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Abstract: Medical imaging phantoms are considered critical in mimicking the properties of human
tissue for calibration, training, surgical planning, and simulation purposes. Hence, the stability
and accuracy of the imaging phantom play a significant role in diagnostic imaging. This study
aimed to evaluate the influence of hydrogen silicone (HS) and water (H2O) on the compression
strength, radiation attenuation properties, and computed tomography (CT) number of the blended
Polydimethylsiloxane (PDMS) samples, and to verify the best material to simulate kidney tissue.
Four samples with different compositions were studied, including samples S1, S2, S3, and S4,
which consisted of PDMS 100%, HS/PDMS 20:80, H2O/PDMS 20:80, and HS/H2O/PDMS 20:40:40,
respectively. The stability of the samples was assessed using compression testing, and the attenuation
properties of sample S2 were evaluated. The effective atomic number of S2 showed a similar pattern
to the human kidney tissue at 1.50 × 10−1 to 1 MeV. With the use of a 120 kVp X-ray beam, the CT
number quantified for S2, as well measured 40 HU, and had the highest contrast-to-noise ratio (CNR)
value. Therefore, the S2 sample formulation exhibited the potential to mimic the human kidney, as it
has a similar dynamic and is higher in terms of stability as a medical phantom.

Keywords: compression strength; effective atomic number; imaging properties; CT number;
kidney phantom

1. Introduction

Medical imaging has proven its critical role in the healthcare field due to its ability to
act as a valuable tool in diagnosis, therapy, surgical planning, postoperative assessment,
and planning in radiotherapy treatment [1]. The increased volume of imaging procedures
and the complexity of pathologies has led researchers to optimize the function at its highest
standard performance. Often, the clinical diagnosis, which solely depends on a radiologist’s
interpretation, takes time. A large volume of cases received daily tends to lead to errors,
which may later cause misdiagnosis in patients [2]. This amenable side of medical imaging
has been compensated with the introduction of quantitative imaging. The potential of
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quantitative imaging as biomarkers for many diseases such as brain ischemia, coronary
artery disease, interstitial lung disease, and colorectal issues has become substantial in
current radiology practice [3]. The growing need to employ quantitative imaging in clinical
settings has motivated the study on the development of imaging phantoms [4,5]. For
example, in the computed tomography (CT) examination, the standardization of CT pixel
values with the Hounsfield Unit (HU) acts as vital measure to characterize tissue density,
which is a vital component of quantitative imaging application [6,7]. This study presented
the threshold values of radiation attenuation by the anthropomorphic phantom sample,
including image quality, for a better understanding of the performance.

Briefly, the anthropomorphic phantom is critical in the quality control of modalities,
as it allows the physicist to perform the calibration test, dose verification, teaching aid, and
surgical guidance. The phantoms are usually made of materials that have human tissue
equivalency and were designed with similar attenuation properties [3,8]. However, most of
the designed phantoms face long-term stability issues. Usually, the agar and water-based
gels phantoms demonstrate changes over time, due to continuous water expulsion and
absorption cycles. Furthermore, the new invention of phantoms using the 3D-printing
technique has limitations as well, including the lack of materials to mimic all the tissue
properties and the high cost compared with other fabrication techniques [9].

The computed tomography (CT) scanner has been considered a gold-standard tech-
nique that has good accuracy, is faster in the detection of renal diseases, and has a much
lower cost than the magnetic resonance imaging (MRI) scanner [10]. As the prevalence of
renal diseases is often caused by incidental findings on abdominal CT images, an advanced
approach is required to facilitate the early detection of renal diseases [11]. However, radia-
tion exposure is still the primary concern as radiation is associated with radiation-induced
toxicity, although this is underappreciated [12,13]. This study proposes the potential of a
blend of Polydimethylsiloxane (PDMS) as a base of the kidney phantom material. PDMS
has an elastic modulus of 360–870 kPa, which is larger than the elastic modulus of a real
kidney [14]. Therefore, this research attempted to modify the PDMS with hydrophilic sili-
cone and water, so that it can be a simple and economically affordable phantom with higher
reproducibility of human tissue [15]. Additionally, this elastomeric polymer has ideal
features such as nontoxicity, biocompatibility, blood compatibility, elasticity, transparency,
and higher durability. There are several PDMS formulations, and those with Sylgard 184
are most often used in biological studies.

