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Abstract

Mesenchymal stromal cells (MSCs) offer great potential for the treatment of cardio-

vascular diseases (CVDs) such as myocardial infarction and heart failure. Studies have

revealed that the efficacy of MSCs is mainly attributed to their capacity to secrete

numerous trophic factors that promote angiogenesis, inhibit apoptosis, and modulate

the immune response. There is growing evidence that MSC-derived extracellular ves-

icles (EVs) containing a cargo of lipids, proteins, metabolites, and RNAs play a key role

in this paracrine mechanism. In particular, encapsulated microRNAs have been identi-

fied as important positive regulators of angiogenesis in pathological settings of insuf-

ficient blood supply to the heart, thus opening a new path for the treatment of CVD.

In the present review, we discuss the current knowledge related to the proangiogenic

potential of MSCs and MSC-derived EVs as well as methods to enhance their biologi-

cal activities for improved cardiac tissue repair. Increasing our understanding of

mechanisms supporting angiogenesis will help optimize future approaches to CVD

intervention.
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1 | INTRODUCTION

In both developed and developing countries, cardiovascular disease

(CVD) is a major cause of morbidity and mortality,1 and most impor-

tantly, ischemic heart disease such as acute myocardial infarction (MI)

is a leading cause of heart failure. While obstruction to blood flow can

be effectively treated by common surgical and catheter-based inter-

ventions, achieving cures for microvascular disease remains an elusive

goal. The concept of promoting the perfusion of ischemic tissue

through angiogenesis has been considered as a highly promising treat-

ment strategy for CVD. Previous attempts to induce neocapillarization

in ischemic tissue involved the targeted delivery of various

proangiogenic growth factors and nucleic acids encoding them, as well

as physical interventions to stimulate angiogenic processes.2 How-

ever, as none of them proved to be sufficiently effective to reverse

end-organ ischemia and prevent loss-of-function, other strategies had

to be pursued. With the advent of cell therapies for nonhematological

F IGURE 1 Exosome biosynthesis.
(1) Early endosomes are formed by
inward budding of the limiting
membrane of cells. Surface proteins
(orange triangles) may be
incorporated into the early endosomal
membrane. (2) Early endosomes
undergo a maturation process to form
late endosomes, in which the
biogenesis of exosomes occurs by

continuous invagination of the
limiting membrane. (3) This particular
type of late endosome, which ends up
accumulating numerous small
intraluminal vesicles with a diameter
of 40 to 150 nm is called
multivesicular body (MVB). During
this process, cytosolic components
(eg, miRNAs) are actively packed into
the vesicles. In addition,
communication with the Golgi
apparatus through bidirectional
vesicle exchange leads to the
incorporation of tetraspanins (blue
rectangles) into the membrane of the
vesicles. (4) Besides that, cytosolic
histone-bound DNA fragments can be
transported to MVBs via the
autophagosome pathway. (5) Finally,
MVBs either fuse with the plasma
membrane causing the release of their
content into the extracellular
environment, or fuse with lysosomes
for degradation of their cargo.

Significance statement

Mesenchymal stromal cells (MSCs) are currently being eval-

uated in clinical trials for the treatment of numerous dis-

eases. Their therapeutic potential is mainly due to the

factors they secrete. Studies have demonstrated that MSCs

also produce extracellular vesicles that carry proteins,

metabolites, lipids, and various RNAs. Based on their

multifunctional properties, extracelullar vesicles are of great

importance and interest in the development of future medi-

cine. This study provides an overview of the current knowl-

edge on the therapeutic potential of MSCs and MSC-

derived extracelullar vesicles, as well as methods for improv-

ing their biological activities to promote angiogenesis and

tissue repair.
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disorders in the 1990s, the idea of using viable cells to ameliorate or

