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Abstract

Navigation of fast migrating cells such as amoeba Dictyostelium and immune cells are

tightly associated with their morphologies that range from steady polarized forms that sup-

port high directionality to those more complex and variable when making frequent turns.

Model simulations are essential for quantitative understanding of these features and their

origins, however systematic comparisons with real data are underdeveloped. Here, by

employing deep-learning-based feature extraction combined with phase-field modeling

framework, we show that a low dimensional feature space for 2D migrating cell morpholo-

gies obtained from the shape stereotype of keratocytes, Dictyostelium and neutrophils can

be fully mapped by an interlinked signaling network of cell-polarization and protrusion

dynamics. Our analysis links the data-driven shape analysis to the underlying causalities by

identifying key parameters critical for migratory morphologies both normal and aberrant

under genetic and pharmacological perturbations. The results underscore the importance of

deciphering self-organizing states and their interplay when characterizing morphological

phenotypes.

Author summary

Migratory cells that move by crawling do so by extending and retracting their plasma

membrane. When and where these events take place determine the cell shape, and this is

directly linked to the movement patterns. Understanding how the highly plastic and inter-

convertible morphologies appear from their underlying dynamics remains a challenge

partly because their inherent complexity makes quantitatively comparison against the out-

puts of mathematical models difficult. To this end, we employed machine-learning based
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classification to extract features that characterize the basic migrating morphologies. The

obtained features were then used to compare real cell data with outputs of a conceptual

model that we introduced which describes coupling via feedback between local protrusive

dynamics and polarity. The feature mapping showed that the model successfully recapitu-

lates the shape dynamics that were not covered by previous related models and also hints

at the critical parameters underlying state transitions. The ability of the present approach

to compare model outputs with real cell data systematically and objectively is important as

it allows outputs of future mathematical models to be quantitatively tested in an accessible

and common reference frame.

Introduction

Cell migration is a fundamental cellular process that underlies embryonic development, wound

healing, immunological surveillance and cancer metastasis. In particular, fast migrating cells

such as Dictyostelium and migrating immune cells are versatile in their patterns of movement

that range from random exploratory movements with frequent turns to more persistent migra-

tion in a straight path. Dictyostelium cells exhibit both random migration [1] as a phagocyte,

and more persistent migration when forming a fruiting body. Exploratory interstitial migration

in leukocytes [2,3] underlies antigen search and immune surveillance [4], and some are also

known to move in a straight line [5]. Frequency of cell turning and their angles is dictated by

when and where branched networks of F-actin that drives formation of lateral protrusions

called pseudopods occur. In Dictyostelium, pseudopods appear arm-like, and their formation

and splitting randomizes cell orientation [6]. Selective maintenance of pseudopods thus pro-

vides directional bias in the shallow attractant gradients [7]. Similar F-actin enriched projec-

tions in immune cells vary in their appearance from those that are finger-like in DC cells to

those more lamellar in neutrophils, however their role in directional choice appears to be con-

served [8,9]. On the other hand, ability to move in a straight and persistent manner requires cell

polarity which refers to a long-term state having a dominant leading edge enriched in branched

F-actin meshwork and a trailing end with crosslinked actomyosin. In certain cells under geo-

metrical confinement, buildup of hydrostatic pressure by contractility can rapidly switch the

protrusion to a bleb which is devoid of F-actin [10]. Besides such cases, F-actin driven leading

edge protrusion and rear contraction are concomitant in the polarized cells. While the particu-

lar shape that cells take depends on the extracellular conditions such as cell-substrate adhesion

and diffusible attractants, shapes with broken-symmetry emerge in the absence of extracellular

asymmetries, and thus their origins are cell-intrinsic by nature [6,7,11]. The fact that movement

of fast migrating cells depend highly on self-deformation contrasts highly to those of mesenchy-

mal cells such as fibroblasts, which move at an order of magnitude slower speed and are strongly

dictated by the asymmetries introduced by the adhesive foci.

The common and recurring shapes observed under highly divergent culture conditions and

across evolutionary distant species and taxa [12] suggest generality of the self-deforming

dynamics in fast migrating cells. Transmigrating neutrophils, genetically or pharmacologically

perturbed Dictyostelium [13,14] and certain cancer cells [15] take a canoe-like polarized mor-

phology similar to fish-keratocytes and some protozoan amoebae. Conversely, polarized neu-

trophils under certain genetic and pharmacological perturbations are known to exhibit

increased number of pseudopods [16,17]. These common and interconvertible morphologies

suggest that they reflect basic self-organizing states of motile cells that can be quantified and

compared with minimal reference to the details of the molecular underpinnings and the
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permissive extracellular conditions. Due to compounding levels of complexity, quantitative

characterization of these canonical morphologies also requires one to leave aside fine-scale

protrusions such as filopodia and endocytic cups and apply an appropriate coarse-grained

description at the cellular-level. The aspect ratio of fish keratocytes was identified as the major

variation in shape features by principle component analysis (PCA) [18]. Variation in more

complex features requires other non-trivial measures of characterization. Fourier and related

spectral analysis allows one to extract the periodicity in the protrusion-retraction cycle as well

as in their spatial ordering [19]. Combined with PCA, Fourier description of Dictyostelium cell

shape has shown that the morphologies observed at various steepness of a chemo-attractant

gradient can be characterized in a two-dimensional feature space that represents differences in

degree of elongation, splitting and polarization [20]. Zernike polynomials in combination with

PCA has been used to classify invasive cancer morphologies in two-dimensional feature space

[21]. Besides Fourier-based analysis, methods such as tracking of local curvature [22] and

pseudopods at the cell edge [7,23] have been employed to characterize spatio-temporal dynam-

ics of membrane protrusions. In RNAi screen of Drosophila culture cells, a large body of hand-

picked morphology features has been employed to train a classifier by shallow neural networks

[24] and Support Vector Machine [25]. These studies indicate that the states of physically real-

izable morphologies are confined to a relatively low-dimensional feature space [25]. The

downside of data-driven approaches, however, are that the analysis often remains in a black-

box making it difficult for one to understand data with reference to the underlying causalities.

A great challenge remains as to how one can quantitatively relate the characterized shapes

to the underlying dynamics and vice versa [12,26,27]. For the most basic analysis, it is instruc-

tive to formulate a top-down model for isolated cells that is free of extracellular context [12], as

behaviors under complex environments may later be deduced, given the repertoire of realiz-

able dynamics, from spatial asymmetries and constraints in the key parameters. In the “graded

radial extension model”, a polarized morphology similar to that observed in fish keratocytes

and neutrophils is described without reference to the underlying mechanism by assuming that

the plasma membrane extends radially and that its magnitude is spatially graded along the

anterior-posterior axis [28]. Such a steady and graded distribution is thought to result from

reaction-diffusion based symmetry breaking in the activity of the polarity signals GTPases Rac

and RhoA at the plasma membrane that specifies the state of F-actin at each given place and

time. Resource limitation that prevents one state from dominating the other is expected when

the sum of the inactive and active form of the small GTPases is approximately fixed in time

[29]. Bi-stable reaction-diffusion systems with the above constraint are known to support a

protrusive membrane region (front) and contractile membrane region (rear) to co-exist in a

spatially separate domains within a cell—a mathematical manifestation of a stable polarized

cell shape [29]. On the other hand, pseudopods are transient structures regulated by locally

amplified formation of branched F-actin networks. In Dictyostelium this is governed by tran-

sient activation in Ras/Rap and PI3K [30], and in case of neutrophils, by Cdc42 and PI3K

[31,32]. Because the localized protrusive dynamics occur under uniform conditions, they are

thought to arise by noise amplification by excitable regulatory network [23,30,32,33]. Cdc42 in

neutrophils and Ras/Rap in Dictyostelium are also known to act positively to strengthen Rac

and Rho and hence cell polarity [16,34–36].

Recent mathematical models addressed how interconvertible morphologies of random and

persistent migrating cells can be described in a single framework. Modified models of excit-

ability [14,37–40] introduce means to prolong propagation of wave-like activities which gives

rise to elongated forms with directional persistence. Conversely, in bistable-based models [41],

a recent modification to include large noise with memory [42] has demonstrated pseudopod-

like dynamics. Despite added complexities, these models still fall within the realm of what
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excitability or bistability can describe. To which extent these two disparate schemes capture

real cell morphologies have not been systematically and quantitatively addressed. In this work,

we develop a framework that employs deep learning based classifier to obtain objective mea-

sures for shape comparison. By introducing a conceptual model that describes coupling

between excitable and bistable regulation, we show that their interplay successfully maps

experimentally observed morphologies across the full range of the feature space including

those where the existing models fail. Furthermore, the model highlights key parameters that

define morphologies under normal and aberrant conditions. The present approach provides a

general and extendable framework to characterize varieties of other cell shapes in a data-driven

manner which can then be interpreted and tested to further improve hypothesis-driven model-

ing. Provided that there are large sets of simulated timeseries and real data for feature extrac-

tion, the ability to help infer the migratory dynamics from snapshot images should also have

practical single-cell applications for cell identification.

