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Abstract

Repairing damage in the craniofacial skeleton is challenging. Craniofacial bones require intra-

membranous ossification to generate tissue-engineered bone grafts via angiogenesis and os-

teogenesis. Here, we designed a mineralized collagen delivery system for BMP-2 and vascular

endothelial growth factor (VEGF) for implantation into animal models of mandibular defects.

BMP-2/VEGF were mixed with mineralized collagen which was implanted into the rabbit man-

dibular. Animals were divided into (i) controls with no growth factors; (ii) BMP-2 alone; or

(iii) BMP-2 and VEGF combined. CT and hisomputed tomography and histological staining

were performed to assess bone repair. New bone formation was higher in BMP-2 and BMP-

2-VEGF groups in which angiogenesis and osteogenesis were enhanced. This highlights the

use of mineralized collagen with BMP-2/VEGF as an effective alternative for bone

regeneration.
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Introduction

Segmental mandibular defects caused by tumor resection, genetic

disorders or trauma remains challenging [1–3]. Unrepaired defects

are associated with defacement, reduced masticatory capability and

loss of speech, which severely affect the patient’s quality of life.

Autologous bone grafts are the first-line treatment for segmental

mandibular reconstruction [4, 5] which can be improved by tissue

engineering approaches [3, 6]. In the light of this, tissue engineering

might offer a next step in the evolution of mandibular reconstruc-

tion. The scaffolds are one of critical factors for tissue engineering

and regeneration. In modern medicine, bio-scaffolds from bioceram-

ics and polymers components that improve bone growth are of par-

ticular interest. In particular, scaffolds that recapitulate the

molecular cues of bone healing are currently under development.

Several biomaterials have been developed to control and sustain the
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delivery of BMP-2. Scaffolds such as hyaluronic acid-based hydrogel

supported bone growth with BMP-2 known to enhance bone forma-

tion [7]. Currently, much experimentation has focused on the effi-

cacy of BMP-2 for other applications but less for segmental

mandible defects [8]. The use of BMP-2 is, however, hindered by the

requirement for high effective doses leading to side-effects such as

swelling, seroma formation and cystic bone lesions. To prevent such

complications, more effective BMP-2 delivery methods are required.

Vascular endothelial growth factor (VEGF) improves the transport

of precursor mesenchymal cells to the mineralized regions of bone

through angiogenesis [9, 10]. The use of VEGF with low dose BMP-

2 may, therefore, act in concert to promote bone healing, particu-

larly for the early functional loading of dental implants following

bone grafting. The challenge is the ability to engineer materials that

match the biological and mechanical properties of the real bone tis-

sue matrix that maintain the ability to support bone vascularization.

However, controversy remains whether co-treatment with

VEGF/BMP-2 produces beneficial effects in comparison to BMP-

2 alone, particularly at the mandibular bone that possesses an

abundant vasculature. In this study, we assessed the effects of

VEGF combined with BMP-2 through mineralized collagen de-

livery into mandibular alveolar bone defects in rabbits. The ef-

fectiveness of VEGF-BMP2 co-delivery was compared with

BMP-2 alone.

Methods

Scaffold fabrication
Mineralized Collagen was purchased from Beijing Allgens Medical

Science [11–13]. Mineralized collagen scaffolds were prepared

through the formation of mineralized type I collagen fibrils that

were synthesized through self-assembling hydroxyapatite (HA) crys-

tals that grew within the collagen fibrils and to form triple collagen

self-assembled helices. During mineralization, HA growth and nu-

cleation were regulated by the collagen fibrils in a manner compara-

ble to in vivo bone mineralization. The resultant solutions were

freeze-dried to produce MC, which was shaped and sterilized

though 60 Co irradiation.

Surgical assessments
All animal protocols were approved by our institutional review

board and followed the guidelines of the Declaration of Helsinki.