reverse tissue ischemia has rapidly gained traction.3 Given their ease

of isolation, robustness in culture, multilineage differentiation poten-

tial in vitro, and partially restricted immunogenicity,4 mesenchymal

stromal cells (MSCs) have been proposed as a promising tool for trans-

lational research in cardiology. In recent years, much work has been

done to improve the functional properties of MSCs in terms of cell

retention and survival of grafted cells, and to elicit their proangiogenic

effects. For example, it has been hypothesized that the microenviron-

ment of injured tissue is not conducive for cell engraftment and reten-

tion, and that the paracrine effect of transplanted MSCs lasts for only

24 to 48 hours.5 To overcome these limitations, various scaffolds for

cell transplantation were tested and showed promising results for the

use in cardiac applications.6,7 MSC transplantation to repair damage

caused by MI and restore cardiac function has been demonstrated in

both animal experiments and patients.8-11 However, recent meta-

analyses failed to show consistent improvement in infarct size or left

ventricular function.12,13 Consequently, the initial assumption that

transplanted stem or progenitor cells support neovascularization by

differentiation into endothelial cells was soon replaced by the notion

of their predominantly paracrine function by producing and secreting

small molecules responsible for proangiogenic effects, such as cyto-

kines, chemokines, and growth factors.14 Besides releasing a variety

of soluble factors, MSCs have been shown to secrete extracellular

vesicles (EVs) that are important mediators of cell-to-cell communica-

tion.15 Among the known subtypes of EVs, endosome-derived

exosomes carrying proteins, metabolites, lipids, and various RNAs

have emerged as physiologically relevant components of the MSC

secretome16 (Figure 1). Earlier reports demonstrated that the para-

crine activity of the MSC secretome has a therapeutic effect on a

wide range of diseases and tissue injury in myocardium, kidney, liver,

and lung.17-20 The elucidation of paracrine effects thus not only

improves our understanding of vascular pathologies, but also

enhances the ability to facilitate neocapillarization (ie, endothelial

sprouting) for regeneration purposes. In this article, we summarize

ways to stimulate angiogenesis with the help of MSCs and their

derived EVs, thereby enhancing tissue repair in a variety of patholo-

gies associated with insufficient angiogenesis. We also present the lat-

est advances in the identification of regulatory microRNAs (miRNAs)

encapsulated in EVs and discuss their role in promoting angiogenesis.

2 | ROLE OF MSCs IN ANGIOGENESIS

The human body contains approximately 90 000 km of blood vessels

that supply all cells and tissues with vital nutrients and oxygen needed

for survival and proliferation.21 The stimulation of new blood capillary

vessel formation through the process of angiogenesis is an integral

part of tissue growth and repair. It has been hypothesized that MSCs

are part of the perivascular niche in various organs and play an impor-

tant role in the orchestration of neocapillarization,22,23 which has rap-

idly attracted considerable interest in the scientific community. In

addition, due to their in vitro multipotent differentiation potential into

mesenchymal lineages, including osteoblasts, chondrocytes, myocytes,

and adipocytes, the idea was raised that they could also replenish lost

tissue in vivo.24 The therapeutic rationale for MSC treatment, for

example, for acute MI patients, is to repair damaged heart tissue by

cardiomyocyte differentiation and to provide growth factors to induce

angiogenesis, to stimulate resident cardiac stem cell migration and

commitment to cardiomyocytes. Most evidence suggests that the

beneficial effects of MSCs are mainly caused by the secretion of a

variety of bioactive paracrine factors.25 Especially for bone marrow-

derived MSCs, numerous small molecules have been demonstrated to

induce angiogenesis both in vitro and in vivo; key factors are summa-

rized in Table 1.

