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Background: Senescence, as an effective barrier against tumorigenesis, plays a critical
role in cancer therapy. However, the role of senescence in colorectal cancer (CRC) has not
yet been reported. This study aimed to build a prognostic signature for the prognosis of
patients with CRC based on senescence-related genes.

Methods: A prognostic signature was built from TCGA based on differentially expressed
senescence-related genes by the least absolute shrinkage and selection operator (LASSO)
and Cox regression analyses, which were further validated using two Gene Expression
Omnibus (GEO) cohorts. The CIBERSORT and ssGSEA algorithms were utilized to analyze
the infiltrating abundance of immune cells. The relationship of signature with the immune
therapy and the sensitivity of different therapies was explored.

Results:We found 93 genes associatedwith senescence that were differentially expressed.
Based on expression and clinical parameters, we developed a senescence-related
prognostic signature and its effectiveness was verified using two external validation
cohorts. Overall survival was predicted using a prognostic nomogram that incorporated
the predictive values of the risk score and clinical traits. Additionally, the risk score was
significantly correlated with immune cells infiltration, tumor immune microenvironment (TME)
score, immune checkpoints, immunotherapeutic efficacy, and chemotherapy sensitivity.

Conclusion: The senescence-related prognostic model can well predict the prognosis,
immunotherapeutic response, and identify potential drug targets, which can help guide
individualized treatment.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most commonmalignant tumors. Its incidence rate ranks third
in the world and the mortality rate is ranked second (Sung et al., 2021). There were nearly 1.9 million
(10.0%) new cases of CRC worldwide, followed by breast and lung cancer in incidence (Sung et al.,
2021). CRC is a malignant tumor of the digestive system and is the first tumor in the world in terms of
morbidity and mortality and seriously threatens the life and health of individuals (Siegel et al., 2020).
At present, the main treatment methods for CRC include a combination of endoscopic resection,
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surgical resection, chemotherapy, and radiotherapy (Modest
et al., 2019; Dariya et al., 2020). As the surgical intervention is
available for early CRC, a large majority of patients with advanced
CRC suffer from a poor therapeutic outcome with higher rates of
malignant recurrence and distant metastases, resulting in a 5-
years survival rate of less than 10% (Chen et al., 2021a). Hence, it
is particularly important to find a prognostic model that can
accurately classify CRC patients, so that appropriate treatment
method can be selected for patients with different precise
prognoses.

Cellular senescence is defined as a permanent state of cell cycle
termination. It is a response to endogenous and exogenous
stresses, including DNA damage, telomere dysfunction,
oncogene activation, and organelle stress, and is associated
with processes such as tumor suppression, tissue repair,
embryogenesis, and organ aging (López-Otín et al., 2013; Di
Micco et al., 2021). The current state of aging research shares
many similarities with cancer research over the past few decades.
In the newly proposed third edition of cancer hallmarks in 2022,
four new members have been added, and one of the hallmarks is
senescent cells (Hanahan, 2022). Cancer is the result of
abnormally enhanced cellular fitness, whereas senescence is
characterized by loss of fitness. On the surface, cancer and
aging appear to be opposite processes. However, at a deeper
level, the two may have a common origin. Cellular senescence is
caused by a time-dependent accumulation of cellular damage
(Gems and Partridge, 2013). Meanwhile, cell damage occasionally

confers abnormal benefits on certain cells, ultimately leading to
cancer. Therefore, cancer and aging can be thought of as two
distinct manifestations of the same underlying process, the
accumulation of cellular damage. Numerous genes have been
implicated in cellular senescence as biomarkers and causal drivers
(Giovannini et al., 2012; Jia et al., 2018; Li et al., 2019; Shaosheng
et al., 2021). Li et al. (Li et al., 2019) found that knockdown of
BAZ1A-KD results in up-regulation of SMAD3 expression,
which in turn activates transcription of the p21-encoding gene
CDKN1A and causes senescence-related phenotypes in human
cancer cells. However, it is unknown if these senescence-related
genes have an impact on CRC prognosis.

In this study, for the first time, we established a prognostic
signature based on differentially expressed senescence-related
genes (DEGs) and verified its accuracy in two external databases.
Following that, we developed a nomogram to predict the OS of
patients with CRC. In addition, we investigated the prognostic value,
and impact on tumor immune infiltration, immune checkpoint
expression, immunotherapy, and chemotherapeutic drug
sensitivity of senescence-related genes in HCC.