Clinically valid phantoms should demonstrate similar human tissue properties; hence,
they should be designed with materials that have the same attenuation characteristics. For
this purpose, the CT numbers and the image quality of the samples were evaluated to
identify the relation of radiation properties and imaging properties to further validate the
mechanical and chemical properties of the blended PDMS samples.

2. Materials and Methods
2.1. Fabrication of PDMS Phantom

The solid tissue-mimicking phantoms were fabricated from PDMS (Dow Corning,
Michigan, US) with a standard density of 0.965 g/cm3 and viscosity (mixed) of 3500 cps.
The base was a silicone-based polymer, belonging to the group of silicone elastomers.
The typical mixing ratio for PDMS is a ten-part base and one-part curing agent (dimethyl
vinylated and trimethylated silica, respectively) [16]. Different base/agent ratios of the
PDMS network means a different amount of cross-linking [17]. Four samples were made
with distinct material composition, as presented in Table 1, specifically: PDMS 100%,
HS/PDMS 20:80, H2O/PDMS 20:80, HS/H2O/PDMS 20:40:40.

Initially, the elastomer base and the corresponding curing agent were weighed using
an analytical balance, according to the predetermined weightage (Denver Instrument P-214,
Brentwood, NY, US). Both solutions were then thoroughly mixed and stirred using a hot
plate magnetic stirrer for five minutes. Before the mixture was poured onto a petri dish,
a passivation layer (Ease Release 200) was applied to the petri dish to prevent strong
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adhesion between the mixture and the surface of the dish. The sample was then degassed
in a vacuum desiccator for 30 min to remove any bubbles. The mixture was then heated in
an oven at 80 ◦C for half an hour, and the temperature was increased to 100 ◦C for another
one hour. Afterwards, the cured sample was left to cool at room temperature. After the
PDMS network mold cured, the sample was stable and could be stored for months.

Table 1. Chemical composition of the Polydimethylsiloxane (PDMS) sample.

Samples Hydrogen Silicone (g)
C7H22O2Si3

H2O (g) PDMS (g)
C2H6Osi

S1 0 0 20
S2 4 0 16
S3 0 4 16
S4 4 8 8

2.2. Compression Testing

The compressive test was performed by using an Instron universal compression-testing
machine (Figure 1) with a 500 N load cell based on ASTM D1621 plastic compression testing.
The phantom samples were first punched to cut the PDMS samples into cylindrical shapes.
The initial dimensions were measured by a digital vernier caliper before testing, with an
average value recorded from at least five measurements for each dimension: (i) 25.4 mm
diameter and 25.4 mm height for cylinder-shaped compressive specimens. As shown
in Figure 2, each sample was replicated 5 times in order to achieve the average reading
for the compression test. The cylindrical samples were then placed on the compression
testing plate, and the load cell was slowly lowered until it touched the surface of the
sample. The contact between the sample and the plate was ensured by slowly moving
the plate down until the machine detected the load. This test was conducted at a rate of
0.050 ± 0.010 in/min, as shown in Figure 2. From the stress–strain curve, the modulus of
elasticity (MOE) can be calculated based on the following formula [14]:

E =
σ

ε
(1)

where E is the slope of the line in this region, and stress (σ) is proportional to strain (ε).
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2.3. Radiation Attenuation Properties