Vascular endothelial growth factor (VEGF) and fibroblast growth

factor-2 (FGF-2) are two of the most studied factors that regulate

angiogenesis.39 Given that elevated levels can induce cell proliferation

and migration of endothelial cells, coordinated regulation of VEGF

and FGF-2 expression is required to elicit the proangiogenic effects of

MSCs. Another interesting proangiogenic protein is tumor necrosis

factor alpha (TNF-alpha), as its effect on angiogenesis depends on the

concentration and the duration of treatment. Therefore, it might have

a dual role in angiogenesis: high doses of TNF-alpha were found to

inhibit angiogenesis in mice in vivo, while low doses promoted it.40 In

addition to classical angiogenic factors, MSCs also secret EVs that

carry a variety of biomolecules capable of regulating angiogenesis

both in vitro and in vivo.41,42 EVs were proposed as key agents in the

modulation of angiogenesis43 and have been shown to improve angio-

genesis in a number of studies, including mouse and rat models of

burn injuries, skin wounds, acute kidney injury, acute MI, and limb

ischemia.44-46

TABLE 1 Key proangiogenic factors secreted by MSCs

Short name Long name Reference

ANG Angiogenin 26

ANGPT1 Angiopoietin-1 27

EGF Epidermal growth factor 28

FGF-2 Fibroblast growth factor-2 29

G-CSF Granulocyte-colony stimulating factor 30

HGF Hepatocyte growth factor 31

IL-6 Interleukin-6 32

IL-8 Interleukin-8 33

MCP-1 Monocyte chemotactic protein-1 34

PDGF Platelet-derived growth factor 35

PlGF Placental growth factor 36

SDF-1 Stromal cell-derived factor-1 37

TGF-alpha Transforming growth factor alpha 38

TGF-beta Transforming growth factor beta 39

TNF-alpha Tumor necrosis factor alpha 39

VEGF Vascular endothelial growth factor 39

Abbreviation: MSCs, mesenchymal stromal cells.
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3 | ENHANCEMENT OF THE ANGIOGENIC
POTENTIAL OF MSCs

MSCs can be obtained from a variety of tissues, such as bone marrow,

adipose tissue, and umbilical cord tissue, with bone marrow being the

most common stem cell source.47 Efforts to maximize the secretion of

proangiogenic factors by MSCs are expected to substantially increase

the beneficial role of MSCs in regenerative medicine. Several studies

have shown that preconditioning of MSCs by hypoxia enhances the

proangiogenic effects of MSCs,48,49 which might be a valuable strat-

egy for boosting their clinical potential and therapeutic efficacy upon

transplantation. Exposure of MSCs to reduced oxygen partial pressure

induces the expression of genes involved in migration and homing,

mainly regulated by hypoxia-inducible factor-1 alpha (HIF-1 alpha).50

HIF-1 alpha is constitutively expressed in most cell types, including

cardiac cells. Under normoxic conditions, it is inactive due to

ubiquitin-mediated proteasomal degradation and transcriptional inhi-

bition.51 However, under hypoxic conditions, HIF-1 alpha becomes

rapidly stabilized and its accumulation results in higher gene expres-

sion of proangiogenic factors, such as VEGF and transforming growth

factor beta,52,53 as well as increased release of EVs from MSCs.54

Overexpression of HIF-1 alpha also promotes incorporation of Jag-

ged1, a Notch ligand that increases angiogenesis, into MSC-derived

EVs, suggesting that an active HIF-1 alpha phenotype can be transmit-

ted to surrounding cells.55 In addition, hypoxia-preconditioned MSCs

show a higher cell viability, enhanced proliferation potential,

decreased production of reactive oxygen species, increased antioxi-

dant glutathione production, and higher superoxide dismutase

levels.56 Other stress conditions that may be of interest for enhancing

the angiogenic potential of MSCs include pH variation and calorie

restriction.57 However, given that modification of culture conditions

is a rather indirect process for increasing the angiogenic activity of

MSCs, as it affects not only one specific molecule but many factors, it

may in turn lead to serious side effects. Apart from altering the overall

culture environment, several growth factors have been shown to

enhance the regenerative capacity of MSCs in vitro. For instance, pre-

treatment of MSCs with epidermal growth factor or transforming

growth factor alpha increased the release of proangiogenic factors

such as VEGF and hepatocyte growth factor, which play a central role

in inducing angiogenesis and improving oxygen supply to ischemic tis-

sues.58,59 In addition, it has been shown that MSCs, when cultured on

collagen-coated patches, are less fibrogenic and secrete more

cardiotrophic factors.60 Besides modulating culture conditions or

using additives, the genetic modification of MSCs was also investi-

gated.61 Although MSCs naturally possess an enormous inherent ther-

apeutic potential, gene therapy is being used to modify MSCs to

further enhance their efficacy and even extend the range of diseases

for which MSCs could be applied. MSCs can be easily transduced by

clinically available viral vector systems, including retrovirus and lentivi-

rus.62 This technique leads to efficient production of angiogenic fac-

tors and, because viral vectors can be integrated into the host

genome, to long-term gene expression.63 Numerous animal studies

have reported the success of genetically engineered MSCs as a gene

delivery vehicle. For example, Xu et al64 have used a lentiviral vector

to generate MSCs that overexpress angiopoietin-1, a proangiogenic

protein that induces endothelial survival and vascular stabilization.