New Zealand white rabbits aged 11–12 weeks (200–300 g) were

assessed. Rabbits were housed in a natural light/dark cycle of 12 h at

15–21�C and provided free access to food and water. Rabbits were

anesthetized through injection with pentobarbital sodium

(0.038 mg/g) and xylazine hydrochloride (0.075 mg/g).

Submandibular incisions were produced in the skin, subcutaneous

tissue and masseter muscles, parallel to the inferior border of the left

mandible. Lingual and buccal surfaces were then exposed to an ele-

vator, and 10�4�2 mm3 full-thickness defects were produced in

the left mandible body using a dental drill. Saline was added drop-

wise to the defect to prevent overheating. Mandible bone fragments,

coagulation scabs and tissues were then washed away with saline

and following wound washing and hemostasis, the defects were then

filled with MC alone or MC/BMP-2 (BMP-2: 100 mg/ml) or MC/

BMP-2/VEGF (BMP-2: 100mg/ml; VEGF: 10mg/ml), the subcutane-

ous fascia, skin and muscle incisions were sutured with absorbable

4/0 sutures following saline irrigation and alcohol/iodine steriliza-

tion (Fig. 1). Post-surgery, rabbits were injected into the muscle with

penicillin for three successive days. Rabbits were independently

housed over the postoperative period and irregular behavior and op-

erative complications were monitored. Rabbits were provided free

access to food and water during the recovery period.

CT assessments
Mandibles of 9 sacrificed animals were assessed at 4, 8 and

12 weeks, respectively. Untreated left-sided defects were compared.

Mandible morphology was imaged via CT on a Toshiba Aquilion

16 under the indicated parameters: 120 kV, 125 mA, 1-s scan and

0.5 mm sections. Mandibles were imaged in pseudo 3D displays.

CT analysis
A Leica Qwin Pro image analyzer was used to assess bone ingrowth.

Image analysis was performed on the surface area and surrounding

bone. Data are shown as arbitrary units and reflect the levels of

bone filling. Bone ingrowth was calculated at different times post-

surgery.

In vivo histology
Bone was obtained at weeks 4, 8 and 12 to assess the infiltration of

the implants. Bone sections of 900 nm were prepared using a rotat-

ing diamond wafering saw. Sections were mounted onto slides,

ground to �100 mm, and polished. Sections were H&E stained

Figure 1. Application of scaffolding to mandibular alveolar bone defects. (a) Experimental procedures, (b) mandibular alveolar bone defect (10� 4�2 mm3) cre-

ated, (c) application of mineralized collagen and growth factor complex, (d) after 12 weeks, the growth state of the mandible sample.
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using Kossa silver nitrate, and counterstained with safranin (Sigma)

as per the manufacturer’s recommendations.

IHC
Samples obtained from the implanted bone regions were fixed at

week 12 in 4% PFA prior to paraffin embedding. To assess human

vimentin expression using Immunohistochemistry (IHC), endoge-

nous peroxidase was quenched through incubation with 1% H2O2

and methanol. Paraffin sections were labeled with human anti-

vimentin antibodies and developed using hematoxylin.

Results

Clinical assessments
All animals displayed normal behavioral patterns and healing, with

minimal inflammation observed. Upon analysis, each of the wounds

closed over the 12-week healing period. Post-implantation, two rab-

bits were sacrificed and the bony mandibles were dissected and

analyzed. The formation of bone could be observed macroscopically

at the implanted regions.

CT images
To investigate bone unions in the defects, CT images were obtained

at the indicated timepoints up to 12 weeks post-operatively (Fig. 2).

Cell-scaffolds were observed on the right mandible side 4 weeks

post-operatively. By 8–12 weeks, the defects were comparable to na-

tive bone, but delineation of the margins of the defects was not

possible.

CT analysis
The CT analysis showed that the density of the defects filled

with the designed osteoblasts-scaffolds were higher than those

that were unfilled. Data were acquired at weeks 4, 8 and 12

post-scaffold implantation (Figs 3 and 4). After 12 weeks, bone

formation in the implanted areas exceeded that of the 4-week

group. Significant differences were also evident from 4 to

12 weeks.