Results

A feature space related to cell polarity and pseudopod dynamics can be

obtained from classification of stereotype morphologies by deep

convolutional neural networks

For systematic extraction of cell morphology features from microscopy data, a convolutional

neural network (Fig 1A, lower panel) was trained to classify snapshot mask images of: Dictyos-
telium (aggregation-stage; ‘agg’), neutrophil-like HL-60 and fish keratocytes (Fig 1A, upper

panel; S1 Movie). The choice of the reference data was based on the fact that they are well-stud-

ied systems and that each represented a stereotype morphology that can be interpreted to rep-

resent different degree of pseudopod formation and cell polarity [6,12]. Under our

experimental conditions, Dictyostelium cells showed an elongated form in the anterior to pos-

terior direction with locally appearing pseudopods. Fish keratocyte took a canoe-like shape

characterized by its long axis orthogonal to the moving direction. HL-60 exhibited an interme-

diate form between the two where, compared to Dictyostelium, transient protrusions appear

less frequently and the overall shape was more horizontally elongated but to a lesser extent

than the keratocyte. Image masks of these isolated single cells (Table A in S1 Text) were nor-

malized in size and orientation (Fig 1A; see Methods). Hyper-parameters for deep-learning

were chosen for relative high-accuracy for various network structures. The extracted features

were well trained as judged by the high validation accuracy; 97.9% and 89.7%, for the training

and the validation data respectively (S1A and S1B Fig; the mean of the last 10 epochs; see

Table B in S1 Text for accuracy per dataset). The classification accuracy of the validation data

of Dictyostelium, HL-60, and keratocyte is 94.6%, 96.0%, and 87.8%, respectively (Table B in

S1 Text). The three nodes F = (F1, F2, F3) that constituted the second to last layer of the net-

work showed good representation of the three data classes: Dictyoselium (S1C Fig; high F1),

HL-60 (S1D Fig; high F2) and keratocyte (S1E Fig; high F3), which were further reduced to two

by principal component analysis (PCA). The latency values of PC1, PC2 and PC3 were approx-

imately 66.3%, 33.5% and 0.3%, respectively. The contribution of F1, F2 and F3 to PC1 =

(-0.42,-0.35, 0.84)•F and PC2 = (0.76,-0.64, 0.11)•F indicate that PC1 highlights keratocyte-

like shapes while penalizing features common to Dictyostelium and HL-60, and PC2 favors

Dictyostelium-like features not found in HL-60. Fig 1B shows good separation of the three

datasets in the PCA space (~ 92.8% accuracy) compared to classification based on hand-crafted

features (S2D Fig, Tables Q and R in S1 Text). The keratocyte and Dictyostelium (agg) dataset

were found in the high PC1 and high PC2 regions, respectively. The HL-60 dataset were

mapped to a low PC1 low PC2 region.
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Fig 1. Stereotype migrating cell morphology can be classified in two-dimensional feature space. (A) Representative mask images

(upper panels: Dictyoselium (agg; aggregation-stage), HL-60 and fish keratocyte) used for trainining a deep convolutional neural
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The feature metrics acquired above, by the very fact that they constitute a good classifier,

should be useful to quantify similarity of cell morphology of one’s interest in reference to the

trained data. The overall relationship between representative cell contours and the morphol-

ogy feature is shown in Fig 1C. At first glance, higher PC1 appears to indicate more pro-

nounced elongation in the lateral direction while higher PC2 indicates marked longitudinal

elongation and protruding edges. These variations in the feature space not only reflected the

average morphology differences between the three training classes but also shape changes in

time. Fig 1D–1l show representative single-cell timeseries from the validation dataset; i.e. a

reserved dataset not used for training. Dictyostelium data showed large fluctuations in both the

PC1 and PC2 direction (Fig 1D, 1E, and 1F), whereas the HL60 (Fig 1G, 1H, and 1I) and kera-

tocyte data (Fig 1J, 1K, and 1L) exhibited more marked changes in the PC1 direction (see also

S1C–S1E Fig for changes in F). To clarify the relationship between the PC1-PC2 and the extent

of elongation, we re-visited the principle component of the fish keratocyte shape variation

reported earlier (‘shape mode 1’ in [18]). Low aspect-ratio shapes (-2σ in ‘shape mode 1’ [18])

were located near the HL-60 dataset, and high aspect-ratio shapes (2σ in ‘shape mode 1’ [18])

were located near the keratocyte dataset. Consequently, the shape along the ‘shape mode 1’ of

fish keratocyte [18] constitutes a well-confined manifold in the PC1-PC2 space (Fig 1C; aster-

isks) to which our fish keratocyte data were also mapped. Furthermore, ellipsoidal shapes with

various aspect ratios indicate that an increase in the lateral elongation maps them on the same

manifold as the keratocyte dataset (Fig 1M, PC1> -1; magenta to pink ellipsoids) while an

increase in the degree of head-to-tail elongation maps the ellipsoids to another manifold along

the PC2 axis (Fig 1M, green ellipsoids). Rotating these ellipsoids to intermediate angles map

these shapes to intermediate PC1 values (S1F and S1G Fig).

While the analysis of the stretched ellipsoids clearly demonstrated how the cell orientation

and the degree of elongation are mapped to the feature space, the Dictyostelium (agg) dataset

was markedly offset from these ellipsoids towards negative PC1 values. To further clarify the

nature of this deviation, well-defined polygons were subjected to the same feature analysis

(Materials and Methods). All 33 geometrical objects tested were mapped within the region of

the PC1-PC2 space spanned by the microscopy data (Fig 1N). Regular polygons and circles

were mapped to a low PC1—PC2 region and their vertically stretched counterparts were

mapped to higher PC2 region (Fig 1N, red). Polygons and ellipsoids that were stretched in the

lateral direction marked high PC1 value (Fig 1N, blue; S1H and S1I Figs). Of particular note

were the star objects which scored highest in the PC2 value and deviated markedly in the fea-

ture space from the ellipsoids and other objects when stretched (S1I Fig). Stars have higher

PC2 compared to squares and triangles indicating that PC2 reflects pointed edges. Compari-

sons between upright and vertically flipped stars and triangles indicated that degree of point-

edness towards the cell front also affects PC2 but in a complex way (Fig 1N; see also S1J Fig).

An analysis of more asymmetrical geometries with varying number of edges showed that they

map to a domain in high PC2 with high variations towards negative PC1 values as in the Dic-
tyostelium (agg) dataset; i.e. away from ellipsoidal shapes (Fig 1O). Rotating the multi-edge

network (lower panel). Masks were normalized in area and aligned downwards in the migrating direction. The feature vector F = (F1, F2,

F3) defined by the three nodes in the last layer was further reduced to PC1 and PC2 by PCA. (B) Mapping of trained data in PC1 and

PC2 (dark green + (aggregation-stage Dictyostelium), dark red + (HL-60) and yellow + (keratocyte)). Each data point represents time-

averaged scores from a time-series of a single cell. (C) Representative cell contours mapped to the feature space. Asterisks are the first

principal shape variation of fish keratocyte (images taken from [18] (-2σ (blue) to +2σ from the mean (purple)). (D-L) Representative

time-series and the corresponding feature scores for Dictyostelium (agg) (D-F), HL-60 (G-I) and fish keratocyte (J-L), respectively.

(M-O) Mapping of skewed ellipsoidal shapes (the number indicates aspect ratio) (M), polygons (N) and a multi edge geometry (O) in

the feature space. The circled regions in the background (B, F, I, M, O) are 95% confidence ellipses for the mean of all timeseries

combined (dotted) and for the mean of individual cell (filled); green (Dictyostelium), dark red (HL-60), yellow (keratocyte).

https://doi.org/10.1371/journal.pcbi.1009237.g001
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forms with the small PC1 values (Fig 1O; 0 to 30 degrees) bring about decrease in PC1 (S1K

Fig). Further rotation increases PC1 (S1K Fig; 60 to 90 degrees) due to the shape now appear-

ing more horizontally elongated overall. Generality of the results was confirmed in indepen-

dent real-cell data by analyzing fully differentiated prespore cells of Dictyostelium which is

elongated longitudinally and lacks pseudopods thus mapping identically to the elliposoids

(S3A and S3B Fig). Likewise, effector T cells with their signature branching protrusions were

broadly distributed along PC2 (S3C Fig, Th1) compared to markedly less polarized regulatory

T cells (S3D Fig, Treg). These analysis indicate that our classifier was able to yield data-driven

representation of complex signatures with respect to the cell orientation for both local pseu-

dopodal protrusions and more global cell elongation.

The ‘ideal cell’ model recapitulates a generalized morphological landscape

constrained by the choice of the protrusion speed and the balance between

the local protrusion and global polarity

Let us now introduce an ideal cell model (see Equations: Eqs 1 and 2) that serves as a canonical

shape generator of migrating cells that is strictly constrained by the transient protrusion

dynamics and polarization (S1 Text). To describe the interfacial membrane mechanics, we

employed the phase-field method with the addition of an active force Fprot = awW (Eq 1;

Table C in S1 Text). The model also consists of spatio-temporal dynamics of variable W and

variables U, V that define global cell polarity and local protrusions, respectively (Fig 2A; Eq 2).

