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Summary
Background The prognosis of lung carcinoma has changed since the discovery of molecular targets and their specific
drugs. Somatic Epidermal Growth Factor Receptor (EGFR) mutations have been reported in lung carcinoma, and
these mutant proteins act as substrates for targeted therapies. However, in a resource-constrained country like India,
panel-based next-generation sequencing cannot be made available to the population at large. Additional challenges
such as adequacy of tissue in case of lung core biopsies and locating suitable tumour tissues as a result of innate
intratumoral heterogeneity indicate the necessity of an AI-based end-to-end pipeline capable of automatically
detecting and learning more effective lung nodule features from CT images and predicting the probability of the
EGFR-mutant. This will help the oncologists and patients in resource-limited settings to achieve near-optimal care
and appropriate therapy.

Methods The EGFR gene sequencing and CT imaging data of 2277 patients with lung carcinoma were included from
three cohorts in India and a White population cohort collected from TCIA. Another cohort LIDC-IDRI was used to
train the AIPS-Nodule (AIPS-N) model for automatic detection and characterisation of lung nodules. We explored the
value of combining the results of the AIPS-N with the clinical factors in the AIPS-Mutation (AIPS-M) model for
predicting EGFR genotype, and it was evaluated by area under the curve (AUC).

Findings AIPS-N achieved an average AP50 of 70.19% in detecting the location of nodules within the lung region of
interest during validation and predicted the score of five lung nodule properties. The AIPS-M machine learning (ML)
and deep learning (DL) models achieved AUCs ranging from 0.587 to 0.910.

Interpretation The AIPS suggests that CT imaging combined with a fully automated lung-nodule analysis AI system
can predict EGFR genotype and identify patients with an EGFRmutation in a cost-effective and non-invasive manner.
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Introduction
The treatment of lung carcinoma has undergone a
paradigm shift with the emergence of newer molecular
therapies. The prognosis of patients with biomarker-
driven cancer treated with targeted therapy is substan-
tially better than patients unable to receive targeted
therapies. Somatic Epidermal Growth Factor Receptor
(EGFR) mutations have been reported in lung carci-
noma, and these mutant proteins act as substrates for
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targeted therapies. The administration of EGFR-targeted
therapy has revolutionised lung cancer management.1

Somatic mutation in the EGFR gene is assessed by
gene sequencing of biopsied tumour tissues, which
faces the challenge of making available panel-based
next-generation sequencing (NGS) to the population at
large in a resource-constrained country like India.
Additional challenges associated with NGS include the
adequacy of tissue in the case of lung core biopsies,
ics, Amity Institute of Biotechnology, Amity University, Noida 201303,
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Research in context

Evidence before this study
Prior to undertaking this study, we conducted a
comprehensive review of existing evidence to understand the
landscape of lung carcinoma treatment, EGFR mutations, AI
applications in lung nodule analysis, and the specific
challenges faced in resource-constrained settings.
Sources:
1. Databases:

a. Google Scholar
b. PubMed
c. The Cancer Imaging Archive
d. ImageNet

2. Journals:
a. LANCET: Digital Health
b. CA: A Cancer Journal for Clinicians
c. Nature: Modern Pathology
d. European Respiratory Journal
e. Frontiers in Immunology
f. Institute of Electrical and Electronics Engineers (IEEE)
g. Journal of Clinical Biology
h. Nature Reviews: Clinical Oncology
i. American Association for Cancer Research (AACR):

Cancer Research
j. American Association of Physicists in Medicine:

Medical Physics
k. Journal of Medical Imaging

Criteria used to include or exclude studies:
1. We included studies that directly addressed the research

questions/objectives of our study.
2. We only included peer-reviewed journal articles, confer-

ence papers, theses, dissertations, and other scholarly
publications.

3. The exact start and end dates of the search were 1st
January 2002 and 31st July 2023.

4. We included studies published in all languages.

Search terms used:
We searched for journals and books on Google Scholar and
PubMed using the keywords: “EGFR mutation”, “CT images”,
and “artificial intelligence”.
The quality of the evidence was assessed for risk of bias,
considering study design, sample size, and methodology. The
evidence highlighted the significant impact of targeted
therapies based on EGFR mutations, the potential of AI in

nodule analysis, and the limitations faced in real-world clinical
settings, particularly in countries like India.

Added value of this study
This study contributes to the existing evidence by addressing
specific gaps identified in the literature:
1. Population-specific model: unlike previous research, which

predominantly focused on populations of White and
Chinese origins, our study centres on the Indian popu-
lation. This addition is particularly important given the
genetic diversity of populations and the need for
population-specific models.

2. Detection and characterisation of lung nodules: while most
of the previous studies often concentrated solely on
nodule detection, our research extends the scope to
comprehensive nodule characterization and its correla-
tion with EGFR mutational status.

3. Avoids resource-intensive steps: the novel AI-based Pre-
dictive System (AIPS) introduced here offers a stream-
lined approach that avoids resource-intensive steps like
manual image annotation and complex feature engi-
neering, making it more practical for implementation in
resource-limited settings.

Implications of all the available evidence
Collectively, the available evidence and the findings of this
study have significant implications for practice, policy, and
future research:
1. Triaging patients for targeted therapies: the identification

and prediction of EGFR mutational status through AI-
based nodule characterisation can guide oncologists in
effectively triaging patients for targeted therapies. This
not only optimizes patient care but also has implications
for resource allocation in healthcare systems.

