuristic solutions, each of which can be used to
solve either problem.

3.2.1 A greedy algorithm

We first propose a ‘conservative’ greedy heuristic which guarantees
an ða; dÞe-compatible reduced graph that is not necessarily optimal
in terms of the desired reduction objectives. We choose to either re-
tain or remove all variants at a coordinate vertex (vertex along R1).
Suppose a coordinate vertex v has all three types of variants, i.e.
insertions, deletions and SNPs. We evaluate an upper bound of edit
distance against any overlapping a-long path if we choose to drop
all variants at v. Let Dins;Ddel be the longest insertion and deletion
variants at vertex v, respectively. Dropping all variants at v can con-
tribute an edit distance of at most Dins þ Ddel. In cases where only a
subset of variant types is present, the bound can be adjusted easily.
The following greedy algorithm is designed to select an appropriate
set of coordinates where variants can be removed while ensuring
that the graph remains ða; dÞe-compatible.

As before, let p1;p2; . . . ; pn be the n variant coordinates in G in
ascending order. Note that an a-long path in graph G can span > a
range along the coordinate axis by using deletion edges. For a vari-
ant position pi, consider the left-most position pj such that vpi

can be
reached from vpj

by using any path that uses < a labeled edges. The
rationale for choosing pj this way is that any a-long path which
begins at a variant coordinate vertex prior to vpj

cannot pass
through vertex vpi

. Such a window is precomputed for each variant
position, and we ensure that dropped variants within each window
collectively contribute to edit distance � d. To achieve this, our
greedy heuristic is to consider the variant positions from left to right.
A variant position is removed if and only if the total sum of differen-
ces within its window remains � d. It is straightforward to prove
that the resulting reduced graph remains ða; dÞe-compatible.

Run-time complexity: Computing window lengths for each coordin-
ate vertex is the most time-consuming step in the above algorithm
because the remaining steps have linear complexity either in terms
of count of variants or count of variant positions in graph G. For
calculating window lengths in the above algorithm, we can ignore
SNP and insertion variants from G, and consider only deletion var-
iants. If y denotes the count of deletion variants, then the modified
graph will have exactly jR1j þ 1 coordinate vertices and jR1j þ y
edges. Any vertex vi (i>0) has exactly one incoming labeled edge
(say, from vertex vi1) and � 0 incoming unlabeled edges (say, from
vertices vi2 ; vi3 ; . . . ; vik). Let the function f(v, x) indicate the left-most
vertex that can be reached from v by using a path that uses < x
labeled edges. Then, f ðvi; aÞ equals the left-most vertex among
f ðvi1 ; a� 1Þ; f ðvi2 ; aÞ; f ðvi3 ; aÞ; . . . ; f ðvik ; aÞ. One way to compute this
recursion is to compute a vector of values f ðvi; xÞ 8x 2 ½1; a� for each
vertex along the coordinate axis going from left to right. This pro-
cedure requires Oða � ðjR1j þ yÞÞ time. In practice, y	 jR1j, so this
procedure effectively requires Oða � jR1jÞ time.

3.2.2 An ILP-based algorithm

Alternatively, we can further improve the greedy heuristic by using
ILP. This can be achieved by formulating the edit distance con-
straints discussed above for each window as a set of ILP constraints.
Similar to our LP-based algorithm for Problem 2, A is an n�n ma-
trix, where row i contains nonzero values for those variants that are
within the precomputed window of variant i. For instance, if coord-
inate pj is within the precomputed window span of coordinate
pi ðj � iÞ, then A½i�½j� is set to the estimated upper bound of

differences induced by removing all variants at coordinate pj as dis-
cussed before. Variable X is an n� 1 Boolean column vector, where
X½i� ¼ 1 iff variants at coordinate pi are removed. Then, ILP con-

straints required to ensure ða; dÞe-compatibility can be specified as
A �X � B, where B is a column vector with each value ¼ d. Define
C to be an n� 1 column vector. While addressing Problem 3, set

C½i�’s as 1, and for Problem 4, set C½i� ¼ outðvpi
Þ � 1, i.e. the count

of variants at coordinate pi. In both cases, the ILP objective is set to
maximize CTX. These ILP formulations have higher run-time com-

plexity when compared to the greedy solution, but are guaranteed to
provide at least as good and possibly superior reduction for both
Problems 3 and 4. Neither algorithm guarantees optimality.