Another study by Song et al65 showed that the introduction of v-myc

into human MSCs using a lentiviral gene delivery system resulted in

increased MSC secretion of VEGF and thus increased vessel forma-

tion. However, since applications of these vectors elicited adverse

side effects including toxicities, immuno- and oncogenicity,66 many

clinical studies using viral vectors were terminated. Therefore, non-

viral vectors have been continuously studied and have become an

attractive alternative for MSC modification.67 As one example,

Bandara et al68 described a novel nonviral minicircle vector to deliver

the endothelial nitric oxide synthase (eNOS) transgene to MSCs.

Overexpression of eNOS has been shown to improve the ability of

MSCs to treat ischemic heart damage following coronary artery occlu-

sion. In a rat model of acute MI, the authors demonstrated that trans-

plantation of eNOS-overexpressing MSCs significantly reduced MI

size, increased capillary density, and corrected hemodynamic parame-

ters. In addition, in recent years, transfection of MSCs by modified

mRNAs has gained considerable traction as a promising strategy to

prime MSCs for targeted delivery of therapeutic molecules at a con-

trolled rate.69 Another approach to multiply the therapeutic potential

of systemically applied MSCs is to module their homing and interac-

tion with target cells by surface coating. For example, Chou et al70

showed that bone marrow-derived MSCs transfected with 1,3-

fucosyltransferase VI, an enzyme transforming native CD44 on MSCs

into a hematopoietic cell E-/L-selectin ligand, increased homing to

injured endothelial cells. Similarly, Zou et al71 coated mouse adipose

tissue-derived MSCs (AMSCs) with antibodies to kidney injury mole-

cule-1, a protein that is upregulated in damaged kidneys, and injected

them into mice with renal artery stenosis. These AMSCs showed

selective homing compared to untreated AMSCs, leading to improved

renal perfusion and capillary density as well as attenuation of oxida-

tive damage and fibrosis. Besides improving the homing efficiency to

and retention of MSCs in a target tissue, enhancing MSC survival is a

major milestone in improving the effectiveness of MSC-based ther-

apy.72 Strategies like preconditioning with hyperoxia or repeated epi-

sodes of short-term exposure to hypoxia have been found to promote

the viability and proliferation of MSCs.73 In addition, studies have pro-

vided evidence that stromal cell-derived factor-1 alpha (SDF-1 alpha)

can suppress apoptosis in MSCs and promote cardiomyocyte survival.

Tang et al74 found that 1 week after cell implantation, the number of

SDF-1 alpha-modified MSCs was five times higher than that of wild-

type MSCs in a rat model of MI. Nevertheless, more studies are

needed to further improve the survival of MSCs after transplantation

in heart tissue.

To date, it has not been conclusively investigated whether MSCs

transplantation and systemic application can promote or cause neo-

plasia and possibly cancer.75 Studies have shown that due to their

perivascular origin, MSCs can differentiate into pericytes or endothe-

lial cells, which ultimately supports tumor vascularization and growth.

However, the data on the interaction of MSCs with different tumor

types are ambiguous.76 There is evidence in the literature to support
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the hypothesis that MSCs can inhibit capillarization in vitro in a dose-

dependent manner.77 Furthermore, the group of Otsu et al77 showed

tumor recession in vivo after coinoculation of melanoma cells with

MSCs. Most clinical trials using MSCs for myocardial regeneration

screened their subjects for tumor formation after MSCs injections. In

clinical safety studies with unmodified MSCs for myocardial regenera-

tion, no neoplasms associated with MSC application were observed.78

Nevertheless, since proangiogenic modifications of MSCs carry the

risk of promoting existing tumor growth, it is important to carefully

examine patients for pre-existing neoplasms.