MATERIALS AND METHODS

Data Source
A total of 279 senescence-related genes were collected from
CellAge database (https://genomics.senescence.info/cells/

FIGURE 1 | Establishment of optimal senescence-related signature in the TCGA set. (A,B) Volcano and heatmap representations of lactate-related DEGs between
normal and CRC groups. (C) The prognostic genes were selected by univariate Cox regression analysis. (D,E) Lasso regression analysis. (F)Multivariate Cox regression
analyses of the association between genes and OS of patients.
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signatures.php?) and were listed in Supplementary Table S1. The
RNA-seq expression and clinical traits for CRC patients were
obtained and extracted from three independent CRC cohorts
(TCGA-COD, n = 477; GSE39582, n = 556; GSE17536, n = 175).

IMvigor210 with immunotherapy data and clinical information
were obtained from the IMvigor210CoreBiologies R package.
TCGA cohort was used to build the signature, and two GEO
cohorts were used to externally verify the signature.

FIGURE 2 | Validation of the prognostic prediction performance of the signature. Kaplan-Meier survival analysis in the training (A), GSE39582 (E), and GSE17536
cohort (I). Distribution of risk score and survival status in the training (B), GSE39582 (F), and GSE17536 cohort (J). PCA analysis in the training (C), GSE39582 (G), and
GSE17536 cohort (K). Time-dependent ROC curves of risk scores in the training (D), GSE39582 (H), and GSE17536 cohort (L).
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Establishment and Identification of
Prognostic Signature
The training cohort was employed to detect the senescence-related
DEGs between normal and CRC tissues via the R package “limma” in
RStudio, with the following cutoff for adjustment: p-value< 0.05 and |
fold change (FC)| > 1.5. To screen senescence-related genes with
prognostic significance, a univariate Cox regression analysis was
conducted on DEGs. Following that, the Least absolute shrinkage
and selection operator (LASSO) and multivariable Cox analysis was
performed to build a predictive signature. The following formula was
employed to calculate the risk scores of CRC samples:

Rish Score � ∑
n

i�1
coef(Xi) × exp (Xi)

“Coef”, “exp”, and “n” represented the coefficient of the gene,
the expression level, and the number of genes, respectively. The
median risk score was used as the threshold. Patients with risk
scores greater than the threshold (median risk score) were included
in the high-risk group and the rest in the low-risk group. Receiver
operating characteristics (ROC) and Kaplan-Meier survival curves
were employed to assess the effectiveness of the signature. Principal
component analysis (PCA) was conducted to verify whether the
risk score could distinguish high- and low-risk score groups.

Two GEO validation cohorts were recruited to vertify the
predictive accuracy of the model developed from the TCGA set.
The above cut-off value was used to divide all CRC patients into
high- and low-risk score groups, the same method was employed
for the predictive power of the signature in OS prediction.

Nomogram Construction and Assessment
We explored the risk score with the corresponding CRC samples’
clinical information, including age, gender, tumor site, and TNM
stage. Additionally, we also explored whether the risk levels would
affect the prognosis of patients in distinct clinical variable groups.
Univariate and multivariate models were employed to ascertain
whether the signature could be an independent predictive
indicator for the prognosis of CRC patients. Then, a
nomogram integrating risk score and clinical parameters was
built using the “rms” R packages. ROC and calibration curves
were employed to validate its accuracy is demonstrated.

Immune Activities Analysis
The ssGSEA algorithm was used to quantify the scores of 16
tumor immune infiltration cells (TIICs) and the function of
13 immune-related pathways. The proportion of 22 TIICs in
two risk score groups was further quantified with CIBERSORT
algorithm. The immune score, stromal score, ESTIMATE score
were calculated through ESTIMATE algorithm to quantify the
tumors microenvironment (Arbour et al., 2021). Two immune
checkpoints (PD-1 and PD-L1) were chosen to assess the
differences in their expression levels in two risk subgroups.

Targeted Drug and Immunotherapy
In this study, the capability of the signature in predicting
sensitivity of chemotherapy and immunotherapy was
investigated. In the aspect of chemotherapy, half maximal

inhibitory concentration (IC50) was used to predict the
sensitivity of chemotherapy drugs in the high- and low-risk
groups. Meanwhile, potential immune checkpoint inhibitors
(ICIs) response was predicted with TIDE algorithm (Jiang
et al., 2018).

Gene Set Enrichment Analysis
To investigate the biological pathways of the subgroups, we
further generated a gene set enrichment analysis (GSEA) for
functional enrichment analysis. Gene sets with p-value and
Q-value < 0.05 were the cutoff criterion for significant gene
enrichment.