These variables are abstract representation of how the respective signaling molecules—such as

Rac, Rho for W and Ras, Cdc42, PI3K for V—are regulated in space and time (Materials and

Methods). W is bistable and takes either a low or a high state which signifies the retracting rear

and the expanding front, respectively. The low state indicates that W has converted to the

other form W� while the integrated sum of W and W� is fixed to Wtot. Owing to this con-

straint, the dynamics of W exhibits wave-pinning and therefore supports a polarized shape

with W being high at one end and low at the other end (Fig 2B, t = 660s). In addition, there is

an excitable network that describes conversion of U to V which is invoked by small signal fluc-

tuations. The important assumption in the model is that these two core networks are coupled.

On top of the core bistability in W, V promotes conversion of W from the low to the high

state, and W catalyzes amplification of V (Fig 2A). Because V amplifies noisy fluctuations and

generates local protrusions through W, a leading edge defined by a region with high W is most

likely to be perturbed and often split into two (Fig 2B; t = 700). This is however transient, as W
by itself works to maintain global unipolarity hence only one protrusion survives (Fig 2B;

t = 800s). In some cases, a new protrusion can also form away from the anterior and more

towards the lateral side and still develop into a new dominant front (Fig 2C). These features

required full 3-variable equations (Eq 2; Table D in S1 Text) and were of particular importance

in our comparative analysis. Insofar as our parameter search (Tables E and F in S1 Text), nei-

ther the dynamics of U and V (S4A–S4D Fig) nor that of W alone (S4E–S4I Fig) supported

these bifurcating protrusions (S1 Text). Although our model encompasses the 1- and 2-vari-

able limits which describe well morphologies outside of the training dataset such as oscillatory

non-migratory shapes (S4B and S4C Fig) and non-bifurcating polarized cells (S4F and S4G

Fig), we shall exclude these parameter regimes from the following analysis. Related oscillatory

and fan-like morphologies have been addressed earlier [37,43,44].

In total, 228 parameter conditions (Table G in S1 Text) were selected by heuristic sampling

where we performed grid search in the parameter subspace around hand-picked reference

points (S5 Fig; Material & Methods). The advantage of the ‘ideal cell’ model over the existing

models focused on specific cells and conditions is that, it can describe a generalized
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Fig 2. Degree of leading edge expansion and the balance between pseudopod formation and polarity persistence

can account for the main morphology feature. (A) Schematics of the dynamical model. Self-amplifying and

excitatory synthesis from U to V [70] induces protrusion factorW which can be prolonged by the bistable dynamics

(Eq 2). The reaction takes place in a region ϕ = 1 governed by interface physics according to the phase-field equation

(Eq 1). The membrane expands outward into an unoccupied region ϕ = 0 in the direction perpendicular to the border

at a rate proportional to local W. Main parameters (χU, γ, μ, kW1, ρ, aW) are denoted along the associated reaction

steps. (B, C) Representative model behavior (overlay plots for U, V, W); front splitting (B) and pseudopod formation
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morphological landscape incurred by the choice of the protrusion speed and the balance

between the local protrusion and global polarity. As we shall describe later, this versatility

allows us to resolve and characterize cells in different developmental stages and under pertur-

bations. First, of particular interest was whether the cell was elongated in the lateral or ante-

rior-posterior direction. We found Wtot has a large influence in the direction and the degree of

overall cell elongation (Fig 2D; see also S2 Movie). For small Wtot, the system behaves as a pas-

sive interface that relaxes to the state of minimum surface energy of fixed area, thus the simu-

lated morphology was near circular (Fig 2D, Wtot = 50–70). As Wtot increased, a small region

with W appeared, and cells became elongated (Fig 2D, Wtot = 80, 90). A further increase in

Wtot, expanded the high W region (Fig 2D, Wtot = 100) until it encompassed the entire perime-

ter (Fig 2D, Wtot = 110), where the simulated morphology was again near circular because W
occupied an entire cell. Accordingly, moderately high Wtot (Wtot = 80) supported relatively

high F1 and high F2 on average (indicating shapes resembling Dictyostelium and HL-60) (Fig

2D; bottom panel). In the PC1-PC2 space, small Wtot yielded low PC1 and low PC2, whereas

at a moderately high Wtot, PC2 took high values (Fig 2E). At high Wtot, the average PC1 and

PC2 decreased. The overall dependency on Wtot were conserved when other parameters were

varied (Fig 2E; magenta and blue). The other important parameters that affected cell polarity

was ρ; the strength of autocatalysis in the interconversion reaction between W and W�. High ρ
means that the non-zero roots of the cubic equation −ρW3+ρW�W2−W = 0 is large thus sup-

porting a larger domain with high W. Therefore, at low ρ, the leading edge is small and cells

become elongated in the moving direction (S5A Fig; ρ = 4.55). As ρ is increased, leading edge

became broader and F3 increased (S6B Fig; ρ = 5.56).

Occurrence of local protrusions depended largely on kW1 and aW. kW1 specifies the depth of

the bistable well. Because kW1 by definition defines how strong protrusive activity is dominated

by bistability of W rather than through V, it can be viewed as representation of relative activity

in Arp2/3 and crosslinker Myosin II. For small kW1, the front-rear asymmetry was weak, and

the overall cell shape was near circular (Fig 2F; kW1 = 1.1). Intermediate kW1 gave rise to mixed

dynamics where local protrusions induced asymmetrical deformation however without persis-

tent front-to-back polarity (Fig 2F; kW1 = 2.2–55). Large kW1 elevates W which makes it less

affected by the dynamics of U and V, and thus supports elongated shape with more marked

polar asymmetry in W (Fig 2F, kW1 = 110; S3 Movie). Accordingly, we obtained high F1 (i.e.

high resemblance to Dictyostelium (agg)) (Fig 2F, lower panel), and hence high PC2 (Fig 2G).

Deletion of myosin light chain reduces pseudopodia and strengthens polarity in Dictyostelium
[45]. Conversely, increased myosin light chain kinase expression is known to reduce lamellipo-

dia size and induce multiple protrusions in keratocyte independently of Rho kinase and mem-

brane tension [46]. The appearance of local protrusions also depended strongly on the

protrusion force aW (Fig 2H; S4 Movie). For low aW (Fig 2H; aW = 0.8), only small deforma-

tion was observed and the overall cell shape was near circular. At an intermediate value of aW

(Fig 2H; aW = 1.6–2.4), cells were more longitudinally elongated and the cell displacement was

more directional. At high aW (Fig 2H; aW = 3.2–4.0), multiple pseudopods appeared, and the

(C). (D-K) Parameter dependence of cell morphology (D, F, H, J upper panels), the average feature F from 2–4

independent simulation runs (D, F, H, J lower panels) and time averaged PC1-PC2 values (E, G, I, K); (D) Wtot (χU =

50, kW1 = 90, μ = 0.5, ρ = 5.5556, γ = 0.1, aW = 2.4, DW = 3). (E) Black same as (D), blue (χU = 50, kW1 = 100, μ = 0.1,

ρ = 5, γ = 0.1, aW = 2.4, DW = 3) and magenta (χU = 50, kW1 = 110, μ = 0.5, ρ = 4.5455, γ = 0.1, aW = 4,DW = 3). (F)

kw1 (χU = 50, μ = 0.5, ρ = 4.5455, γ = 0.1, aW = 5.6,DW = 3,Wtot = 80). (G) Black same as (F), blue (χU = 50, μ = 0.5,

ρ = 4.5455, γ = 0.1, aW = 2.4,DW = 3,Wtot = 90), and magenta (χU = 50, μ = 0.1, ρ = 4.5455, γ = 0.1, aW = 2.4,DW = 3,Wtot =

80). (H) aW (χU = 30, kW1 = 110, μ = 0.5, ρ = 4.5455, γ = 0.1,DW = 3,Wtot = 80). (I) Black same as (H), blue (χU = 50, kW1 =

100, μ = 0.1, ρ = 5, γ = 0.1,DW = 3,Wtot = 80). (J) μ (χU = 50, kW1 = 100, ρ = 5, γ = 0.1, aW = 2.4,DW = 3,Wtot = 80). (K)

Black same as (J), the blue line is (χU = 50, kW1 = 110, ρ = 4.5455, γ = 0.1, aW = 4.8,DW = 3,Wtot = 80).

https://doi.org/10.1371/journal.pcbi.1009237.g002
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cell orientation changed frequently (S4 Movie). There was an increase and a decrease in F1 and

F2 respectively (i.e. high resemblance to Dictyostelium (agg)) (Fig 2H, lower panel). The PC2

score increased accordingly (Fig 2I).