In this study, we evaluated the tissue equivalence of the phantom by using a web-based
software, Phy-X/PSD (Ataturk University, Erzurum, TR). The software is a web-based
simulator that has a user friendly GUI interface, used to calculate Zeff in the energy region
of 1 keV–20 MeV for photons (both photon interactions and photon energy absorption) and
in the energy region of 1 MeV–1 GeV for electrons, protons, alpha particles, and ions [18,19].
The tissue equivalence of the tissue substitutes is represented by this method for the
computation of effective atomic numbers in this study. The methods for measuring Zeff are
discussed next. The first phase was concerned with the implementation of the chemical
composition from the content to the software. The total weight number and fractions of
the mole should be equal to 1 (or 100 percent). For example, sample 1 (mass) constituent
fractions are 0.8 C2H6OSi + 0.2 C7H22O2Si3. Anything more may be measured at the same
time as one item. The “+” sign can be used to incorporate other simultaneous material-Zeff
calculations. The software generated the interaction photon data in the energy regions for
ions and charged particle interactions, pertinent to the context of medical physics (1 keV to
20 MeV for pho and 1 MeV to 1 GeV for tons of charged particles). The Zeff in the case of
continuous energy is defined as the output data.

2.4. Imaging Properties

In this study, the prepared phantoms were scanned using a 64-slice CT scanner (So-
matom Definition Flash: Siemens Healthcare, Munich, DE) for the evaluation of imaging
properties. Phantom samples were aligned and placed perpendicularly on the CT scanning
couch before the scanning process. The scanning acquisition parameter was set accordingly
with a detector configuration of 64 × 0.625, beam collimation of 0.5 mm, gantry rotation
speed of 0.5 s, pitch of 1.375, and tube potentials of 80 kVp, 100 kVp, 120 kVp, and 140 kVp,
with fixed-tube currents [20]. The images were reconstructed using a single filter kernel
with 1 mm sections at 0.5 mm intervals.

After data images were obtained, the CT number of each sample was assessed and
compared to that of human tissue features in CT scan images. The post-processing imaging
tool was utilized to extract the CT numbers and noise values by placing the circular region
of interest (ROI) in the selected image (Figure 3). The obtained value was then compared
to the typical CT numbers of normal human tissue, particularly that of the kidney. The
information regarding the CT numbers and noise was used to calculate the signal-to-noise
ratio (SNR) and contrast-to-noise ratio (CNR) [21]. In a digital image, the signal is defined as
a resultant exposure demonstrated on the image display monitor. Along with the exposure,
there is an electronic noise that may be visualized along with the displayed image. The
signal-to-noise ratio (SNR) is a method of measuring object detectability relative to noise
in the digital image [21]. Higher image quality can be obtained by increasing the strength
of the signal, which results in higher SNR than the amount of noise. Furthermore, the
visibility of the anatomical details also depends on the SNR, where increasing the SNR
increases the visibility of anatomic details and vice versa. Scientifically, the SNR in the
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region of interest (ROI) can be described as the ratio between the mean CT number of the
ROI (HUROI) and the associated SD of the ROI (SDROI) expressed as [22]:

SNR =
HUROI
SDROI

(2)

and
CNR =

HUROI − HUB
SDB

(3)

where HUB and SDB are the background CT number and noise of the nearest region, respectively.
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3. Results

Compression testing was performed on all the developed cylindrical phantom samples
to characterize the compressive properties of materials. The samples yielded different com-
pressive strengths and young modulus ranging from 0.41 to 4.06 MPa (Table 2). According
to the table below, the HS/PDMS 20:80 sample had the highest compressive strength among
all the samples.

Table 2. Composition ration of each sample and compression strength.

Samples Hydrogen Silicone
C7H22O2Si3

Water
H2O

PDMS
C2H6Osi

Compression
Testing (MPa)

Young Modulus
(MPa)

PDMS 100% 0 0 20 2.6–2.8 * 2.61 *
HS/PDMS 20:80 4 0 16 4.06 ± 0.62 4.17

H2O/PDMS 20:80 0 4 16 1.09 ± 0.362 1.19
HS/H2O/PDMS 20:40:40 4 8 8 0.41 ± 0.05 0.516

* reported by other researchers [23–25].