4 Haplotype-aware variant selection

In the previous problem versions, we considered all a-long paths in
graph G. Here, we address the important special case where paths
are restricted to correspond to strings observed in haplotypes

R1;R2; . . . ;Rm. Due to this restriction, fewer a-long strings are
checked for mappability. As a result, solutions to the previous prob-
lems are suboptimal for this case because further reduction may be

possible. We start by making the simplifying assumption that the in-
put haplotypes contain only SNPs, and have equal length. We do
not require strings associated with haplotype R1 (or any other haplo-
type) to be exactly preserved in a reduced graph. For example, if all

SNPs are removed at a variant coordinate, then its single outgoing
edge label can come from any of the m haplotypes. Graph G0 is said
to be ða; dÞrh-compatible if all a-long restricted paths in G map to G0

with Hamming distance � d between the corresponding strings. In
this scenario, consider the following problems:

Problem 5. Compute an ða; dÞrh-compatible reduced variation

graph G0 with minimum number of coordinates containing one

or more variants.

Problem 6. Compute an ða; dÞrh-compatible reduced variation

graph G0 with minimum number of variants.

We prove that solving the above problems is NP-hard. We give

two reductions for Problem 5. The first is a general reduction where-
as the second proves hardness for even d¼1. These reductions trivi-
ally generalize to Problem 6. Consider the following decision

version of Problem 5. Does there exist an ða; dÞrh-compatible simpli-
fied graph G0 with � k coordinates containing one or more
variants?

Lemma 4. The decision version of Problem 5 is NP-complete.

Proof. Clearly, the problem is in NP. Recall the decision version of the

closest string problem (CSP) (Lanctot et al., 2003). Given a set S of

strings each of length l and a parameter d, CSP checks existence of a

string that is within Hamming distance of d to each of the given strings.

CSP is known to be NP-complete. CSP exhibits a trivial reduction to

Problem 5: Assume the collection of reference haplotypes to be S. The

following statements are equivalent: (i) there exists a string with

Hamming distance � d to each of the given strings in S, (ii) there exists

an ðl; dÞrh-compatible graph G0 with no coordinate containing one or

more variants. As a result, decision version of Problem 5, which is stated

for an arbitrary value of k, is NP-complete. h

CSP is known to be NP-complete even for a binary alphabet,
thus also making Problem 5 NP-complete for a binary alphabet.
However, CSP is fixed-parameter tractable relative to parameter d
(Gramm et al., 2003). Consequently, the above claim does not re-
solve the complexity of Problem 5 for a constant d. For practical
applications, d is expected to be small. We address this in the follow-

ing lemma.

A variant selection framework for genome graphs i463

Lemma 5. The decision version of Problem 5 is NP-complete even if

d¼ 1.

Proof. Recall the decision version of the maximum independent set (MIS)

problem. Given an undirected graph, the MIS problem asks for a set of

�k vertices no two of which are adjacent. In an MIS graph instance

GmðVm;Em), let u0; u1; . . . ;ujVm j�1 be the vertices and e0; e1; . . . ; ejEm j�1

be the edges. We translate this into a multigraph instance of Problem 5 as

follows. Let R ¼ fA;Cg. Define haplotype reference sequences

R0;R1; . . . ;RjVm jþjEm j each of length jVmj. The first jEmj sequences are

defined using the MIS graph instance Gm while the rest are auxiliary:

Ri½j� ¼ C if ei connects uj; Ri½j� ¼ A otherwise: ð0 � i < jEmjÞ;