Parameters that affected the pseudopod dynamics were μ and γ which define the downregu-

lation rate of V and U, respectively. Excitable dynamics in neutrophils and Dictyostelium are

associated with PIP3, and thus μ can be viewed as activity of phosphatases and kinases other

than those directly involved in conversion between U and V. Low μ (Fig 2J; μ = 0.1; S5 Movie)

elevates V, hence the concomitant increase in W supported a laterally elongated shape. Dictyos-
telium cells are known to take similarly elongated form when perturbed with 5-phosphatase

that effectively reduces plasma membrane PTEN and increases PIP3 [14]. The polarized shape

was highly persistent as high V renders the patterning less prone to noise perturbation. On the

other hand, at intermediate to high value of μ, cells became more elongated longitudinally and

the polarity was less persistent (Fig 2J; μ = 0.5–0.9). Here, the high W domain was easily dis-

rupted; fronts frequently split, and the cell orientation was altered (e.g., a Y-shaped front in Fig

2J at μ = 0.7 and 0.9). Accordingly, F3 (Fig 2J; bottom panel) and the PC1 score decreased at

high μ (Fig 2K). Similarly, at low γ, pseudopods split frequently and new pseudopods were rare

(S6C and S6D Fig; γ = 0.1) and the opposite was true for high γ (S6C and S6D Fig; γ = 0.5 or

0.7). Additionally, for splitting to occur, it was important that diffusion of W does not average

out the local perturbations. Broad leading edge split at low DW, (S6E Fig; DW = 0.6, 1.8 and

2.4), but was sustained at high DW (S6E Fig; DW = 3.6). These details only made subtle changes

in our morphology feature (S6E and S6F Fig). The boundary flux χU, was also important to

restrict the U-V reaction at the edge (S4B and S4C Fig). Splitting of the front occurred more

frequently at high χU (S6G Fig). Due to the temporal nature, the feature vector on average

remained almost unchanged (S6H Fig).

Morphology-based mapping of model parameters can help infer candidate

dynamics

The distribution of the simulation data in the PC1-PC2 space spanned a large region occupied

by the training dataset (Fig 3A, black circles) further vindicated the ability of the ideal cell

model to describe the characteristic morphologies. Proximity of the time-averaged simulated

morphologies (Fig 3B) to the average of the three reference dataset was analyzed by computing

the Euclidean distance in the feature space F = (F1, F2, F3). According to the reference data, the

distance was designated as Score-D (Dictyostelium), Score-H (HL-60), Score-K (keratocytes),

and ranked in the ascending order; i.e. a low score means high similarity (Table H in S1 Text).

The time averaged morphology feature in the PC1-PC2 space and the time-series of the top

ranking simulations are shown in Fig 3B (filled circles) and Fig 3C–3K, respectively. Simula-

tions with high Score-D on average exhibited morphology that closely resembled the aggrega-

tion-stage Dictyostelium with their elongated form in the anterior-posterior direction

accompanied by a few pseudopods that frequently reoriented cell directionality (Fig 3C; S6

Movie). Similarly, simulations that ranked high for Score-H (Fig 3F; S7 Movie) exhibited fan-

like cell shape that moved directionally with some occasional turning as observed in HL-60.

These high ranking parameter sets were found near the median of the reference dataset in

PC1-PC2 space (Fig 3E, 3H, and 3K). When high-ranking simulations were retested for classi-

fication per snapshot, close to or higher than 90% were correctly classified as Dictyostelium
(Table I in S1 Text) or HL-60-like (Table J in S1 Text). As for high Score-K simulations, the

simulated shapes were canoe-like with high directional persistence (Fig 3I; S8 Movie). On

average, they deviated transiently in the PC1 direction thus making classification per snapshot

less clear (< 66% accuracy). The deviation was due to occasional shape perturbation by
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Fig 3. Mapping of morphology features between simulated and real cell data confirms critical parameters that define the morphology type. (A, B)

Mapping of simulated cell morphology from the 228 parameter sets (Grey open circle: subsampled time series (A) and time averages for 2 to 4 independent

runs (B). Filled circle: simulations with the highest similarity to aggregation-stage Dictyoselium-rank1 (B, green), HL-60 (B, red) and fish keratocyte (B,

orange). (B) The 95% confidence ellipses of the trained datasets (aggregation-stage Dictyostelium dark green (dark green), HL-60 (dark red) and fish keratocyte

(yellow) in Fig 1B (A, B) are shown for reference. (C-K) Snapshots and the feature scores of the top-ranked simulations; aggregation-stage Dictyostelium (C-E),

HL-60 (F-H) and fish keratocyte (I-K). See Table N in S1 Text for parameter values.

https://doi.org/10.1371/journal.pcbi.1009237.g003
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random noise (S7A and S7B Fig) which can be removed by reducing noise in the simulation

(S7C and S7D Fig). The overall mapping of real cell data and model simulations were con-

served when intermediate layer of the classifier was used to obtain the feature space (S1 Text;

S8 Fig; Table M in S1 Text).

Although similarity was evaluated based on still images, dynamics of high ranking simula-

tions were by and large consistent with those of real cells. This was well illustrated in the kymo-

graphs of boundary curvatures (Fig 4A and 4B upper panels); the anterior and posterior

regions can be identified by high curvature regions with either positive or negative velocity

respectively (Fig 4A and 4B lower panels). Both Dictyostelium and HL60 (Fig 4A and 4B left

panels) showed anterior projections (Fig 4A and 4B bottom panel red regions) that bifurcated

from time to time and traveled towards the high curvature region at the rear [47]. The wave-

like appearance was somewhat more prominent in Dictyostelium. In both cell types, the poste-

rior end was characterized by a high curvature region that persisted over time. These dynam-

ical features were well recapitulated in the simulations (Fig 4A and 4B right panels). Moreover,

there was good agreement between the simulations and the real data in the cell trajectories.

The mean square displacement (MSD) of the centroid showed a characteristic time-scale

dependency where it was proportional to the square of the elapsed time (ΔT2) for ΔT< τ0 (Fig

4C, magenta line) and to ΔT for ΔT> τ0 (time domain, Fig 4C red line). In other words, cells

moved ballistically i.e. at a constant velocity for ΔT< τ0 and more like a Brownian particle for

ΔT> τ0. τ0 can be interpreted as the persistence time for directional migration, and square

root of the MSD at the inflection point X0 characterizes the persistence length. Throughout

this paper, we chose the time-scale factor τ0 = 10 based on approximate matching in the cross-

over point of the two regression lines between the top ranking simulations and the real-cell

data (Fig 4C and 4D; red lines). For the top Score-D simulations, we obtained τ0 = 87 sec, X0 =

9.8 cell length, compared to τ0 = 151 sec and X0 = 15.2 cell-length in the real data which are in

good agreement with values reported earlier [48]. Trajectories of top ranking simulations for

Score-H were more persistent (τ0 = 257 sec, X0 = 22.1 cell length) as was the case for the real

HL60 data (τ0 = 278 sec, X0 = 47.7 cell length).

The other important feature of random migration is the relation between pseudopod

dynamics and the cell orientation [7]. New pseudopods frequently appeared in vacant regions

(Fig 4E left), or on top of a pre-existing pseudopod thereby giving the cell the appearance of Y-

shape (‘Y-split’ in [7]). In other cases, pseudopods continued to extend while turning (‘one-

way-split’ in [7]). The relative occurrence of de novo formation of pseudopods was approxi-

mately 47% for Dictyostelium (agg) data and 34% for the high ranking simulations (Fig 4F).

For HL60, de novo formation in real cell data was 12% and in the high ranking simulations

21% (Fig 4F). The extension angles relative to the direction of centroid displacement was

about 20–40˚ for both Dictyostelium and HL60 data and their top-ranking simulation counter-

parts (Fig 4G and 4H). Although there was some overrepresentation of extension angles

around 90˚ in the simulation, the angles above 120˚ were rare in both real data and simula-

tions. All in all, these results demonstrate that the model, albeit its simplification, is able to

recapitulate semi-quantitatively both the persistent random walk behavior and the underlying

morphology dynamics in Dictyostelium and HL-60 cells.

Mapping of morphological diversification predicts key parameters for state

transition

Although the datasets analyzed above showed little overlap with one another in the feature

space, it should be noted that these coordinates are by no means singular representation of spe-

cific cell-types and species from which the data were obtained. As we saw above, there was a
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large cell-cell variability in the fish keratocyte data that constituted a distinct manifold in the

feature space (Fig 1B; yellow). Likewise, cell-cell variability was evident in the aggregation-

stage Dictyostelium cells along the PC2 axis (Fig 1B; green). To see how changes in cell-intrin-

sic properties alter their positions in the feature space, data from new experimental conditions

expected to alter cell polarity were studied (Fig 5A). Undifferentiated (vegetative) Dictyoste-
lium cells took less elongated shape than the aggregation-stage Dictyostelium cells under the

same substrate and buffer condition. Their aspect ratio on average was smaller than aggrega-

tion-stage Dictyostelium but larger than that of HL-60 (Fig 5B). Accordingly, in the PC1-PC2

space, the vegetative Dictyostelium was mapped between aggregation-stage Dictyostelium and

HL-60 (Fig 5A; magenta reverse triangles). Model simulations that ranked similar to the vege-

tative Dictyostelium data (Fig 5C; S9 Movie) had small aw in common (Table L in S1 Text).

Similarly, we analyzed HL-60 cells treated with microtubule destabilizer nocodazole which is

known to strengthen neutrophil cell polarity [49,50]. Nocodazole-treated HL-60 cells showed

morphology similar to keratocyte with a somewhat smaller aspect ratio (Fig 5D) and were

mapped between the non-treated HL-60 and the keratocyte datasets (Fig 5A; blue triangle).