Compressive strength was measured to determine the compressive force that the
blended PDMS samples could withstand while retaining their shape. Changes were
observed in all samples; however, the magnitude of this change varied. As can be seen from
Table 2, the compressive stresses and young modulus were highest for sample HS/PDMS
20:80 (4.06 MPa) and the lowest value was recorded for sample HS/H2O/PDMS 20:40:40 as
it crushed faster. This is due to less PDMS in the sample, whereas sample HS/PDMS 20:80
had the highest as the existence of HS and nil water. Silicone has a high atomic number;
thus, it produced a stronger sample. Therefore, the mass fraction of silicone and water



Polymers 2022, 14, 535 6 of 10

played a critical role in the mechanical properties of the sample [26]. On top of that, the
strength of pure PDMS decreased by 30%, compared with the HS/PDMS 20:80 sample as
HS was not added in the sample. Furthermore, the strength of the sample H2O/PDMS
20:80 was lower than pure PDMS by double, as water diluted the PDMS sample.

Based on the earlier analyses, HS/PDMS 20:80 is believed to be an optimum sample
with the highest compressive strength. Therefore, further evaluation in terms of radiation
attenuation properties was conducted for this PDMS sample, as this phantom will be used
for dosimetry and calibration. The photon interaction with the matter was assessed based
on the mass attenuation (µ/p) parameter. The mass attenuation coefficient (MAC), effective
atomic number (Zeff), half-value layer (HVL), equivalent atomic number (Zeq), and linear
atomic coefficient (LAC) of the HS/PDMS 20:80 sample are tabulated in Table 3.

Table 3. Radiation attenuation properties of HS/PDMS 20:80.

Energy
(MeV)

Attenuation Properties

MAC (cm2/g) Zeff HVL Zeq LAC

1.50 × 10−2 4.586 11.38 0.15661 10.33 4.568
2.00 × 10−2 2.044 10.29 0.3514 10.43 2.037
3.00 × 10−2 0.736 7.91 0.97565 10.55 0.735
4.00 × 10−2 0.417 6.26 1.72455 10.62 0.416
5.00 × 10−2 0.300 5.34 2.3926 10.67 0.300
6.00 × 10−2 0.246 4.83 2.91631 10.7 0.247
8.00 × 10−2 0.198 4.35 3.62052 10.75 0.199
1.00 × 10−1 0.176 4.16 4.06981 10.78 0.177
1.50 × 10−1 0.150 4.00 4.79128 10.83 0.15
2.00 × 10−1 0.135 3.96 5.31868 10.85 0.136
3.00 × 10−1 0.116 3.93 6.18157 10.88 0.117
4.00 × 10−1 0.104 3.92 6.92316 10.89 0.104
5.00 × 10−1 0.095 3.92 7.59245 10.9 0.095
6.00 × 10−1 0.087 3.92 8.21515 10.91 0.088
8.00 × 10−1 0.077 3.91 9.35973 10.91 0.077

1.00 0.069 3.91 10.41402 10.91 0.069
1.50 0.056 3.92 12.79181 8.76 0.056
2.00 0.048 3.93 14.87477 8.48 0.048
3.00 0.039 3.99 18.42066 8.42 0.039
4.00 0.034 4.05 21.3392 8.39 0.034
5.00 0.030 4.13 23.78665 8.38 0.03
6.00 0.028 4.21 25.84345 8.38 0.028
8.00 0.025 4.37 29.07043 8.37 0.025
1.00 0.023 4.52 31.42182 8.37 0.023
1.50 0.021 4.87 35.01704 8.36 0.021

Several works measured the LAC within the diagnostic radiology energy range, which
was from 30 to 110 keV [27–29]. The calculated LAC for PDMS samples were compared
with these previous works, and this comparison is shown in Table 4. This comparison
shows that the values calculated in the present method agree with previous measurements
and other theoretical data found in the literature for the energy range of 50 keV to 100 keV.

Table 4. LAC of HS/PDMS 20:80 and compared with other studies.