Ri ¼ Aði�jEm jÞ � C � AðjEm jþjVm j�i�1Þ ðjEmj � i < jEmj þ jVmjÞ;

Ri ¼ AjVm jði ¼ jEmj þ jVmjÞ:

Observe that edge-labeled variation graph G built by using the above

sequences has a coordinate axis with jVmj þ 1 vertices (Fig. 3). Each co-

ordinate 2 ½0; jVmjÞ has two SNPs ‘A’ and ‘C’. Claim: There exists a k-

sized independent set in GmðVm;EmÞ if and only if there exists a

ðjVmj; 1Þrh-compatible reduced variation with jVmj � k coordinates con-

taining one or more variants. Consider the forward direction. Suppose

there are k vertices in an independent set I . Build a reduced variation

graph G0 by removing ‘C’-labeled outgoing edges from coordinates j (8j
such that uj 2 I). Note that G0 is ðjVmj;1Þrh-compatible. Next consider

the backward direction. Suppose p1; p2; . . . ; pk are the k coordinates in a

compatible simplified graph G0 where variants are removed. If k¼ 1,

then finding an independent set I of size 1 is trivial. If k> 1, then we

note that each of the k coordinates must have a single outgoing edge

labeled with ‘A’ to ensure ðjVmj; 1Þrh-compatibility with respect to the

auxiliary reference sequences. It can be further deduced that

fup1
; up2

; . . . ; upk
g is an independent set of graph Gm. h

In the formulations of Problems 5 and 6, haplotype R1 is not
given any special significance. An interesting question is whether the
problems become tractable if we impose the additional constraint
that edges associated with haplotype R1 must be preserved (assum-
ing R1 is the standard genome reference). In this case, the reduction
from the CSP (i.e. Lemma 4) is no longer applicable. However, it is
still possible to design a reduction from the MIS problem (Lemma
5), with a few simple modifications. The revised proof is omitted for
brevity.

5 Experimental results

Hardware and software: We provide Cþþ implementations of all
the algorithms presented in Section 3 (https://github.com/at-cg/VF).
Among these, the first two handle SNP-based variation graphs
(Greedys and LPs), and the remaining (Greedyi, ILPv

i and ILPp
i) are

designed for a generic variation graph containing substitution,

insertion and deletion events. Our ILP algorithm (Section 3.2.2) sup-
ports two different objective functions, the first minimizes count of
variants, and the second minimizes variant-containing positions.
Accordingly, their naming, i.e. ILPv

i and ILPp
i differentiates the two

versions, respectively.
Using human variation graphs (Table 1), we assess the graph size

reduction achieved by the various algorithms, and also evaluate their
run-time performance and scalability. The LPs, ILPv

i and ILPp
i algo-

rithms make use of Gurobi 9.1.0 solver for LP optimization. All the
algorithms were tested on dual Intel Xeon Gold 6226 CPUs
(2.70 GHz) processors equipped with 2�12 physical cores and
384 GB RAM. Among the implemented algorithms, only the LPs,
ILPv

i and ILPp
i take advantage of multiple cores via Gurobi, whereas

the remaining two are sequential.
Variation graph construction: We tested our algorithms using

variation graphs associated with human chromosome 1 (249 Mbp)
and chromosome 22 (51 Mbp) respectively. For each chromosome,
we built three types of variation graphs, corresponding to (a) SNPs,
(b) SNPs and short indels, and (c) SVs, respectively. This is useful to
contrast output quality while exploring variant types from point
mutations (SNPs) to larger variants. Here, SVs include deletion and
insertion events of size � 50 bp as other type of SVs are currently
not supported by our framework. Exclusion of SVs in variation
graphs is naturally expected to introduce more differences in a-sized
paths, and therefore SVs test the limits of our algorithms. SNP and
short indel variants were downloaded from the 1000 Genomes
Project Phase 3 (Consortium et al., 2015), and SVs were down-
loaded from a recent long-read-based SV survey of 15 diverse
human genomes (Audano et al., 2019). We used vcftools (Danecek
et al., 2011) to parse SNPs and indels from the 1000 Genomes
Project variant files. Similarly, SVs other than insertions or deletions
were filtered out from the SV files. Summary statistics of these var-
iants, and graphs built using them, are listed in Table 1.