The nocodazole-treated HL-60 cells exhibited shape fluctuations making them wobble which

was also observed in the simulations (S10 Movie). These features were well represented in the

respective simulations that ranked high for shape similarity (Fig 5E). In addition to high Wtot,

high ranking simulations had relatively low aw or kw1 (Table L in S1 Text). This can be inter-

preted from the fact that low aw prevents a cell from breaking apart at high Wtot, while low kw1

makes the polarized front less pronounced and more sensitive to noise perturbation.

Next, a null strain of racE (Dicytostelium RhoA homologue) was chosen for the analysis

because of its aberrant cell shape that resembled fish keratocytes [51]. Under our experimental

condition, relatively undifferentiated racE- cells exhibited canoe-like shapes that were similar

to the fish keratocyte but more dynamic (Fig 5F). Small fragmented pieces were observed to

occasionally split from high curvature regions (Fig 5F). These data marked relatively high

PC1 and PC2 scores and were mapped between the keratocyte and the aggregation-stage

Dictyostelium data (Fig 5A; black square). The top ranking simulations for the racE- data

(Table L in S1 Text; high Score-D (racE-)) exhibited remarkably similar morphology dynamics

characterized by high lateral deformation and occasional fragmentation (Fig 5G; S11 Movie).

As expected, there was a large overlap with high Score-K data, leaving only the top 3 Score-K

data (Table H in S1 Text bottom rows; ||F||2 < 3 x 104) that uniquely mapped to the keratocyte

data. Compared to either the high Score-D (veg) or the high Score-D (agg) data, the high

Score-D (racE-) data had large Wtot (Table L in S1 Text) consistent with the laterally extended

cell shape. All in all, the above analysis suggests key parameters aw and Wtot that are pivotal for

the state transition between the characteristic morphologies. This was further verified by

studying unexamined regions in the high-dimensional parameter space near the top ranking

simulations for vegetative-stage Dictyostelium. Increasing the value of aw brought the mor-

phology score closer to that of the aggregation-stage cell (Fig 5H). In contrast, increasing Wtot

increased PC1 and brought the shape state closer to the nocodazole-treated HL-60 and racE-

cells (Fig 5H).

Fig 4. Consistent exploratory dynamics underlie high similarity in the simulated morphologies. (A, B) Local boundary curvature (top panels) and the

protrusion speed (bottom panels) [47] from the real cell data (left panels) and the top ranked simulations (right panels) for Dictyostelium (agg) (A) and HL-60

(B). (C, D) Mean square displacement of the centroid of Dictyostelium (agg) (C) and HL-60 (D); real cell data (left panels) and top ranked simulations (right

panels). The length scale was normalized by the mean cell length in the moving direction. (E) Representative snapshots of pseudopod formation; de novo

formation (left panel) and splitting of an existing pseudopod (one-way-split (middle panel) and Y-shape (right panel)). (F) Fractional occurrence of

pseudopods by de novo formation;Dictyostelium (agg) (left) and HL-60 (right). (G-H) Histogram of pseudopod angles obtained from the time-series of real

cell data (A-D left panels) and the top ranked simulations for Dictyostelium (agg) (G) and HL-60 (H).

https://doi.org/10.1371/journal.pcbi.1009237.g004

PLOS COMPUTATIONAL BIOLOGY Model-based analysis of crawling-cell morphology in deep learning-based feature space

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009237 August 12, 2021 14 / 30

https://doi.org/10.1371/journal.pcbi.1009237.g004
https://doi.org/10.1371/journal.pcbi.1009237


PLOS COMPUTATIONAL BIOLOGY Model-based analysis of crawling-cell morphology in deep learning-based feature space

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009237 August 12, 2021 15 / 30

https://doi.org/10.1371/journal.pcbi.1009237


Discussion

Deep learning-based extraction of shape features is a promising avenue for cell classification

and identification [52]. In this study, we presented a hybrid cell morphology analysis that com-

bined deep-learning-based feature extraction and dynamical model simulations. Convolu-

tional neural network was trained to classify stereotype migrating cell morphology represented

by Dictyostelium, HL-60 and fish keratocytes. The feature vector of the trained classifier

showed that the three representative morphologies can be described in low dimensional fea-

ture space; the first component represents elongation in the lateral direction and the second

component represents anterior-posterior elongation and edges. Earlier studies have addressed

a low dimensional embedding of morphology with milder variations [18,19,20–22,24,25]. The

present results extend this approach to encompass more divergent morphologies commonly

observed in different migratory cell-lines. Our new feature space essentially expanded the prin-

ciple shape variations associated with cell polarity previously identified in the keratocyte data

[18] to encompass narrowly polarized cell morphologies with pseudopodal extensions. The

finding of low dimensional feature space is in line with an earlier feature representation of Dic-
tyostelium cells based on Fourier-mode decomposition of the cell contour [20]. While being

less analytically clear than the Fourier analysis, the present approach allows one to distinguish

morphology with respect to the cell orientation and thus suited to analyze migratory cells.

Since it did not take time sequence into consideration, a potential shortcoming of the analysis

is that the comparision with real cells had to be amended with other dynamic features such as

centroid movement and pseudopod splitting. Another downside is that application to cells

with no clear orientation is not straightforward. Interestingly, sample conditions expected to

alter cell polarity–vegetative stage Dictyostelium, racE-/Dictyostelium, and the nocodazole

treated HL-60 cells were mapped to intermediate coordinates spanned by these two major

manifolds. Moreover, the new sample conditions were each found clustered without signifi-

cant overlaps with the training data sets. These results suggest that the region spanned by the

three training datasets (keratocyte, H60, Dictyostelium (agg)) in the PC1-PC2 coordinate con-

stitutes a space continuously occupied by forms realizable by genetic and phenotypic

variations.

Search for the core regulatory logic behind cell deformation is important as it provides a

much-needed basis to bridge the extracted shape features and the dynamics. Recent models

have hinted at how the common shapes of migrating cells and their interconversions may

come about (Table S in S1 Text). Excitable systems [14,37–40] describe pseudopod-like

dynamics however at the expense of poor description of persistence; they exhibit unusually flat

and periodically varying morphologies due to the wavefront dynamics (S1 Text; S4A–S4D, S9

and S10 Figs). Bistable models depicts polarity well, however simple addition of excitatory pro-

trusions [42,53] do not recapitulate morphologies associated with formation of new pseudo-

pods (S1 Text; S11 Fig, Tables T and U in S1 Text). These analyses show that a simple additive

approach to complement the missing part is insufficient. Our model therefore takes into

Fig 5. Mapping of non-trained morphologies with perturbing cell polarity predicts a continuous landscape along

critical parameters. (A) Morphology features of real cell data from Dicyostelium (veg; vegetative stage) (pink inverted

triangle),Dicyostelium racE- (red square) and nocodazole-treated HL-60 (blue upright triangle) and those from

simulations exhibiting highest similarity (filled circles). Colored regions in the background represent the reference

microscopy data in Fig 1B (aggregation-stage Dictyostelium dark green (dark green), HL-60 (dark red) and fish

keratocyte (yellow)). (B-G) A time-series sample of experimental data closest to the average morphology and the

corresponding top-ranked simulations; vegetative-stage Dictyostelium (B, C), nocodazole-treated HL-60 (D, E)

Dicyostelium racE- (F, G). (H) The top-ranked simulations (rank1 and rank2; magenta circles) for Dicyostelium (veg)

shifted toward Dictyostelium (agg) by shifting aW from 2.4 to 4 (solid line), and toward the orange region by shifting

Wtot from 80 to 95 (dotted line). See Table N in S1 Text for parameter values.

https://doi.org/10.1371/journal.pcbi.1009237.g005
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account the competition and feedback between the excitable protrusion and bistable polariza-

tion explicitly. Amplification of noisy signals through a feedback loop consisted of the W-

dependent amplification of V (Eq 2C) and amplification of W by V (Eq 2B) supports de novo

formation and splitting of pseudopods while maintaining the global cell polarity. These

dynamics compete for dominance under limited Wtot i.e. the maximal protrusive activity. The

resulting morphologies capture features that were not fully represented by earlier models

(S1 Text).

Given its abstract nature, the ideal cell model is tailored to describe generic migratory mor-

phologies observed across cell-types and species at the cost of being limited in predicting how

exactly the coupling is implemented biochemically which may differ depending on the system.

In neutrophils, excitable leading edge dynamics are governed by Cdc42 [32], and it also acts

globally to enforce cell polarity by promoting actomyosin contractility through its effector

WASP in a microtubule dependent manner [54]. In Dictyostelium, excitable dynamics at the

leading edge is observed at the level of Ras which also interacts with GDP-bound form of RacE

to strengthen cell polarity [36]. In this respect, mapping of the racE- morphology to a high

Wtot state (Fig 5H) hints at the nature of the competition at least for Dictyostelium with regard

to the states of F-actin: the contractile cortical meshwork that are crosslinked with myosin II

or the protrusive dendritic meshwork that requires the Arp2/3 complex for side-branching

nucleation. RacE is essential for plasma membrane localization of Diaphanous-related formins

(DRFs) [51], and deletion of DRFs (ForA-/ForE-/ForH-) results in the loss of cortical actin.