Energy (keV) HS/PDMS 20:80 King et al.
(2011) [27]

Aysun Böke
(2014) [28]

Manjunath et al.
(2015) [29]

30 0.710 0.389 0.383 0.384
40 0.402 0.279 0.277 0.278
50 0.290 0.246 0.233 0.241
60 0.238 0.218 0.213 0.215
80 0.191 0.201 0.191 0.196
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The HS/PDMS 20:80 sample was scanned using the Somatom Definition Flash with
varying kVp values to correlate the relationship between different kVp and HU values.
Table 5 tabulates the HU values at 80 kVp, 100 kVp, 120 kVp, and 140 kVp. The values
varied from 14–130 HU, and specifically for 120 kVp, the CT number was 40–60 HU, within
the range of the kidney’s CT number. The CT number decreased from 100 kVp to 140 kVp.
As recommended by the American College of Radiology (ACR), a CT number study should
be performed between 120 and 130 kVp [30]. Based on Table 5, at 120 and 140 kVp, the
CT number was lower, and these values correspond to the values of the kidney, muscle,
blood, and liver. Tailoring the concentrations of PDMS, HS and H2O would enable samples
to be produced for specific parts of selected organs [31]. Additionally, Table 5 shows
the contrast-to noise-ratio (CNR) and signal-to-noise ratio (SNR) for all tube potentials.
Notably, the highest CNR occurring at 120 kVp was consistent and aligned with the ACR
recommendation to choose a 120 kVp scan for a phantom study [6].

Table 5. Average CT number, standard deviation (SD) and image quality of the samples.

kVp Average CT
Number SD ROI HU

Background
SD

Background SNR CNR

80 71 7.5 −802 10.3 15.12 87.11
100 63.7 6 −792 9.5 14.66 96.18
120 45 5.6 −789 8.2 2.56 100.9
140 30 8.3 −830 84.7 1.1 9.98

4. Discussion

According to Umale et al., the ultimate stress for human kidney varies from 2.8 MPa
to 10.9 MPa, whereas this study reported 4.06 MPa for compression strength [8]. The elastic
modulus of a real kidney was 180.32 ± 11.11 kPa (mean ± SD) and 95.64 ± 9.39 kPa under
axial and transversal loadings, respectively. Information about the mechanical properties
of human tissue will aid medical and biomechanical purposes to be used for diagnosis
and simulation, respectively. The amount of water inside the sample may result in the
fluctuation of the compressive strength over time, with the strength decreasing after weeks.
The decrease in strength was prominent for higher amounts of water. Thus, it is advisable to
fabricate a solid phantom that is not made of water-based material. On the other hand, the
addition of HS increased the [SiR2-o-] backbone structure instead of the carbon backbone,
thus adding photo-catalysts of the functional group, which can adhere and polymerize. As
the HS can reduce the curing time, the polymerization process is controlled by the mass
ratio between the amount of emulsifier, initiator dosage, HS oil, and the catalyst [32]. HS
can form the PDMS to become gooey in texture with a soft structure. As the water and HS
increase, the sample becomes more rigid and cloudy in appearance [31]. The addition of
water induces moisture content into the phantom material. The moisture in the composites
may interfere with the absorption effects by decreasing the effects of physical bonding and
potentially acting as a lubricant between the polymer phases. A study by Sombatsompop
and Sims (2004) suggested that to optimize the mechanical properties of polymers, the
moisture content in the compound should be less than 1% [33].