a and d parameters: We tested our algorithms using a values of
150 bp, 1 kbp, 5 kbp and 10 kbp. The first is useful for Illumina
reads, whereas the latter are useful for different protocols available
for long-read sequencing (e.g. DNA or RNA sequencing using either
PacBio or ONT). For each a value, we experimented with d values
that are 1%, 5% and 10% of a. Here, 1% corresponds to low error
tolerance of a mapping algorithm, and 10% corresponds to signifi-
cant tolerance.

Performance of Greedys and LPs algorithms: These algorithms
were tested using g_chr1_SNP and g_chr22_SNP graphs (Fig. 4).
For both the algorithms, we report four statistics: (i) count of var-
iants retained, (ii) count of variant-containing loci retained, (iii) run-
time and (iv) peak memory-usage. LPs and Greedys algorithms are
guaranteed to return optimal graphs in terms of the objectives (i)
and (ii), respectively. The results in Figure 4 suggest that the two
algorithms perform almost equally well in terms of both objectives
for all tested combinations of (a; d) values. Increasing a value while
keeping d as a constant fraction of a naturally corresponds to fewer
SNPs retained. The same is true when d is increased while keeping a
fixed. These results corroborate the fact that longer reads and higher
sensitivity of mapping algorithms result in retention of fewer var-
iants in a variation graph. For instance with (a ¼ 10 kbp; d ¼ 1000),

Fig. 3. Illustration of reduction used to prove Lemma 5. Vertices selected as inde-

pendent set are highlighted in red (left). Accordingly, we can find an equivalent

reduced variation graph where variants from two vertices are removed (removed

edges are highlighted in gray)

Table 1. Variation graphs used for testing the proposed variant

selection algorithms

Graph

label

Chr Type of

variants

No. of

variants

No. of variant

-containing loci

g_chr1_SNP 1 SNPs 6 234 054 6 215 039

g_chr22_SNP 22 SNPs 1 063 618 1 059 517

g_chr1_SNP_indel 1 SNPs, short

indels

6 478 244 6 453 040

g_chr22_SNP_indel 22 SNPs, short

indels

1 105 948 1 100 716

g_chr1_SV 1 Indel SVs 6525 6369

g_chr22_SV 22 Indel SVs 2056 1996

i464 C.Jain et al.

https://github.com/at-cg/VF

the Greedys algorithm retained only 531 (0.009%) out of 6 234 046
SNPs using graph g_chr1_SNP. After this run, average distance be-
tween two adjacent loci containing SNPs increased from 39 to
225 963. This suggests that variation selection algorithms can poten-
tially yield long stretches of variant-free regions in graph, where the
usual read-to-sequence mapping algorithms can also operate.

If run-time is considered, the Greedys algorithm runs significant-
ly faster than LPs, which was also reflected by our time complexity
analysis in Section 3.1. Using graph g_chr1_SNP, LPs algorithm ran
out of memory for a¼10 kbp due to increased size of the matrix,
i.e. count of nonzeros in the matrix which specifies the LP con-
straints. Taken together, Greedys algorithm suffices for most prac-
tical purposes because it is fast and optimal in terms of its objective
to minimize count of variant-containing loci retained. Greedys algo-
rithm does not account for the number of variants at a locus while
deciding its fate, yet it achieves near-optimal reduction in terms of
minimizing the count of variants. This is likely because most human
SNPs are biallelic.