4 | MSC-DERIVED EVS AS AN
ALTERNATIVE TO MSC TRANSPLANTATION

MSCs could be used in an autologous setting to exclude immune

responses of the recipient and thereby preserve their regenerative

properties.79 However, autologous MSC applications have some limi-

tations, including availability and decreased biological activity when

isolated from elderly donors and patients with systemic diseases. For

example, MSCs isolated from older patients showed a reduction in

superoxide dismutase activity and an increase in reactive oxygen spe-

cies, resulting in oxidative damage in MSCs and, consequently, apo-

ptosis and senescence.80 In addition, autologous MSC extraction and

in vitro expansion prior to implantation is time-consuming, making it

difficult to use them to treat acute diseases such as MI. These short-

comings, coupled with the evidence that MSCs have immunomodula-

tory properties and are less immunogenic compared to other cell

types14 have stimulated the development of allogeneic MSC products

obtained from young and healthy donors. Given their anti-inflamma-

tory and immune-evasive mechanisms, off-the-shelf allogeneic MSCs

that can be administered immediately were considered as a promising

option for tissue repair. However, in clinical trials, the overall thera-

peutic effect was limited, similar to autologous MSCs.12 Additionally,

the use of viable cells still carries inherent risks such as microvascula-

ture obstruction, immune rejection, and proarrhythmic side effects.

EVs derived from MSCs can overcome many of these concerns associ-

ated with the use of living cells, while having therapeutic effects simi-

lar to those achievable by the originating MSCs themselves.81 In

conclusion, rather than transplanting exogenous MSCs, MSC-derived

EVs, even from allogeneic sources, offer a great alternative because

they are nonproliferative, less immunogenic, and easier to store and

deliver than MSCs.82 However, as a prerequisite for application, it

must be ensured that MSC-derived EVs can be produced in sufficient

quantity and quality and that they are able to effectively mediate pro-

regenerative and immunomodulatory effects of the parental cells.

5 | PROANGIOGENIC CHARACTERISTICS
OF MSC-DERIVED EVS

EVs, such as exosomes, are small secretory vesicles carrying a large

number of bioactive molecules, including proteins, metabolites, lipids,

and RNAs.83 Besides other and larger types of EVs, they are produced

by most cell types under normal and pathophysiological conditions

and serve as messengers of the intercellular network, allowing the

exchange of cellular components between cells.42 In detail, classical

exosomes are generated in multivesicular bodies and excreted in the

extracellular environment when these compartments fuse with the

plasma membrane84 (Figure 1). They can then either be taken up by

target cells localized in the microenvironment or transported to dis-

tant sites via biological fluids. Upon arrival at the target cells,

exosomes can deliver their content directly into the cytoplasm of the

target cell or may be surrounded by the plasma membrane and be

disintegrated in the cytoplasm, where their content is released.85 For

recognition and internalization by the target cells, exosomes have spe-

cific proteins on their surface, such as tetraspanins.42 In regenerative

medicine, EVs secreted by MSCs can stimulate proliferation and

inhibit apoptosis of recipient cells. Accordingly, their proangiogenic

effects are related to their ability to sustain the viability and prolifera-

tion of endothelial cells.86 However, studies have also reported that

MSC-derived EVs are potent regulators of tumorigenesis. For example,

Zhu et al87 showed an increase in tumor incidence and growth when

human gastric and colon cancer cell lines were mixed with MSC-

derived EVs and then injected subcutaneously into mice. Similarly, Ren

et al88 have shown, using a xenograft model, that intravenous injection

of hypoxia-conditioned MSC-EVs significantly increases tumor devel-

opment. It is therefore critical to identify which molecules transferred

by EVs induce cancer pathways and which tumor types can benefit

from MSC-EV treatment.