Since the morphology of the null mutant of DRFs phenocopies that of the racE-null cells [51],

the increase in Wtot are associated with the absence of DRFs from the plasma membrane. On

the other hand, the fluctuating protrusions are largely associated with fast idling pulses of Scar/

Wave activities which are amplified by the excitable network [55]. Recent studies suggested

that actin nucleators such as formins and Arp2/3 are competing for a limited pool of actin

monomers and/or their upstream activators such as Rac-GTP [56–58]. Such notion is also sup-

ported by an observation that the amount of F-actin is compensated in Scar-/WASP- cells by

increased localization of ForH at the cortex [59]. Taken together with our mapping of racE-

data, these observations are in line with our current model view that excitability and bistable

regulatory networks compete for dominance over limited Wtot.

The variations in the distinct morphologies of differentiating Dictyostelium cells suggest

alterations in the key parameters that serves as a control point. The difference between the veg-

etative- and aggregation-stage Dictyostelium was ascribed mainly to an increase in the mem-

brane protrusion force aw. The increase in aw can be understood from the fact that Rac1 [60]

and SCAR [61], the essential factors for Arp2/3 activation, are known to be expressed at low

levels in the vegetative-stage then increase markedly in the aggregation-stage cells. A recent

study based on an excitable model [37] suggested a progressive state transition from a circular

to amoeboid then to a keratocyte-like shape by the increase in the protrusion force (Fig 2F. in

[37]). Rather, our model predicts that changes in the protrusive force should allow a direct

transition from a circular shape (low PC1 low PC2) state to either amoeboid or keratocyte-like

form depending on Wtot. Such direct transition has been demonstrated experimentally and

was attributed to an increased activity of a nested excitable network [14]. However, as dis-

cussed above, the elongated shapes simulated in their model were oscillatory and lacked persis-

tency (S10 Fig). The presence of the polarity dynamics is essential for the persistent and

longitudinally extended cell shapes. Relatively low Dw is required in both vegetative and aggre-

gation-stage Dictyostelium to prevent the polarity dynamics from completely winning over

the excitable dynamics. A highly polarized form at high Dw; i.e. the 1-variable model limit

z/ Dw! 0 (S4E–S4H Fig; S1 Text) is indeed reached by cells that further differentiated into

prespore cell-type (S4I Fig). While it is possible that certain cells are in a decoupled state
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(z = 0), the requirement of large Dw for cell polarity signifies the importance of W acting glob-

ally. Large Dw may not necessarily be mediated by pure diffusion as the present model postu-

lates, but instead could be realized by other transport processes implicated in cell polarity such

as membrane flow or the myosin-II dependent global actin flow. Global actin flow has been

shown to maintain asymmetric distribution of de-filamenting factors [62,63], however such

global flow may not always be present in polarized cells [64]. Since these transport processes

are tied to cortical actin, they are naturally accompanied by changes in membrane tension [65]

which should also be part of the feedback process from W to V.

Quantitative and systematic analysis of model outcomes will only increase its importance as

we proceed further to unwind causality behind detailed geometries and dynamics associated

with specific cells and conditions. The present framework of data analysis potentially provides

means to test and improve specific models of migrating cells. For example, our ideal cell model

gave rise to pseudopods from the tail region more frequently compared to the real Dictyoste-
lium (agg) data. The discrepancy could be due to the fact that retraction was assumed to be

driven only by the area conservation and that no regulated contractility was explicitly

described. While this approximation can be justified when there is reciprocity between the

front expansion and the rear contraction as has been shown to hold independently of actomy-

osin in neutrophils [50], the present model could be modified in the future to include local

cortical actomyosin regulation when analyzing detailed shapes of the cell rear and the bleb-

based front protrusion. Further improvement of the model and increasing dimensionality of

the feature space may work hand in hand with extending the present analysis to classify mor-

phologies exhibited by other cell types of wildtype and mutant backgrounds. For example, the

present analysis fails to distinguish the pancake-like shape known for Rac and Rap related

mutants that result from uniform expansion [44] and similarly round (i.e. low PC1, low PC2)

cells inhibited of actin polymerization. This limit maybe overcome by introducing absolute

size instead of normalizing the area so as to distinguish spherical cell versus flattened cell in

two-dimensional cell masks. Expanding the analysis to 3-dimensional images would also be

better suited to the present machine learning approach. As resolutions and dimensions are

increased, the cell-shape based analysis may be supplemented with fluorescence image data of

cytoskeletons and their regulators. Given the significant bottleneck in the present simulation

by the huge computational loads which required parallel computation by GP-GPU, other ave-

nues of coarse-graining maybe required to extend the present approach to a larger multi-

modal analysis.

Materials and methods

Dictyostelium and HL-60 cell culture and data acquisition

Time-lapse data of freely migrating Dictyostelium, neutrophil-like HL-60, fish keratocyte and

differentiated T mouse cells were acquired with an inverted microscope using either 20, 40 or

60x objective lens. For Dictyostelium and HL-60, cells expressing Lifeact fused to mNeonGreen

[66] and mTurquoise2 were employed, respectively. A Lifeact-mTurquoise2 expression vector

was constructed by ligating Lifeact-mTurquoise2 into an episomally replicating plasmid pEB-

Multi Neo (WAKO, 057–08131) at restriction sites XhoI and NotI. The Lifeact-mTurquoise2

expressing stable HL60 cell line was obtained by introducing the plasmid by electroporation

(NEPA21; Nepa Gene, Ltd., Chiba, Japan) followed by G418 selection (1 mg mL–1) after 2

days. For fish keratocytes, DIC images were employed. Dictyostelium cells were grown axeni-

cally and obtained according to standard protocols as previously described [67]. Vegetative

Dictyostelium AX4 cells (N = 1694 snapshots from 18 timeseries;), aggregation-stage Dictyoste-
lium AX4 cells (starved for 3.5 hours; N = 2841 snapshots 19 timeseries;), vegetative
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LifeactGFP/racE- cells (N = 330 snapshots from 8 timeseries;) were plated on a non-coated

coverglass and images were acquired at 5 sec/frame (aggregation-stage AX4 and racE- cell) or

15 sec/frame (vegetative AX4). Neutrophil-like HL-60 cells were grown in RPMI1640/gluta-

mate media (Wako 189–02145) supplemented with 12% FBS (Sigma 172012). Differentiated

HL-60 cells were obtained by treating the cells with DMSO for 3 days. Images of HL-60 cells

on fibronectin-coated glass plates in the presence of 1 nM fMLP (N = 3468 snapshots from

23 timeseries;) were taken at 5 sec/frame. For nocodazole treatment, differentiated HL-60 cells

were collected by centrifugation, suspended in fresh HBSS containing 20 μM nocodazole

and plated on a coverslip pre-coated with 1–2% BSA in PBS. Data were acquired within

20–75 min in the same medium in the presence of nocodazole (N = 181 snapshots from

3 timeseries).

Primary cell culture and data acquisition

Keratocytes from the scales of Central American cichlids (Hypsophrys nicaraguensis) were cul-

tured as previously described [68] and images were recorded at 2-s intervals (N = 1590 snap-

shots from 12 timeseries;). Naïve CD4+ T cells were isolated from the lymph nodes and spleen

of C57BL/6 mice by MidiMACS (Miltenyi Biotec). Cells were activated by plate-bound anti-

CD3 (5 μg mL–1) and anti-CD28 (2.5 μg mL–1) with cytokines and blocking antibodies. Th1: 2

ng mL–1 hIL-2, 5 ng mL–1 mIL-12. Treg: 1 ng mL–1 hTGFβ, 1 μg mL–1 anti-IFNγ. Snapshots

from these timelapse recording were employed for feature extraction.

Deep-learning-based feature extraction

Mask images were pre-processed as follows (Fig 1A, upper panel): (i) the migration direction

was determined from the centroid displacement at a five timeframe interval (equivalent to 25

sec for aggregation-stage and racE- Dictyostelium data, 10 sec for keratocyte data) except for

vegetative Dictyostelium data where 1 timeframe (equivalent to 15 sec) was used, (ii) binarized

mask image was rotated to align the migration direction to the y-axis, (iii) the image was

rescaled so that the cell area is equal to the area of a circle with 25 pixel diameter. The rescaled

masks were each embedded at the center of a blank square frame of 64x64 pixels. The exact

spatial resolution of mask images varied from sample to sample due to rescaling, however they

were all in the order of ~0.5 μm/pixel. Convolutional neural network (Fig 1A, bottom panel)

was implemented using Keras (https://keras.io) with TensorFlow backend. To make the sam-

ple size of the three datasets near equal, data augmentation was performed by rotating the orig-

inal masks at angles (< ±5 deg) randomly picked from a uniform distribution (see Table A in

S1 Text for the number of samples). Input vectors were processed through layers of convolu-

tion operation (Fig 1A, bottom panel; ‘convolution’) in addition to layers of max pooling oper-

ation with a 3x3 kernel to render the analysis robust to positional deviation (Fig 1A, bottom

panel; ‘pooling’). These were then processed through a set of densely connected layers with

rectified linear and hyperbolic tangent activation function (Fig 1A, bottom panel; ‘rel’ and

‘tanh’). In the final layers, the dimension of the vector was reduced to three and were passed to

‘softmax’ activation function. The values of the three nodes (F1, F2, F3) before the final softmax

layer were employed to represent cell shapes. The number of training epoch was 2000 which

was sufficient for adequate learning as determined by the accuracy and loss values (S1A and

S1B Fig). The vector representing three nodes F = (F1, F2, F3) was further reduced in dimen-

sion by principal component analysis (PCA). The PCA parameters were acquired from the

average F of 54 timeseries in total (19, 23, and 12 samples for Dictyostelium, HL-60 and kerato-

cyte, respectively).
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Geometrical analysis of feature space

To examine mapping of 2-dimensional geometries in the feature space, 7 well-defined objects

were used; circle, isosceles triangle, asymmetric right triangle, rectangle, rhombus, pentagon

and star polygon in a specified orientation (Fig 1N). Triangles, pentagon and star were flipped

vertically to obtain total of 11 basic objects. The library was further expanded to 33 shapes by

including variants of the basic geometries with different aspect ratio 1:1, 1:2 (Fig 1N red, hori-

zontally elongated shape to the moving direction) and 2:1 (Fig 1N blue, flattened shape with

vertically elongated to the moving direction).