Performance of Greedyi and ILP-based algorithms: We tested our
Greedyi, ILPv

i and ILPp
i heuristics using g_chr1_SV and g_chr22_SV

graphs (Fig. 5). In contrast to SNPs which are single-base mutations,
the sizes of SV indels in chromosome 1 computed by Audano et al.
(2019) range from 50 bp to 33 kbp, with mean length 0.5 kbp. As a
result, it is natural to expect that the fraction of variants retained
will be much higher compared to SNPs. The ILP-based heuristics are
guaranteed to achieve superior results than the greedy heuristic, i.e.
ILPv

i heuristic is expected to retain the smallest count of variants
among the three, and similarly ILPp

i heuristic will retain the smallest
count of variant-containing loci. For instance, with long-read com-
patible settings (a ¼ 10 kbp; d ¼ 1000), the ILPv

i , ILPp
i and Greedyi

heuristics retained 26.8%, 27.0% and 31.3% SVs, respectively in
graph g_chr1_SV. Similarly, 24.8%, 25.0% and 30.6% SVs were
retained in graph g_chr22_SV. However, with short-read compat-
ible settings (a ¼ 150 bp; d ¼ 8), all SVs were retained by all three

heuristics, as expected. These results are not necessarily optimal, but
we do not expect them to deviate significantly from optimal num-
bers. The rationale is that not only SVs are bigger in size but also SV
loci are known to be clustered in several known hot-spots of the
human genome, e.g. within the last 5 Mbp of both chromosome
arms (Audano et al., 2019).

In terms of count, SVs occur much less frequently as compared
to SNPs or indels. As a result, run-time of all the three heuristics was
dominated by their first step of computing the constraints required
to ensure ða; dÞe compatibility, which is common in all of them. As
shown in Section 3.2, this step requires time proportional to a as
well as the length of the reference sequence. Accordingly, we observe
that running time is comparable among all three heuristics, appears
to be independent of d, scales roughly linearly with a, and time spent
is higher using graph g_chr1_SV than g_chr22_SV. With the largest
a¼10 kbp value, all three algorithms require about 6 and 1 min to
process the two graphs, respectively.

The Greedyi, ILPv
i and ILPp

i heuristics were also separately
tested using graphs containing SNPs and short indels, i.e.
g_chr1_SNP_indel and g_chr22_SNP_indel. For convenience, we in-
dicate their output graph statistics as a pair (x, y) such that x and y
refer to the fraction of SNPs and indels retained, respectively. When
using (a ¼ 150 bp; d ¼ 8) parameters on variation graph
g_chr1_SNP_indel, the three heuristics Greedyi, ILPv

i and ILPp
i

retained ð6:6%; 25:9%Þ, ð6:0%; 32:0%Þ and ð6:0%; 32:1%Þ of the
variants, respectively. Using long-read settings (i.e.
a ¼ 10 kbp; d ¼ 1000), all three heuristics retained only
ð0:01%;0:002%Þ variants. These results suggest that the fraction of
indels that should be retained is higher than SNPs while mapping
short reads. However, almost all SNPs and short indels can be
excluded while mapping long reads.

Impact on sequence-to-graph mappers: We conducted a preliminary
evaluation to assess the impact of variant selection on read-to-graph
mapping. For this experiment, we considered the reduced graph

(a) (b)

Fig. 4. Empirical evaluation of Greedys and LPs algorithms using two human variation graphs g_chr1_SNP and g_chr22_SNP containing SNPs. These plots demonstrate reduc-

tion achieved in graph sizes while varying a and d parameters. Size of the complete variation graph (d ¼ 0%) is included for comparison. Numbers on top of bars present actual

data, useful for comparison when both Greedys and LPs achieve close results. Result of LPs algorithm is missing for a ¼ 10 000 (left-most column) because Gurobi LP solver