Statistical Analysis
Data were analyzed by R software version 4.1.0. Log-rank test was
used for survival analysis. Wilcoxon rank-sum or Kruskal–Wallis
tests were utilized to compare differences between two or three
groups, respectively. The ROC curves were plotted to access the
prognostic value of the model.

RESULTS

PPI Network and GO and KEGG Enrichment
Analyses
Among 279 senescence-related genes, 93 DEGs in CRC
patients of the TCGA cohort were identified with FDR
<0.05 and FC > 1.5. Volcano and heatmap representations
of senescence-related DEGs are provided in Figures 1A,B.
Then, Protein-protein interaction (PPI) networks and
functional enrichment analyses were constructed to
comprehensively investigate these DEGs. As shown by PPI
analysis, 84 of these 93 DEGs formed interaction modules
(Supplementary Figure S1A). By using the cytoHubba
plugin, we screened 10 hubgenes (Supplementary Figure
S1B). GO functional annotation showed that the 93 DEGs
are mainly related to regulation of cell cycle phase transition,
transcription regulator complex, and DNA-binding
transcription factor binding (Supplementary Figure S1C).
KEGG signaling enrichment annotation showed that these
DEGs are mainly enriched in the cell cycle, cellular
senescence, p53 signaling pathway, and other tumor-related
signal pathways (Supplementary Figure S1D).

Establishment and Validation of the
Senescence-Related Signature
To explore whether these senescence-related genes are related
to the prognosis of CRC, univariate COX regression analysis
was applied. Based on the TCGA cohort, 15 genes were
identified (Figure 1C). As shown in Figures 1D,E, 15
genes were subject to LASSO Cox regression analysis to
avoid overfitting, and 11 out of 15 genes were chosen as
the appropriate candidates for constructing a risk
signature. Subsequently, multivariate Cox regression
analysis obtained 5 genes (CAV1, FOXM1, MAD2L1,
NDRG1, and VEGFA) to build a prognostic signature
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(Figure 1F). Risk score = expression (CAV1) × 0.024 +
expression (FOXM1) × (0.019) + expression (MAD2L1) ×
(-0.102) + expression (NDRG1) × (0.012) + expression
(VEGFA) × (0.041). Median risk scores divided the cohort
of CRC patients into the low- and high-risk subgroups. To
analyze the translational levels of the signature genes, the

Human Protein Atlas (HPA) database can be used, showing
the expression and localization of the corresponding protein.
The results showed that FOXM1, MAD2L1, NDRG1, and
VEGFA was highly expressed in CRC tissue, wihle CAV1
was lowly expressed in CRC tissue (Supplementary
Figure S2).

FIGURE 3 | Clinical value of the risk score. (A) Association of risk score with TNM stage. (B,C) Univariate analysis of risk scores and clinicopathological parameters
in the training (B) and GSE39582 cohort (C). (D,E) Multivariate Cox regression analysis of risk scores and clinicopathological parameters in the training (D) and
GSE39582 cohort (E). (F) Prediction of the nomogram based on clinical traits and risk score. (G,H) ROC curves of the nomogram for OS prediction at three (G) and
5 years (H). (I,J) Calibration curve of the nomogram for predicting OS rates at three (I) and 5 years (J).
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Internal and External Validation of the
Signature
In the training cohort, the Kaplan-Meier analysis revealed that
high-risk group had lower OS compared to low-risk group (p <
0.001, Figure 2A). Also, mortality was increased in CRC patients
with increasing risk scores (Figure 2B). PCA analysis revealed
that there was a clear division in two risk subgroups (Figure 2C).
ROC plots were also used to assess diagnostic efficiency, with
AUCs of 0.867 and 0.845 for 3 and 5-years survival, respectively
(Figure 2D).

To confirm the robustness of the signature, the risk scores of CRC
patients were calculated in two external validation sets (GSE39582
andGSE17536) using the same formula, and divided patients into the
high- and low-risk subgroups according to the cutoff of the training
cohort. Likewise, high-risk was associated with OS (Figures 2E,I),
and the number of deaths increased with increasing risk scores
(Figures 2F,J). PCA demonstrated overt separation of both
subgroups (Figures 2G,K). The ROC further indicated the
predicting accuracy of the signature (Figures 2H, 2L).
Additionally, the Imvigor210 dataset of the treatment response
data of patients who underwent anti-PD-L1 immunotherapy was
retrieved to validate the predictive ability of the senescence-based
signature in ICI therapy. Kaplan-Meier analysis showed that a high-
risk score was associated with a poorer survival rate than a low risk
score (Supplementary Figure S3).