Model equations

To numerically simulate the interface between the plasma membrane and the extracellular

space, we employed a phase-field equation in the following form [42,69,70].

t
@�

@t
¼ Z D� �

1

ε2
G0ð�Þ

� �

� Mð
R

cell�dr � A0Þjr�j þ Fprot fWgð Þjr�j ð1Þ

The equation describes the dynamics of a continuous state variable ϕ(r;t) in a two-

dimensional space that specifies whether a position r is occupied (ϕ = 1) or not occupied

(ϕ = 0) by a cell at time t. In the present study, we consider initial conditions with a single

continuous domain with ϕ = 1. The parameter τ is the viscous friction coefficient. The first

term of the r.h.s represents effective surface tension, where Δϕ and G are derived from

membrane energy. G is Landau functional describing a bi-stable potential. Here we chose

G(ϕ) = 18ϕ2(1−ϕ)2 [69]. The second term describes restoring force that keeps the cell area

close to A0. The Eq 1 assumes that the bending energy is negligible [70]. The third term rep-

resents active force with magnitude Fprot that is perpendicular to the boundary |rϕ| 6¼0 and

thus drives membrane extension. In the present simulations, parameters in Eq 1 were set so

that they are an order of magnitude within generally accepted values (Table C in S1 Text);

surface tension η = 1.0 [pN], [71], cell area A0 = 78.83 [μm2] (~ 5 μm radius circle), protru-

sive force by actin polymerization awW = 0.8–4.0 [pN/μm] (for W ~ 1) [72,73]. Since τ was

not well constrained experimentally and expected to differ between cell-types and the

culture conditions, we adopted an empirical value 0.83 [pN/μm2] [70], which was then

calibrated retrospectively by a multiplier τ’ so that the time scale of the simulated cell trajec-

tories match with that of real data as described in the later section. The area constraint

M = 0.5 pN/μm3 and the size of the boundary layer ε = 1.0 [μm] were set close to those in

the earlier studies [69,70].

The ‘ideal cell’ that can take close to all of the basic phases of morphology features that we

have examined (Fig 1) should consist of two main features: 1) transient appearance of localized

protrusions and 2) prolonged presence of single expanding edge and retracting tail to appear

under homogeneous extracellular conditions [1]. Here, we formulate a reaction-diffusion

model that describes these two processes mathematically as follows:
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where the first two equations for U and V describe an excitable reaction network for transient

protrusive dynamics, and the third equation for W describes polarization dynamics, respec-

tively (Fig 2A; S1 Text). The role of the excitable reaction network is to generate transient sig-

nals for local protrusions in a minute to a few minutes time-scale by amplifying small edge

fluctuations of seconds order [55]. In neutrophils, excitable dynamics of Cdc42 and PI3K

activity [32,33] is essential for front protrusions. In Dictostelium, excitable dynamics are

observed at the level of spontaneous Ras and PI3K activation [30,70,74]. Here, we adopted

equations originally introduced to study excitable PI3K activities and the resulting F-actin

waves in Dictyostelium (Eqs 2A and 2B) [70]. Parameters α and β are the rate constants of reac-

tion U! V and V! U multiplied by the time-scale factor τ0. The source of edge fluctuation is

introduced as a noise term ϕ N(r,t) [70] in Eq 2B which is amplified through V by a positive-

feedback described in the first term. Increase in V is then slowed down due to depletion in U,

and the system eventually recovers the original resting state.

The expanding membrane region is determined by W governed by Eq 2C (Fig 2A; see S1

Text for derivation) which is similar in form to the wave-pinning [29]. The same type of equa-

tion has been used earlier to study polarized cell shape in fish keratocyte [75] and Dictyoste-
lium [42]. The first term describes reaction kinetics with bistability, and the second term

describes diffusion. We assume that the sum of W and its reciprocal state W� is conserved

(Wtot = const.) [29] and that W� diffuses much faster than W and thus can be approximated as

uniform in space. Hence we obtain

W� ¼
Wtot �

R
dr�W

R
dr�

Due to the global constraint, this class of bistable system gives rise to coexistence of low and

high W regions due to stalling of a transitory wave front—a property known as “wave pinning”

[29,75]. For the sake of brevity, we shall embed rear retraction passively in the form of restor-

ing force. Thus we set Fprot = aWW in Eq 1 [69] so that the edge expands where W is high, and

the rest of the domain with high Wtot /A0 -W as a result contracts due to area conservation

imposed by the second term in Eq 1. Note that W only specifies where the protrusions and

retraction take place and does not assume the origin of their driving force. The variable W can

thus be interpreted as an abstract representation of bistable signals such associated with the

leading edge of polarize cells as Rac-GTP, or alternatively, Wtot/A0-W with the reciprocal spa-

tial profile to indirectly represent signals that regulate rear contraction such as RhoA-GTP. A

recent study has shown that Rac-GTP accumulates at the front of migrating neutrophils

regardless of whether it is F-actin filled or blebbing [65]. Based on the inherent ability to main-

tain persistent front-and-back unipolarity, the polarity network (Eq 2C) serves as a spatio-tem-

poral filter to select or remove local protrusions. This coupling is described by assuming that

W positively regulates the positive-feedback amplification of V (Eq 2C; r.h.s first term) in
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addition to W feeding back to increase V (Eq 2A) to reflect F-actin- or tension-dependent pos-

itive regulation of leading edge signals in neutrophils and Dictyostelium [65,76,77].

Parameter search

Model parameters were selected for the systematic feature analysis (Fig 3A; Table G in S1

Text) based on the following criteria: Of the total 22 parameters (Table C and D in S1 Text),

eight parameters (Wtot, aW, kW1, μ, γ, ρ, DW, χU) were chosen for detail analysis. Parameters

(α, β, Kk, KP, s) that define the kinetics of U, V were fixed to those used earlier [70]. Two to

four independent simulations from different random seeds were executed for a given parame-

ter set to obtain average feature scores F. Because grid-search in 8 dimensional parameter

space was unattainable due to heavy computational load, we adopted parameter search around

manually selected reference parameter sets. First, based on preliminary simulations performed

with various parameters, a single parameter set R1 was chosen which gave rise to polarized cell

morphology; i.e. elongated shape in the moving direction. Around the reference set R1, the fol-

lowing parameters were varied: aw and Wtot which appeared to affect the elongation of cell in

the moving direction,χU and DW related to the split of the leading edge, and γ that seems to

affect the appearance of new pseudopods. We performed a grid search around R1 in 2-dimen-

sion (aW, γ) for χU = 0 and χU = 50 (S5A Fig left panels) while fixing other 6 parameters. Simi-

larly, a grid search was performed in (Wtot, DW) for χU = 0 and 50 (S5A Fig left panels).

Second, we chose another parameter set R2 which gave rise to relatively round shape and ran-

dom cell displacement (i.e. near HL60-like behavior). Around R2, we varied (aW, Wtot), (γ, ρ),

and (kW1, μ) at both χU = 0 and 50 (S5A Fig right panels). Representative results of the simula-

tions are shown in S5B and S5C Fig. Phase diagram of feature vector F around R1 on the γ-aW

plane and around R2 on μ - kW1 plane are shown in S5D and S5E Fig, respectively.

Pseudopod analysis

For both experiments and simulation data, events of pseudopod formation were detected man-

ually by eye as either ’de novo’, ’Y-split’ or ‘one-way-split’ based on [7]. New pseudopods that

appeared in non-protruding regions (Fig 4E left) were counted as "de novo formation”. Pro-

trusions that appeared close to the leading edge were marked as ‘Y-split’ because of the result-

ing cell shape (Fig 4E right). When new protrusive events occurred on top of the leading edge

so as to offset and steer the extending pseudopod, it was counted as ‘one-way-split’ (Fig 4E

middle) [7]. For the subset of the data, the analysis was performed three independent times to

confirm reproducibility. To obtain angular distribution, direction of pseudopod extension 10

seconds from the onset was measured relative to the centroid movement. Aggregation-stage

Dicyostelium (N = 90 from 4 timeseries), and the closest simulations (N = 44 from 2 time-

series). HL-60 (N = 68 from 5 timeseries), and the closest simulations (N = 77 from 3

timeseries).