crashed due to insufficient memory. Y axes are log-scaled in all the above plots

A variant selection framework for genome graphs i465

obtained by ILPv
i using g_chr1_SV graph as input. As discussed pre-

viously, the ILPv
i heuristic retained 1748 of the 6512 SVs using a ¼

10 kbp and d¼1000 parameters. We built two variation graphs
using VG (v1.29.0) tool corresponding to the complete set of SVs
and the reduced set of SVs, respectively. The graph statistics (e.g.
vertex degree distribution) were validated to ensure the presence of
SVs in the respective graphs. Next, we simulated 10 000 long reads,
each of length 10 kbp from randomly chosen paths of the complete
variation graph with error-rate 5% using VG’s read simulation fea-
ture. Subsequently, we made use of GraphAligner (v1.0.11) to map
these reads to both variation graphs.

We observed the following. First, all 10 000 reads were success-
fully mapped by GraphAligner to both the graphs. Second, each
read was mapped only using primary alignments, and there were no
secondary alignments reported. This indicates that there was no
mapping ambiguity while using the reduced variation graph. A dir-
ect comparison of mapping coordinates is not feasible because VG
used different vertex identifiers in the two graphs which have differ-
ent topology. However, VG includes a heuristic to project graph
coordinates onto the linear reference genome using surject com-
mand. We used this command to project true read coordinates as
well as the computed read alignments to the linear genome refer-
ence. A read is considered to be mapped correctly if any one of its
alignments overlaps with � 50% of the true interval. Using this crite-
ria, 9922 and 9919 reads were found to be correctly mapped to the
complete and the reduced variation graph, respectively. We add-
itionally used a chain-like variation graph by removing all varia-
tions, and found that 9908 reads could be mapped correctly to this
graph.

The impact of missing variations was also observed on the count
of reads which had split alignments. Reads with split alignments
increased from 2 in the complete variation graph to 209 in the
reduced graph. Split read alignments are often used as a signature by
variant callers to discover SVs (Rausch et al., 2012). Once the
reduced variation graph is used to correctly anchor alignments, the
full spectrum of variations in the aligning region can be used for

effective genotyping. Upon further inspection of the split read align-
ments, we found the count of alignments per read varied from 2 to 3
in the complete graph, and from 2 to 5 in the reduced graph. We
also observed 295 split read alignments if we map the simulated
reads to the chain graph with no variation, but the alignments per
read in this case ranged from 2 to 43. Here, 15 reads were found to
have >5 alignments. These reads may be difficult to align due to sig-
nificant edit distance with their closest matching path in the reduced
graph. Similar anomalies were observed if we construct a graph by
selecting a random subset of 1748 SVs, where 1748 is the count of
the SVs retained by the ILPv

i algorithm.
We note that GraphAligner required similar run-time and mem-

ory in all scenarios (about 5 min). This is likely because the graph is
nearly linear, due to limited count of SVs (6512) that were available
in the complete chromosome 1 graph. This result is preliminary, but
motivates a deeper investigation into the impact of the proposed
algorithms on various sequence-to-graph mapping algorithms while
using a much larger catalog of variants as input. Variant selection
tool FORGe (Pritt et al., 2018) uses allelic frequency data as an in-
put to its model. Currently, frequency assessment remains challeng-
ing in case of SVs due to the lack of appropriate tools as well as data
(Mahmoud et al., 2019). A direct comparison with FORGe could
not be carried out due to these limitations.

6 Conclusions and open problems

We developed a novel mathematical framework for variant selec-
tion, and presented multiple algorithms and complexity results for
various problems arising from this framework. Experimental results
demonstrate substantial reduction in the resulting variation graph
sizes, while guaranteeing bounds on the number of errors tolerated
while doing so. Implementations of all the four algorithms that are
proposed in this paper are available as open-source, and can be used
by practitioners for pan-genomic analysis. The path-length and error
parameters (a; d) can be tuned to match the choice of sequencing

(a) (b)

Fig. 5. Empirical evaluation of Greedyi, ILPv
i and ILPp

i algorithms using two human variation graphs g_chr1_SV and g_chr1_SV containing insertion and deletion SVs. These

plots demonstrate reduction achieved in graph sizes while varying a and d parameters. Numbers on top of bars present actual data, useful for comparison when the three algo-

rithms achieve close results

i466 C.Jain et al.