Several studies have shown that MSC-derived EVs contain cyto-

kines and growth factors, and accumulating evidence indicates that

angiogenesis can also be specifically regulated by different encapsu-

lated RNAs, including miRNAs.89 MiRNA is a class of highly con-

served, single-stranded, 19 to 22 nucleotide long, noncoding small

RNAs that regulate gene expression at the post-transcriptional level

by targeting 30-untranslated regions of specific mRNAs.90 Upon bind-

ing, miRNAs inhibit mRNA translation or cause mRNA degradation,

thus suppressing protein synthesis. Although more than 2000 miRNAs

are present in humans91 and nearly 800 miRNAs have been identified

in the human heart at this time,92 the nature of target transcripts is

unknown for many of them. Meanwhile, only a few miRNAs have

been described to promote angiogenesis; Table 2 shows a selection of

known miRNAs with proangiogenic activity.

For instance, with regard to miRNAs incorporated into MSC-

derived EVs, miRNA-21 activates the protein kinase B/extracellular

signal-regulated kinase signaling pathway leading to the over-

production of VEGF.104 MiR-126 exerts its activity by targeting pho-

sphoinositide-3-kinase regulatory subunit 2 and sprouty-related

EVH1 domain containing 1, two negative regulators of VEGF signal-

ing.122 MiR-130a is a strong positive regulator of angiogenesis

because it targets, for example, the antiangiogenic factors growth

arrest-specific homeobox and homeobox A5.125 MiR-135b and miR-

31 contribute to angiogenesis by accelerating HIF-1 alpha transcrip-

tional activity via inhibition of factor-inhibiting hypoxia-inducible fac-

tor 1, an asparaginyl hydroxylase enzyme that suppresses HIF-1
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alpha.119,129 Likewise, miR-23a directly targets prolyl hydroxylase 1

and 2, leading to HIF-1 alpha stabilization.109 However, despite the

benefits of selective miRNAs for regenerative medicine approaches

by inducing angiogenesis, there is a close relationship between vascu-

larity and tumor expansion.158 For example, the miRNA-17�92 clus-

ter has been shown to increase angiogenesis both in vitro and in vivo,

and its predominance was observed in a variety of human cancers.159

Similarly, plasma miRNA-21 levels have been described as a marker

for various types of tumors, such as breast, colon, prostate, ovarian,

pancreatic, and lung cancer.160 In addition, since miRNAs do not per-

fectly complement their target mRNAs, they may target multiple

genes whose protein products act on different signaling pathways and

thus dysregulate several networks in tumor cells.161 Given their piv-

otal role in carcinogenesis, off-target effects of miRNAs should be

well characterized before evaluating their use in clinical settings.

Taken together, although aberrant angiogenesis may contribute to

pathological conditions, including growth and dissemination of

tumors, miRNA application is more welcome for the induction of

angiogenesis than its repression.162,163

6 | EVS AS VEHICLES FOR THE TARGETED
DELIVERY OF PROANGIOGENIC MOLECULES

An EV-based delivery system for proangiogenic factors offers great

benefits such as low toxicity, low immunogenicity, high blood circula-

tion stability, biocompatibility, and biological barrier permeability.