X-rays and gamma rays are penetrating forms of high-energy electromagnetic radia-
tion. The photon mass attenuation coefficient, effective atomic number, and half value layer
are the basic quantities required for determining the penetration of X-rays and gamma
rays in the matter [34]. The attenuation properties of this sample were studied to ensure
that it could mimic the human tissue. Therefore, Phy-X/PSD software was utilized to
calculate the Zeff [35]. The effective atomic number was constant in the intermediate-
energy region, whereas noticeable variation was observed for low (<20 keV), as well as
high-energy regions. Overall, the PDMS Zeff ranged around 4.00 to 5.00 in a higher en-
ergy range ≥ 1.00 × 10−1 MeV and was comparable with the previous work [19]. This
Zeff was lower at the intermediate energy range due to the dominance pair production
and scattering effects. This sample showed a value of Zeff close to the normal kidney
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value with a deviation of seven to fifteen percent, as compared to the pure PDMS from
our previous study [11]. The interaction of X-/gamma rays with different materials can
be measured by using HVL. HVL provides a clear indication of the thickness needed to
attenuate the half strength of the gamma-ray incident, and reveal the X-ray penetration
power. The HVL values increased with an increase in photon energy. Furthermore, it was
also necessary to calculate the Zeq factor for all materials to obtain the exposure buildup
factor (EBF) and absorption process (EABF) [28]. It is vital to investigate the EBF and EABF
as these characteristics will validate the material for medical application. The Zeq values
rose marginally at low energy levels and then increased significantly. The Zeq value for
this study was higher than the lung, adipose tissues, and muscle, yet lower than the bone
as its Zeq at 0.015 MeV measured 12.99 and rose till 14.12 at 1 MeV [36,37]. The chemical
composition, Zeq, plays a crucial role in the buildup of gamma photons within the selected
human organs/tissues.

CT was used to determine the X-ray attenuation coefficient, and the CT number of
water was set at 0 HU [38]. For materials other than water and air, some dependence of
the CT number on kVp was expected, primarily because of the photoelectric interaction’s
strong dependence on both photon energy and atomic number. Consequently, the mass
attenuation coefficient of each material is highly dependent on energy; as a result, the CT
number depends on kVp as well. For lower energy scans, such as 80 or 90 kVp, photoelectric
interactions would be expected to increase, particularly in high-Z material such as bone.
Increased photoelectric interactions result in an increased measured CT number for high-Z
tissues at low kVp, compared with the same tissues at higher energies. This supported the
results for the sample containing HS and PDMS at the estimated ratio. Additionally, this
aligned with Mustafa and Jackson, who showed that the CT number was dependent on
the scan kVp, particularly for high-Z/high-density materials [39,40]. Furthermore, it was
reported that bone CT number decreases with an increase in kVp.

As this CT number value fluctuates and is not constant, the image quality of the
sample was evaluated. Based on Table 5, greater attenuation occurred at 120 kVp, reducing
the signal received by the detector, which explained the lower SNR values. In a noisy
image, the image contrast is low; this is caused by a large amount of background signal
due to the Compton scattering effect, consequently reducing the CNR of the image [21].
This explains why the 140 kVp scan reduced the CNR by 90%, compared with the 120 kVp
value. Therefore, any factor that affected the SNR affected the CNR as well.

As a result, the attenuation coefficient was highly dependent on the energy, and
the photoelectric interaction was dominant at the lower energy range. In diagnostic
imaging, the two predominant interactions between X-ray photons and matter were the
photoelectric effect (complete X-ray absorption) and the Compton interactions (X-ray
scatter with fractional loss of X-ray energy). There was a shift from a predominance of the
photoelectric effect to the Compton interactions from the lower energy range of medical
imaging (20–50 keV) to the higher energy range (50–150 keV), in which X-ray attenuation
was strongly related to the electron density or mass of the image material, as used by the
method proposed by Phy-X/PSD and verified by the CT material.

5. Conclusions

Based on the stability validation from our initial works, it was found that there was an
urgency to fabricate a solid phantom that was not made of a water-based material. The
effect of water and HS on the chemical properties of PDMS was not significant. In contrast
to the radiation properties, the HS reduced the mass attenuation coefficient and X-ray
attenuation coefficient of the pure PDMS, thus mimicking the CT number and effective
atomic number of the human kidney. In this study, it is promising to suggest PDMS as
the material of choice to be used as a stable kidney phantom in terms of good agreement
with compressive strength and radiation attenuation. Furthermore, the blended PDMS
imitates human tissue more precisely, and permits a wide range of possibilities for testing
and phantom designs. Hence, it promises to be of value for use in both research and clinical
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settings, as a reliable and accurate tool for the development of phantoms, especially for
in-vitro phantoms.
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