technology, mapping algorithms and types of variants considered.
The proposed framework makes the assumption that the mapping
algorithms have uniform error tolerance throughout the reference.
By experimenting with publicly available human genome variation
data, we demonstrated that a significant fraction of small-scale var-
iants, but no large-scale variants can be left out during short-read
mapping to variation graphs. On the other hand, almost all small-
scale variants and a significant fraction of large-scale variants can be
excluded prior to long-read-based analysis.

The proposed variant selection framework underpins a rich class
of problems making it fertile ground for future research. (i) Optimal
algorithms for the two problems associated with indel variants
(Problems 3 and 4) are unknown. In fact, it is not known whether
these two problems can be solved in polynomial time. (ii) While we
were able to prove that the haplotype-aware versions of the problem
are NP-hard, efficient heuristics and approximation algorithms for
these problems are yet to be developed. Haplotype-aware algorith-
mic extensions can result in further reduction of graph sizes because
fewer paths need to be preserved. (iii) It may also be possible to fur-
ther extend this framework and add constraints similar to allele fre-
quency thresholding, e.g. by asking a reduced graph which is
allowed to violate error-bound for up to 1% of haplotypes at any
position. (iv) This work only considered predominant variant cate-
gories—SNPs, insertions and deletions; further research is needed to
analyze other variant types such as duplications, inversions and
complex genomic rearrangements.

Funding

This work was supported in part by the National Science Foundation under

CCF-1816027. This research used resources of the National Energy Research

Scientific Computing Center, a DOE Office of Science User Facility supported

by the Office of Science of the U.S. Department of Energy under Contract No.

DE-AC02-05CH11231.

Conflict of Interest: none declared.

References

Audano,P.A. et al. (2019) Characterizing the major structural variant alleles

of the human genome. Cell, 176, 663–675.

Ballouz,S. et al. (2019) Is it time to change the reference genome? Genome

Biol., 20, 1–9.

Chang,X. et al. (2020) Distance indexing and seed clustering in sequence

graphs. Bioinformatics, 36, i146–i153.

Computational Pan-Genomics Consortium (2018) Computational pan-ge-

nomics: status, promises and challenges. Brief. Bioinform., 19, 118–135.

Consortium,G.P. et al. (2015) A global reference for human genetic variation.

Nature, 526, 68–74.

Danecek,P. et al. (2011) The variant call format and vcftools. Bioinformatics,

27, 2156–2158.

Danek,A. et al. (2014) Indexes of large genome collections on a PC. PLoS

One, 9, e109384.

Darby,C.A. et al. (2020) Vargas: heuristic-free alignment for assessing linear

and graph read aligners. Bioinformatics, 36, 3712–3718.

Dilthey,A. et al. (2015) Improved genome inference in the MHC using a popu-

lation reference graph. Nat. Genet., 47, 682–688.

Eggertsson,H.P. et al. (2017) Graphtyper enables population-scale genotyping

using pangenome graphs. Nat. Genet., 49, 1654–1660.

Eizenga,J.M. et al. (2020) Pangenome graphs. Annu. Rev. Genomics Hum.

Genet., 21, 139–162.

Fulkerson,D. and Gross,O. (1965) Incidence matrices and interval graphs.

Pac. J. Math., 15, 835–855.

Garrison,E. et al. (2018) Variation graph toolkit improves read mapping by

representing genetic variation in the reference. Nat. Biotechnol., 36,

875–879.

Ghaffaari,A. and Marschall,T. (2019) Fully-sensitive seed finding in sequence

graphs using a hybrid index. Bioinformatics, 35, i81–i89.

Gramm,J. et al. (2003) Fixed-parameter algorithms for closest string and

related problems. Algorithmica, 37, 25–42.