Apart from the fact that stress situations, such as hypoxia, can alter

the composition of EVs, the loading of EVs with proangiogenic factors

is a more specific approach to facilitate angiogenesis. To date, various

methods have been proposed for loading EVs which can be classified

into either cargo loading during formation or after isolation. One

promising approach for cargo loading during EV formation is the

TABLE 2 Selection of miRNAs with proangiogenic properties

miRNA Regulated targets (selection) Reference

miR-let-7 ALK5, FASLG, TSP-2 93-95

miR-9a ECAD, SOCS5 96-98

miR-10aa KLF4, PTEN 99,100

miR-10ba HOXD10, KLF4, SDC1 101,102

miRNA-

17�92a
CTGF, TSP-1 103

miR-21a CHIP, PDCD4, PTEN, SMAD7, SPRY1,

STAT3

104-108

miR-23aa PHD1, PHD2, TSGA10, ZO-1 109,110

miR-26b COX2, CTGF, OCT4, SMAD1 111-113

miR-27b DLL4, SPRY2 114,115

miR-30b DLL4, JDP2 116,117

miR-30da MYPT1 118

miR-31 FIH-1 119

miR-93a ITGB8 120

miR-125a DLL-4 121

miR-126 PIK3R2, SPRED1 122-124

miR-130aa GAX, HOXA5, RUNX3, TFPI2 125-127

miR-132a p120RasGAP 128

miR-135ba FIH-1, LATS2 129,130

miR-145 TMOD3 131

miR-146aa BRCA1, NF2, PAK1, RAC1 132,133

miR-150a c-Myb, SRCIN1, TP53 134-139

miR-155a VHL 140

miR-181aa SRCIN1 141

miR-181ba GATA6, PDCD10, 142

miR-182a BRCA1, FOXO3, HMGA2, MITF-M,

MTSS1

143

miR-194a TSP-1 144

miR-210a EFNA3 145,146

miR-214 ATM 147

miR-217 FOXO3A, KRAS, SIRT1 148,149

miR-296a HGS 150

miR-378a FUS-1, SUFU 151

miR-382a PTEN 152

miR-424 CUL2 153

miR-433 DKK1 154

miR-467a TSP-1 155

miR-494a CASP2 156

miR-1246a PML 157

Abbreviations: ALK5, activin receptor-like kinase 5; ATM, ataxia telangiec-

tasia mutated protein; BRCA1, breast cancer protein 1; CASP2, caspase-2;

CHIP, carboxyl terminus of the heat-shock cognate 70-interacting protein;

COX2, cyclooxygenase-2; CTGF, connective tissue growth factor; CUL2,

cullin 2; DKK1, dickkopf Wnt signaling pathway inhibitor 1; DLL4, delta-

like ligand 4; ECAD, e-cadherin; FASLG, Fas ligand; FIH-1, factor-inhibiting

hypoxia-inducible factor 1; FOXO3, forkhead-box-protein O3; GATA6,

GATA-binding factor 6; GAX, growth arrest-specific homeobox; HGS,

hepatocyte growth factor-regulated tyrosine kinase substrate; HMGA2,

high-mobility group AT-hook 2; HOXA5, homeobox A5; HOXD10,

homeobox D10; ITGB8, integrin B8; JDP2, jun dimerization protein 2;

KLF4, Krüppel-like factor 4; LATS2, large tumor suppressor kinase 2;

MITF-M, microphthalmia-associated transcription factor type M; MTSS-1,

metastasis suppressor-1; MYPT1, myosin phosphatase targeting subunit 1;

NF2, neurofibromin 2; PAK1, p21-activated kinase 1; PDCD4,

programmed cell death protein 4; PDCD10, programmed cell death pro-

tein 10; PHD1, prolyl hydroxylase 1; PHD2, prolyl hydroxylase 2; PIK3R2,

phosphoinositide-3-kinase regulatory subunit 2; PML, promyelocytic leu-

kemia protein; PTEN, phosphatase and tensin homolog; RAC1, Ras-related

C3 botulinum toxin substrate 1; p120RasGAP, Ras GTPase-activating pro-

tein 1; RUNX3, Runt-related transcription factor 3; SDC1, syndecan-1;

SOCS5, suppressor of cytokine signaling 5; SPRED1, sprouty-related

EVH1 domain containing 1; SPRY1, sprouty homologue 1; SPRY2, sprouty

homologue 2; SRCIN1, SRC kinase signaling inhibitor 1; STAT3, signal

transducer and activator of transcription 3; SUFU, suppressor of fused;

TFPI2, tissue factor pathway inhibitor 2; TMOD3, tropomodulin 3; TP53,

tumor protein p53; TSP-1, thrombospondin-1; TSP-2, thrombospondin-2;

VHL, von Hippel-Lindau tumor suppressor; ZO-1, zonula occludens-1.
amiRNAs that have been shown to also play a role in promoting angiogen-

esis in tumors.
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transfection of MSCs with DNA encoding therapeutically relevant

compounds, which are then released into secreted EVs. However,

because overexpression of a particular factor does not ensure

increased presence in EVs, loading of EVs after release with

proangiogenic factors or the vectors encoding them was considered.