Figure 2. CT Images of mandibular alveolar bone defects implanted with (a) MC, (b) MC/BMP-2, (c) MC/BMP-2/VEGF after 12 weeks.

Figure 3. Histomorphometric analysis of newly formed bone.
Figure 4. Immunohistochemical analysis of OPG positive cells staining ratio.
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The ratio of new bone was calculated using the following

equation:

New bone area ratio %ð Þ ¼ newly formed bone area ðmm2Þ
total area ðmm2Þ

 !

� 100 %ð Þ:

In vivo histology
For the imaging of alveolar bone regeneration in vivo, histological

analysis was performed in three rabbits implanted with MC, MC/

BMP-2 and MC/BMP-2/VEGF and sacrificed at 12 weeks, respec-

tively (Fig. 5). It was found that osteoblast-containing transplants

produced abundant levels of new bone that strongly attached to

the scaffold and adjacent bone (Fig. 5, C: osteoblast; T: new

bone trabecular). Samples treated with MC/BMP-2 and MC/

BMP-2/VEGF showed the formation of new bone that was irregu-

lar bone with a mature Haversian system. Basophilic mineraliza-

tion was observed following von Kossa staining. An interface

between the host and newly regenerated bone was also observed.

After 12 weeks, gaps in the implants due to scaffold degradation

were replaced with newly formed ingrowth bone (Fig. 5, M:

materials). After 12 weeks, high levels of scaffold degradation

were observed with simultaneous bone filling in the cavities, rela-

tively mature bone and well-arranged bone trabecula and the

growth of blood vessels (Fig. 5c, red arrow: newly formed capil-

lary vessel). The most significant differences between the implants

were the levels of residual scaffolds and levels of new bone, indic-

ative of particle resorption and replacement with mineralized

tissue.

Masson staining showed levels of bone formation and bone

structures that were consistent with HE assessments. There were no

inflammatory signs or wound healing disturbances in any of the

cases. Figure 6 showed the group with BMP only or in combination

with VEGF, relatively abundant new bone was observed, while the

residual mineralized collagen was reduced and the appearance of

higher numbers of blood vessels at the implantation site in the MC/

BMP-2/VEGF group, suggestive of pro-angiogenic effects of BMP-2

by VEGF after 12 weeks of implantation. High levels of lamellar

bone structure were evident in the MC/BMP-2/VEGF group. These

data support the hypothesis that osteogenesis and angiogenesis are

increased through the combined delivery of BMP-2 and VEGF.

Immunohistochemistry
To investigate the formation of new blood vessels around the newly

formed bone, immunochemical staining OPG was performed at

12 weeks post-surgery. Areas of dense lamellar bone showed around

implants with MC/BMP-2/VEGF group (Fig. 7c, white arrow). We

observed higher levels of angiogenesis in the MC/BMP-2/VEGF

group compared with BMP-2/MC and MC groups (Fig. 7c, red ar-

row). The co-delivery of BMP-2/VEGF showed dense blood vessel

formation that interspersed throughout the scaffold confirming en-

hanced angiogenesis. These data further confirmed the utility of the

BMP-2/VEGF co-delivery to improve bone regeneration and support

Figure 5. Hematoxylin–eosin photographs (H&E �20 magnification) of mandibular alveolar bone defects implanted with (a) MC, (b) MC/BMP2 and (c) MC/BMP2/

VEGF at 12 weeks after surgery. C: osteoblast, T: new bone, M: mineralized collagen, red arrow: newly formed capillary vessel.

Figure 6. Histology photomicrographs of masson’s trichrome staining (MT �20 magnification) of mandibular alveolar bone defects implanted with (a) MC,

(b) MC/BMP2 and (c) MC/BMP2/VEGF at 12 weeks after surgery. P: premature bone tissue without bone cells, T: new bone, M: mineralized collagen, white arrow:

lamellar bone.
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the hypothesis that VEGF enhances bone angiogenesis to overcome

osteogenic processes.