Holley,G. et al. (2016) Bloom filter trie: an alignment-free and reference-free

data structure for pan-genome storage. Algor. Mol. Biol., 11, 1–9.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using col-

ored de bruijn graphs. Nat. Genet., 44, 226–232.

Ivanov,P. et al. (2020). Astarix: fast and optimal sequence-to-graph alignment.

In International Conference on Research in Computational Molecular

Biology. Springer, pp. 104–119.

Jain,C. et al. (2019a). Accelerating sequence alignment to graphs. In 2019

IEEE International Parallel and Distributed Processing Symposium

(IPDPS). IEEE, pp. 451–461.

Jain,C. et al. (2019b). Validating paired-end read alignments in sequence

graphs. In 19th International Workshop on Algorithms in Bioinformatics

(WABI 2019), Vol. 143, Leibniz International Proceedings in Informatics

(LIPIcs), pp. 17:1–17:13.

Jain,C. et al. (2020) On the complexity of sequence-to-graph alignment. J.

Comput. Biol., 27, 640–654.

Kim,D. et al. (2018) Hisat-genotype: next generation genomic analysis plat-

form on a personal computer. BioRxiv, 266197.

Kuhnle,A. et al. (2020) Efficient construction of a complete index for pan-ge-

nomics read alignment. J. Comput. Biol., 27, 500–513.

Kuosmanen,A. et al. (2018). Using minimum path cover to boost dynamic pro-

gramming on DAGs: co-linear chaining extended. In International

Conference on Research in Computational Molecular Biology. Springer, pp.

105–121.

Lanctot,J.K. et al. (2003) Distinguishing string selection problems. Inf.

Comput., 185, 41–55.

Li,H. et al. (2020) The design and construction of reference pangenome graphs

with minigraph. Genome Biol., 21, 1–19.

Liu,B. et al. (2016) debga: read alignment with de Bruijn graph-based seed and

extension. Bioinformatics, 32, 3224–3232.

Maciuca,S. et al. (2016). A natural encoding of genetic variation in a bur-

rows-wheeler transform to enable mapping and genome inference. In

International Workshop on Algorithms in Bioinformatics. Springer, pp.

222–233.

Mahmoud,M. et al. (2019) Structural variant calling: the long and the short of

it. Genome Biol., 20, 1–14.

Marcus,S. et al. (2014) Splitmem: a graphical algorithm for pan-genome ana-

lysis with suffix skips. Bioinformatics, 30, 3476–3483.

Mokveld,T. et al. (2020) Chop: haplotype-aware path indexing in population

graphs. Genome Biol., 21, 1–16.

Paten,B. et al. (2017) Genome graphs and the evolution of genome inference.

Genome Res., 27, 665–676.

Pritt,J. et al. (2018) Forge: prioritizing variants for graph genomes. Genome

Biol., 19, 1–16.

Rausch,T. et al. (2012) Delly: structural variant discovery by integrated paire-

d-end and split-read analysis. Bioinformatics, 28, i333–i339.

Rautiainen,M. and Marschall,T. (2020) Graphaligner: rapid and versatile

sequence-to-graph alignment. Genome Biol., 21, 1–28.

Schneeberger,K. et al. (2009) Simultaneous alignment of short reads against

multiple genomes. Genome Biol., 10, R98–R112.

Sirén,J. et al. (2014) Indexing graphs for path queries with applications in gen-

ome research. IEEE/ACM Trans. Comput. Biol. Bioinform., 11, 375–388.

Sirén,J. et al. (2020) Haplotype-aware graph indexes. Bioinformatics, 36,

400–407.

van den Brand,J. (2020). A deterministic linear program solver in current ma-

trix multiplication time. In Proceedings of the Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp. 259–278.

Vijaya,S. et al. (2012) A new strategy to reduce allelic bias in RNA-seq read-

mapping. Nucleic Acids Res., 40, e127.

A variant selection framework for genome graphs i467