Prognostic Value of the Signature
In our study, we analyzed the prognosis of patients in low- and
high-risk groups among distinct clinical variable subgroups. As
shown in Supplementary Figure S4, patients with high-risk
scores had poorer survival probabilities than those with low-
risk scores in all distinct clinical variable subgroups. In addition,
we further investigated the association between risk scores and
each clinical characteristic. The results showed that the risk score
was linked to the TNM stage (p < 0.01; Figure 3A). Subsequently,
we verified the independence and applicability of the risk score in
the training and GSE39582 sets. Univariate and multivariate Cox
regression analysis results showed that the signature could
independently predict the prognosis of CRC patients,
regardless of age, gender, tumor site, histological type, and
TNM stage (p < 0.001, Figures 3B–E).

Development and Assessment of the
Nomogram
An approach by which 3- and 5-years OS rates could be more
accurately predicted was to construct a nomogram model based
on Cox regression results (Figure 3F), which included risk score,
age, and TNM stage. As shown in Figure 3F, this nomogram can
predict the 3- and 5-survival for a patient based on the sum of the
scores. The ROC curve revealed the high accuracy of the
nomogram for 3-years (AUC = 0.80) and 5 -year (AUC =
0.788) survival rates (Figures 3G,H). The calibration curves
comparing the predicted and actual survival rates of CRC
patients indicated that the predicted survival rates were in
good agreement with those actual rates (Figures 3I,J).

Correlations Between the Risk Scores
and TME
To better investigate the relationship between risk score and immune
characteristics, ssGSEAwas used to calculate the enrichment scores of
various immune cells. According to Figure 4A, the relative scale of
fraction for CD8+ T cells and NK cells was obviously lower in the
high-risk group than that in the low-risk group. On the contrary, the
fraction of macrophages and T helper cells were much lower in the
low-risk group. We also found substantial variations in immune
function in terms of T cell co-stimulation, type I IFN response, and
type II IFN response (Figure 4B). Furthermore, CIBERSORT
algorithms were employed to calculate the scores of various TIICs.
Results suggested that the infiltration abundance of CD8+ T cells,
memory activated CD4+ T cells, macrophages M1, naive B cells, and
resting dendritic cells in the high-risk groupwas obviously lower than
that in the low-risk group, and their infiltration abundance decreased
with increasing risk score (Figure 4C). However, the infiltrative
abundance of M2 macrophages, T cells regulatory (Tregs), and
Tfh cells was distinctly higher in the high-risk group, and their
abundance increased prominently with risk scores increased
(Figure 4C). In addition, patients with a low-risk score presented
a higher level of the immune score, stromal score, and ESTIMATE
score than those with a high-risk score (Figure 4D).

Relationship Between the Signature and
CRC Therapy
Given the significance of checkpoint treatment, we investigate
more into the variations in immune checkpoint expression
between different risk subgroups. The results indicated that
the expression of PD-1 and PD-L1 in the low-risk group were
higher than those in the low-risk group (Figures 5A,B).
Furthermore, we applied the TIDE algorithms to evaluate the
effectiveness of the signatures in forecasting ICIs responsiveness
in CRC. TIDE scores were higher in the high-risk score group
compared to the low-risk group (Figure 5C). Taken together, the
signature can predict the benefit of CRC immunotherapy.

Chemotherapeutic drug sensitivity analysis will help guide the
optimal selection of commonly used chemotherapeutic drugs for
CRC. By comparing IC50 values in high- and low-risk groups,
Wilcoxon signed-rank test was used to evaluate chemosensitivity.
The result indicated that the patients with low-risk scores were
more sensitive to cisplatin, docetaxel, gemcitabine, epothilone B,
andMetformin, while patients with the high-risk score were more
sensitive to nilotinib, saracatinib (AZD0530), dasatinib, and
imatinib (Figure 5D-L).

GSEA Enrichment Analysis
To clarify the important pathway of signature enrichment related
to pyroptosis, we conducted GSEA. As shown in Supplementary
Table S2, 55 enrichment pathways with significant variations
between low and high-risk groups were identified at the criteria of
FDR <0.25, p < 0.05. The top five signaling pathways in the high-
risk group were axon guidance, complement and coagulation
cascades, ECM receptor interaction, focal adhesion, and
hematopoietic cell lineage (Figure 6A). The top five signaling
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pathways in the low-risk group were huntingtons disease,
oxidative phosphorylation, parkinsons disease, proteasome,
and ribosome (Figure 6B).