Discussion

The utility of tissue engineering for mandibular reconstructions has

been investigated in numerous animal models using a range of car-

riers and cell types. Biodegradable scaffolds are pivotal to bone engi-

neering and provide skeletal support for osteogenic cell growth

during the early phases of bone healing that subsequently creates

gaps for new bone formation when degraded. Bone morphogenetic

protein 2 (BMP-2) has been used to reconstruct mandibular defects

[15]. In this study, MC/BMP-2-treated animals demonstrated signifi-

cantly more bone healing than did the MC group. BMP’s osteogenic

capacity is due to its ability to stimulate mesenchymal stem cells to

differentiate toward an osteoblastic phenotype [16].

The VEGF enhances endochondral bone formation through its

ability to enhance vessel invasion and chondroclast recruitment onto

the hypertrophic cartilage, allowing the replacement of cartilaginous

templates through the bony callus for intramembranous ossification

[17–19]. In this study, MC/BMP-2/VEGF-treated animals demon-

strated significantly more bone healing than did the MC group and

MC/BMP-2 group. Maturing osteoblasts are a major source of

VEGF, with physiological levels of VEGF maintaining bone homeo-

stasis (as shown in Fig. 8a). Low levels of VEGF disrupt osteoblast

differentiation, while its overexpression enhances osteoclast recruit-

ment and bone resorption. Hu and Olsen showed that cortical bone

defects due osteogenic cells, are key sources of VEGF. VEGF deple-

tion disrupts angiogenic and osteogenic coupling, ultimately

Figure 7. Immunochemical staining (IH �20 magnification) OPG of mandibular alveolar bone defects implanted with (a) MC, (b) MC/BMP-2 and (c) MC/BMP-2/

VEGF at 12 weeks after surgery. White arrow: lamellar bone, red arrow: newly formed capillary vessel.

Figure 8. Coupling of angiogenesis and osteogenesis during intramembranous ossification. [14]
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delaying healing [18]. VEGF regulates stem cell fate as it stimulates

osteoblastic processes and inhibits adipogenic differentiation

through RUNX2 and PPARy2, as opposed to paracrine signaling

[20, 21]. VEGF leads to enhanced levels of BMP-2 in vessel-

associated MSCs as it activates the Akt/b-catenin signaling [22]. The

osteoblast mediated increase in BMP-2 acts via the autocrine system

to stimulate osteoblast differentiation, stimulating VEGF production

through a positive feedback loop. Figure 8b demonstrates that dur-

ing bone repair, the osteoblasts produce VEGF which promotes

both endothelial proliferation and migration. VEGF further upregu-

lates BMP levels in endothelial cells. Endothelial cells secrete osteo-

genic factors, including BMP-2 and BMP-4, to enhance the

differentiation of BMPs. Indeed, BMPs are some of the major factors

controlled by VEGF in these cell types. Angiogenesis and osteogene-

sis are thus tightly coupled for physiological bone functions [17, 23,

24].

While these strategies offer an exciting glimpse into potential fu-

ture treatments, there are several challenges that still must be over-

come. Only a small amount of BMP is needed for a sizeable

generation of bone, however, delivery of this bioactive molecule

must be highly controlled, since overstimulation by BMP-2 has sub-

stantial side effects such as bone overgrowth and disorganization.

Therefore, dose- and time-dependent effects of BMP-2 and VEGF

combination on the mandibular bone generation must be highly

controlled since overstimulation by growth factor has substantial

side effects.

Conclusions

In summary, we provided a novel strategy to ensure high levels of

bone formation and vascularization. BMP-2 released from the MC

promoted new mandibular bone formation. The combination of

BMP-2 and VEGF showed a synergistic effect on mandibular bone

regeneration. The direct delivery of bioactive molecules may fur-

ther increase de novo bone formation. This knowledge provides a

new therapeutic strategy to generate large-size vascularized bone

grafts.
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