For instance, by applying an electric field to a suspension of EVs and

the therapeutic cargo, pores are created in the membrane, thereby

facilitating movement of the cargo into the lumen of EVs.164 Besides

the efficacy of EVs, methods for optimal delivery to the heart are still

being investigated. Previous studies have used both intracoronary and

intramyocardial injections, with the latter being more effective. For

example, Gallet et al165 showed that EVs from human cardiosphere-

derived cells administered to pigs in both acute and chronic models of

cardiac ischemia lead to reduced infarct size and preserved systolic

function after intramyocardial but not intracoronary delivery.

Whether these improvements will be maintained in the long-term

remains to be investigated. However, although intramyocardial injec-

tions are acceptable in animal studies, this method is not clinically

appealing because of its invasive nature. Ideally, EVs should be admin-

istered intravenously. Nonetheless, a challenge with the use of exoge-

nously administered EVs is that they may be nonspecifically trapped

in nontargeted organs, particularly in the lungs and liver, resulting in

insufficient targeting of myocardial ischemia.166 As with cells,

attempts to modify EVs as effective tools directly targeting ischemic

myocardium have been considered. One method is to restructure

transmembrane proteins of EVs to fuse them with ligands or homing

peptides, thereby conferring the ability of EVs for targeting tissues

bearing the corresponding receptors. Recently, a new peptide

sequence, CSTSMLKAC, has been discovered that can preferentially

target the ischemic region of the heart, resulting in increased specific-

ity and efficiency of EVs targeting the ischemic myocardium.166

Another major challenge to the clinical application of EVs is that a high

dose is required to improve angiogenesis to a physiologically relevant

extent.167 Although methods for isolating EVs are continuously being

developed and optimized, the typical yield of an EV isolation can be

less than 1 μg of total EV protein from 1 mL of culture medium,168

while the therapeutic dose of EVs is normally in the range of 10 to

100 μg of protein in mouse models.169 In turn, the effective dose in

humans could be an order of magnitude or more to compensate for

the rapid clearance of EVs from the body. In sum, EVs are promising

carriers for proangiogenic molecules, and future efforts should investi-

gate their specific delivery to target organs and the optimal dose.

Other important issues to be addressed are the precise mechanism of

action of exogenously administered EVs in vivo, the appropriate time

window for EV administration, and the route of administration that

achieves maximum efficacy without side effects.170,171

7 | CONCLUSIONS

MSCs have been explored as a versatile and widely used cell source in

regenerative medicine and tissue engineering. Owing to their

proangiogenic potential, which is mainly mediated by paracrine

factors, they are a promising treatment strategy for diseases caused

by insufficient angiogenesis such as MI. But instead of transplanting

autologous or allogenic MSCs, a new option is cell-free therapy,

where MSCs are first cultivated and their EVs are then isolated and

further manipulated to achieve a more proangiogenic cargo. Evidence

supports the superiority of this approach over stromal cell transplan-

tation. Although there are still some drawbacks with respect to the

production of sufficiently large amounts of EVs, sample impurities and

the inability to produce EVs without the use of cells, EVs constitute a

major focus of proangiogenic therapy. Proteins, mRNAs, and miRNAs

contained in EVs can be transferred to recipient cells in order to

induce their reprogramming to promote angiogenesis. Interestingly,

encapsulated miRNAs have recently emerged as key positive regula-

tors of angiogenesis in pathological settings of insufficient blood sup-

ply and thus represent promising new tools for CVD treatment.

However, to manifest this potential, several challenges for miRNA

therapeutics need to be addressed, including the efficiency of the

delivery system and the currently incomplete understanding of their

biology, as some miRNAs also play a role in promoting angiogenesis in

tumors. Future mechanistic studies with EVs should carefully monitor

potential off-target and dose-dependent effects.

In conclusion, cell-free MSC-derived EVs loaded with

proangiogenic factors represent a feasible option in situations of

insufficient angiogenesis, such as acute MI and ischemia. Conse-

quently, EVs may constitute a promising platform for noncellular

regenerative therapies to complement or even replace the use of

MSCs in tissue regeneration and repair.
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