Supporting information

S1 Text. The online supporting information includes. 1. Details of our mathematical model.

2. Feature extraction from the intermediate-layer. 3. Analysis based on commonly used intui-

tive features. 4. Details of related mathematical models.

(DOCX)

S1 Fig. Image classification of migratory cells based on a deep convolutional neural net-

work provides highly compressed representation of the overall cell shape, protrusions and

their orientation. (A, B) The values of accuracy (A) and loss (B) during training (blue) and
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validation (red) of the deep convolutional neural networks. (C-E) Representative time series of

the feature vector F for Dictyostelium (agg)(C), HL60 (D) and fish keratocyte (E). (F, G) Orien-

tation dependency for the oval shape (Fig 1(M)) L = 0.75L0 (F) and L = L0 (G). (H-J) Mapping

of circles and polygons with various aspect ratios (x-axis: y-axis) 1:3, 2:5, 1:2, 2:3, 1:1, 3:2, 2:1,

5:2 and 3:1. Circles, squares and rhombuses (H), triangles, pentagons and star shapes in the

upright (I) and inverted (J) orientation. (K) Orientation dependency of a complex shape with

multiple edges.

(TIF)

S2 Fig. Analysis of hand-crafted morphological features. (A, B) Definition of h1 (A) and h2

(B). The first feature h1 and the second feature h2 is the degree of elongation parallel and

orthogonal to the front-tail axis direction. Those values were extracted using the normalized

mask image. (C) Definition of h3. The third feature h3 is circularity of a cell mask. (D)

PC1-PC2 diagram obtained from each snapshots using hand-crafted features (left). The same

diagram obtained using DNN-based features was also shown for comparison (right). The

aggregation-stage Dictyostelium, HL-60, and fish keratocyte were shown as dark red, dark red,

and yellow colors.

(TIF)

S3 Fig. Analysis of real cell data with varying degree of bifurcating protrusions indicates

polar and multiple edge representation in PC2. (A, B) Mapping of cell shape with anterior-

posterior elongation without lateral pseudopods (Dictyostelium prespore cell-type). Cell-to-cell

variation (A) and a representative temporal variation of a single cell (B). Blue circled regions

represent 95% confidence eclipses for the mean of all combined timeseries (dotted) and the

mean of individual cells (filled). (C, D) Mapping of mouse T cells in the PC1-PC2 space. Filled

rhombuses: T helper 1 (C) and regulatory T cell (D). Circled regions in the background indi-

cate the reference data in Fig 1B (aggregation-stage Dictyostelium dark green (dark green),

HL60 (dark red) and fish keratocyte (yellow)).

(TIF)

S4 Fig. Model behaviors in the 2-variable and 1-variable limit shows other repertoires in

the morphodynamics. (A-D) The 2-variable scheme (A) and its morphology dynamics (B-D).

Representative simulations showing traveling patches (B) and lamellipodium-like protrusions

(C). Color overlay; red V, green U. (D) Time series of the local curvature of the boundary (left

panel) and local elongation (right panel) for (C). (E-G) The 1-variable scheme (E) and its rep-

resentative morphology dynamics (F, G). Blue indicates the high W region. (H) Time series of

the local curvature at the boundary (let panel) and local elongation (right panel) for (G). (I)

Feature mapping of the polar morphology in 1-variable scheme. Time average (solid circles)

and time samples (filled). Right panels in colored frames indicate representative snapshots. See

Table O in S1 Text for parameter values.

(TIF)

S5 Fig. Sampled parameter conditions. (A) Two-dimensional grids around manually selected

reference parameters R1 (upper left panels; χU = 0), R1’ (lower left panels, χU = 50), R2 (upper

right panels) and R2’ (lower right panels). Each square in the grid represents a sampled param-

eter condition. (B, C) Representative simulation time series for parameters R1, R2’ and (1)-(8)

in (A). (D) Feature scores (F1, F2, F3) in the (γ-aW) plane around R1. (E) Feature scores (F1, F2,

F3) in the (kW1-μ) plane around R2’. See Table O in S1 Text for parameter values.

(TIF)

PLOS COMPUTATIONAL BIOLOGY Model-based analysis of crawling-cell morphology in deep learning-based feature space

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009237 August 12, 2021 23 / 30

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009237.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009237.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009237.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009237.s006
https://doi.org/10.1371/journal.pcbi.1009237


S6 Fig. Parameter dependency of the simulated morphology. Dependency on γ, ρ, DW, χU

of the simulated morphology (A, C, E, G) and the feature values (B, D, F, H). See Table O in S1

Text for parameter values.

(TIF)

S7 Fig. Reducing the noise term improves high Score-K simulations. (A, B) Shape and ori-

entation fluctuations observed under the default noise size (θ = 1.4, σ = 0.075) (A). Mapping in

PC1-PC2 plane in Score-K rank1 simulation (B). (C, D) The same analyses at (θ = 14, σ =

0.0075).

(TIF)

S8 Fig. An intermediate-layer of the convolutional neural network yields a similar feature

space. (A) PCA of the 256 dimensional intermediate layer. Microscopy dataset of Dictyoste-
lium (agg) (green +), HL-60 (dark red +), keratocyte (yellow +), Dictyostelium (veg) (magenta

inverted triangles), Dicytostelium racE- strain (red squares) and Nocodazole-treated HL-60

(blue triangles). (B) Mapping of model simulations (grey circles), the top-ranking simulations

based on the feature vector F (dark green circle for Dictyostelium (agg), magenta circle for Dic-
tyostelium (veg)) and those based on 256-dimensional features (light green circle for Dictyoste-
lium (agg), pink circle for Dictyoste the lium (veg)). (C, D) Time-series of simulations with the

highest feature similarity to Dictyostelium (aggregation-stage) (C), vegetative Dicyostelium (D).

See Table O in S1 Text for parameter values.

(TIF)

S9 Fig. Morphology features in previous excitable models. (A, B) The model by Bhattacharya

et al [40]. The PC1-PC2 diagram was plotted based on snapshots taken from S4 Movie (red cir-

cle) and S5 Movie (blue circle) in [40] (A). Local boundary curvature (top) and the protrusion

speed (bottom) obtained from S5 Movie in [40] (B). (C, D) The model by Cao et al., 2019 [37].

PC1-PC2 diagram was plotted based on snapshots from Video 2 (red circle) and Video 3 (blue

circle) in [37] (A). Local boundary curvature (top) and the protrusion speed (bottom) obtained

from Video 2 in [37] (B).

(TIF)

S10 Fig. Feature mapping of a fluctuating fan-shaped cell. (A) A representative simulation

result of a fan-shaped cell with a fluctuating front. Color overlay; red V, green U. (B) Feature

mapping: present model (triangle), the PIP2-modulated cell (Video 4 in [14]) (circle) and an

earlier model (Video 13 in [14]) (cross). (C) A kymograph of the variable V at the cell edge

taken from the simulation in (A). Arrows indicate bifurcating V-shaped fronts. (D) Kymo-

graphs of the local curvature (top panels) and the protrusion size (bottom panels) along the

cell boundary; for the real cell data (Video 4 in [14]) (left), and an earlier model simulation

(Video 13 in [14]) (middle), and the present model (A) (right).

(TIF)

S11 Fig. Morphology features in Moreno et al. [52]. (A) Mapping of simulated cell morphol-

ogy from 105 parameter sets of the model (blue circle). The results from our model (black cir-

cle) shown for comparison. (B) Mapping of individual snapshots of the Dictyostelium (agg)

data (left), Score-D(agg) rank1 simulations in the Moreno et al. (middle) and our model

(right). (C) Mapping of individual snapshots of HL-60 data (left), Score-H rank1 simulations

in the Moreno et al. (middle) and our model (right). (D) Proportion of de novo pseudopod

formation in real cell data and the rank1 simualtions; Dictyostelium (agg) (left lanes) and HL-

60 (right lanes).

(TIF)
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S1 Movie. Timelapse sequence of representative training data images; Dictyostelium (agg),

HL60 and fish keratocyte (from left to right).

(MP4)

S2 Movie. Parameter dependency (Wtot) of the morphodynamic model (Fig 2D).

(MP4)

S3 Movie. Parameter dependency (kw1) of the morphodynamic model (Fig 2F).

(MP4)

S4 Movie. Parameter dependency (aw) of the morphodynamic model (Fig 2H).

(MP4)

S5 Movie. Parameter dependency (μ) of the morphodynamic model (Fig 2J).

(MP4)

S6 Movie. Cell morphology dynamics of aggregation stage Dictyostelium and the corre-

sponding top ranking simulations.

(MP4)

S7 Movie. Cell morphology dynamics of HL60 and the corresponding top ranking simula-

tions.

(MP4)

S8 Movie. Cell morphology dynamics of fish keratocyte and the corresponding top ranking

simulations.

(MP4)

S9 Movie. Cell morphology dynamics of vegetative stage Dictyostelium and the corre-

sponding top ranking simulations.

(MP4)

S10 Movie. Cell morphology dynamics of nocodazole-treated HL60 and the corresponding

top ranking simulations.

(MP4)

S11 Movie. Cell morphology dynamics of Dictyostelium racE- and the corresponding top

ranking simulations.

(MP4)
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