DISCUSSION

CRC is a highly heterogeneous disease, and survival time
varies widely among patients with similar clinical stages.
Cellular senescence is recognized as an effective barrier

against tumorigenesis and can be promoted by immune
surveillance (Ou et al., 2021). Most research on cellular
senescence has focused on non-tumor cells, but tumor cells
can also undergo senescence. The treatment of cancer
consisting of pro-senescence and senolytic therapy has also
been explored, which is expected to become new approaches
for targeted therapy of cancer (Wang et al., 2022). Increasing
evidence suggests that senescent cells can be eliminated by
senescence-associated secretory phenotype (SASP)-elicited
immune responses involving both innate and adaptive

FIGURE 4 | Correlations between the risk scores and TME. (A) The ssGSEA scores of immune infiltrating cells. (B) The ssGSEA scores of immune functions. (C)
The proportion of 22 immune infiltrating cells in two risk subgroups. (D) TME score in two risk subgroups.
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immunity, so activation of the host immune system is a
particularly attractive approach to clearing senescent cancer
cells (Schneider et al., 2021; Wang et al., 2022). However, the
correlation between cellular senescence and TME remains
unclear, and the value of cellular senescence-related genes

in assessing immune infiltration and clinical outcome in CRC
has not been reported. Therefore, this study aimed to establish
a new prognostic signature based on senescence-related genes
to help accurately predict the prognosis of CRC patients and
guide individualized treatment.

FIGURE 5 | Correlation between the predictive signature and CRC therapy. (A,B) The expression value of PD-1 and PD-L1 between two risk subgroups. (C)
Comparison of TIDE score between low- and high-risk subgroups. (D–L) Estimated drug sensitivity in patients with high- and low-risk subgroups.

FIGURE 6 | Functional enrichment analysis between low- and high-risk groups. The top five signaling pathways in the high- (A) and low-risk subgroup (B).
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In this work, we analyzed the role of senescence in CRC using
the public databases. And 93 differentially expressed senescence-
related genes were identified betweenCRC and normal samples. To
comprehensively explore the mechanism of senescence in CRC, we
performed univariate Cox regression analysis and LASSO Cox
regression analysis on these DEGs to develop a senescence-related
signature in the training cohort. The signature contained five
senescence-associated genes: CAV1, FOXM1, MAD2L1,
NDRG1, and VEGFA. CAV1 (caveolin-1) is a key structural
component of caveolae and plays an important role in a variety
of cellular processes including cholesterol homeostasis, vesicle
transport, and tumor progression (Ha and Chi, 2012). CAV1
has been shown to play a dual role in tumorigenesis, inhibiting
or promoting tumor growth depending on the cellular context (Ha
and Chi, 2012; Kamposioras et al., 20221080). Several studies have
reported the effect of CAV1 expression on CRC, but there were no
consistent results (Alshenawy and Ali, 2013; Xue et al., 2015; Zhao
et al., 2015). Typically, CAV1 expression is elevated in CRC tissue
compared to adjacent normal tissue (Alshenawy and Ali, 2013; Xue
et al., 2015). CAV1 expression was associated with
clinicopathological traits and prognosis of CRC patients (Xue
et al., 2015; Yang et al., 2018). CAV1 can affect the occurrence
and development of CRC through different mechanisms, including
via activation of SLC2A3/GLUT3 transcription (Ha and Chi,
2012), suppressing phosphorylation of epidermal growth factor
receptor (Yang et al., 2018), and stimulating HMGA1-mediated
GLUT3 transcription (Ha et al., 2012). FOXM1, a member of FOX
superfamily, has been implicated in CRC progression and
chemoresistance (Varghese et al., 2019; Yang et al., 2019; Yang
et al., 2020). Yang et al. (Yang et al., 2019) revealed that FOXM1
expression significantly elavated in CRC tissues and was positively
linked to tumor size, TNM stage, lymphatic and distant metastasis.
Overexpression of FOXM1 promoted oncogenic effects on CRC by
activating the β-catenin signaling pathway. Varghese et al.
(Varghese et al., 2019) showed that FOXM1 regulates 5-FU
resistance in CRC by regulating TYMS expression. Yang et al.
(Yang et al., 2020) FOXM1 simultaneously promote migration,
invasion, and drug resistance of CRC cells through upregulating
Snail. MAD2L1, as a member of the spindle checkpoint functional
complex, plays a crucial role in cell cycle regulation (Zhong et al.,
2015). MAD2L1 has been reported as a novel oncogene that plays a
role in regulating cancer cell growth and apoptosis (Ding et al.,
2020; Ding et al., 2022). NDRG1 has been reported to act as a
metastasis suppressor (Bae et al., 2013; Sahni et al., 2014). A recent
study shows that NDRG1 regulates filopodia-induced CRC
invasiveness by regulating CDC42 activity (Aikemu et al., 2021).
VEGFA is an endothelial growth factor and regulator of vascular
permeability (Claesson-Welsh and Welsh, 2013). Increasing
evidence suggests that VEGFA-dependent signaling pathways
play crucial roles in CRC progression (Terme et al., 2013; Dai
et al., 2020; Liu et al., 2020).

Furthermore, all CRC patients were categorized into low- and
high-risk subgroups depending upon the median value. Internal
and external validation results showed that risk scores
independently and effectively predicted 3- and 5-years survival
in CRC patients. We also conducted univariate and multivariate
Cox analyses to explore the effectiveness of the signature and

clinical parameters as indicators of patient prognosis. It was
concluded that the risk score served as an independent
prognostic predictor for CRC patients. To better quantify the
3- and 5-years survival of CRC samples, a nomogram, combined
with these independent indicators, was constructed. The
predictive accuracy of the nomogram was verified by the ROC
curve and calibration plot. Therefore, it may be used as a
supplementary tool to better assist the prognosis evaluation
and treatment of CRC.

We calculated the infiltration of immune cells and TME
scores in the high-and low-risk groups. The ssGSEA and
CIBERSORT results showed the risk score was closely
related to the relative contents of TIICs, especially for
T cells and macrophages. And with the increase of the risk
score in the prognostic signature, relative contents of CD8+

T cells tended to be downregulated, while the relative contents
of macrophages tended to be upregulated. This discovery is in
line with prior research that intratumoral T cell density has
been shown to be an independent prognostic factor in CRC
(Galon et al., 2006; Miller et al., 2021). CD8+ T cells are
considered major drivers of anti-tumor immunity (van der
Leun et al., 2020). Accumulating evidence suggests that
increased tumor-related macrophage infiltration results in a
poor prognosis in CRC (Wei et al., 2019). Tumor-associated
macrophage-induced immune responses were already
considered critical determinants of tumor progression (Pan
et al., 2020). Tumor-associated macrophages can also perform
pre-tumor activities such as enhancing tumor cell
proliferation, and invasion, angiogenesis, and inhibiting
anti-tumor immune surveillance (Chen et al., 2021b;
Boutilier and Elsawa, 2021). Also, patients with low risk
score have a higher TME score than those with high risk score.

Emerging therapeutic strategies, including PD-1/PD-L1
inhibitors, are used for treating CRC (Yaghoubi et al.,
2019). In our study, the expression levels of PD-1 and PD-
L1 in the low-risk group were higher compared to those in the
high-risk group, which implied that the signature would be
able to predict their expression levels and provide guidance
during immunotherapy with ICIs. Furthermore, we found
that patients with high-risk scores had a higher TIDE score
than those with the low-risk score. A lower TIDE score
indicates a lower possibility of tumor immune evasion and
may benefit from immunotherapy, which further explains the
better prognosis of patients in the low-risk group in our study.
These findings provide a basis for a more comprehensive
understanding of anti-tumor immune responses in CRC
patients, as well as guidance for personalized
immunotherapy treatments. Chemotherapy and
immunotherapy are the most important adjuvant therapies
for CRC, which are of great significance for improving both
the prognosis of patients and their quality of life. Patients with
low risk score was more sensitive to cisplatin, docetaxel,
gemcitabine, epothilone B, and Metformin, while patients
with the high-risk score were more sensitive to nilotinib,
saracatinib, dasatinib, and imatinib. The combination of
chemotherapy and immunotherapy can provide precise and
individualized therapy for patients with a different risk scores.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9302489

Dong et al. Senescence Signature in CRC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


CONCLUSION

This study successfully constructed a 5-gene senescence-related
signature that could be used to classify CRC patients. The
prognostic model shows the convincing clinical value and may
provide new ideas for improving the OS rate of CRC patients and
facilitating personalized treatment.
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