2. Population-specific model: the model’s focus on the Indian
population underscores the importance of tailoring AI
approaches to specific populations for improved accuracy
and relevance. This study’s insights could potentially in-
fluence the development of similar AI systems for other
populations, thereby advancing global healthcare prac-
tices. Future research could explore the integration of AI-
based strategies into routine clinical workflows and
investigate the generalizability of these findings to other
populations and settings.
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locating suitable tumour tissues due to innate intra-
tumoral heterogeneity,2,3 the shift in EGFR mutation
status after subsequent chemotherapy,4,5 and reduced
DNA quality.6

Studies have shown promising results in automati-
cally categorising and characterising lung nodules due to
combining AI with CT imaging7,8 (Appendix p 4). This
provides an alternative to analysing the lung nodules with
no additional cost. Despite these advancements,
numerous methods have only focused on detecting
nodules in CT imaging.9,10 Additionally, studies have
utilised AI to extract comprehensive information from
the entire lung for predicting EGFR genotype and
assessing the response to targeted therapy in lung cancer
www.thelancet.com Vol 24 May, 2024

www.thelancet.com/digital-health


Articles
but these studies have predominantly concentrated on
the White and Chinese populations.11,12 For example,
Wang et al. introduced an AI system that predicts lung
cancer patients’ EGFR genotype and treatment outcomes
by analysing CT images of the entire lung.11 As a step
forward, we have done a comprehensive characterization
of the nodule that can reflect EGFR genotype information
and might affect therapeutic efficacy, with a primary
focus on the Indian population.

We aim to develop a novel, cost-effective and non-
invasive AI-based strategy not only to detect but also to
characterise lung nodules that may predict the EGFR
mutational status (wild-type vs mutant) in lung carci-
noma patients and hence effectively triage these patients
requiring comprehensive molecular profiling of the
EGFR-driver gene. This will help the oncologists and
patients in resource-limited settings to achieve near-
optimal care and appropriate therapy.

This is achieved through the fully automated AI-
based Predictive System (AIPS) built using machine
learning (ML) and deep learning (DL) algorithms, which
is an end-to-end pipeline capable of automatically
detecting and learning more effective lung nodule fea-
tures from CT images and predicting the probability of
the EGFR-mutant. This avoids time-consuming image
annotation by radiologists, and feature engineering
(complex tumour boundary segmentation or human-
defined features) based on radiomics.6 Most of the
studies in this field have focused primarily on the data
of the White and the Chinese population,11,12 raising the
need for a model trained, validated, and tested on the
Indian population specifically.
Methods
Study design and participants
The overall workflow of the experiment is depicted in
Fig. 1.

We included 3287 patients with lung cancer from
five cohorts. Out of which, three retrospective cohorts
(labelled as Cohort 1 [n = 1379], Cohort 2 [n = 591], and
Cohort 3 [n = 96]) were collected from Rajiv Gandhi
Cancer Institute and Research Centre, New Delhi, India
(RGCI & RC) after receiving approval from the respec-
tive ethics committees. Further, Cohorts 4 and 5 were
collected from two public resources - The Cancer Im-
aging Archive (TCIA) - comprising a White population
in the USA (labelled as Cohort 4 [n = 211])13 and the
Lung Image Database Consortium - Image Database
Resource Initiative (LIDC-IDRI) image collection14 of
1010 patients (244,527 images) labelled as Cohort 5
[n = 1010]. EGFR gene sequencing results and lung CT
images (1,582,812 images) at diagnosis time were ob-
tained for all patients in Cohorts 1–4 (Table 1).

Next, we trained, validated, and tested the AIPS-N
lung segmentation and nodule feature prediction
model using CT images collected from LIDC-IDRI
www.thelancet.com Vol 24 May, 2024
(Cohort 5) (Fig. 1 - points A & B). Further, the CT im-
ages belonging to the Indian population (Cohorts 1–3)
and the White population (Cohort 4) were fed into the
trained AIPS-N model to obtain results in the form of
AIPS-N scores (Fig. 1 - points C & D). The AIPS-N
scores were merged with the clinical factors from the
respective Cohorts (Fig. 1 - point E).

The merged dataset (AIPS-N scores merged with
clinical factors) of Cohort 1 (Indian population) was split
into training and internal validation subsets for model
training, hyperparameter tuning, and internal validation
to build AIPS-M models (Fig. 1 - point F). The merged
datasets of Cohort 2 and Cohort 3 (Indian population),
as well as Cohort 4 (White population), were utilised for
independent testing of the AIPS-M models trained on
Cohort 1. Additionally, in an entirely distinct experi-
ment, the merged dataset of Cohort 4 (White popula-
tion) was split into training, validation, and testing
subsets. The inclusion criteria, data collection time-
frame, data sources, and CT scanner information
(manufacturer, model, and scanning parameters) for
each Cohort are provided in Appendix (p 5).

Development of the AIPS-nodule (AIPS-N) model
The development of the AIPS-Nodule (AIPS-N) model
involved four major steps. Firstly, we downloaded the
LIDC-IDRI CT image dataset (Cohort 5) containing
1010 patients (244,527 images) from TCIA.15 Next, we
pre-processed these CT images by applying a technique
called windowing to enhance the visibility of the lungs.
Following that, we parsed the image annotations which,
in our case, involved extraction of the location and fea-
tures of lung nodules within the image, such as malig-
nancy, margin, texture, sphericity, and spiculation. Next,
we applied automated lung segmentation to identify and
separate the lung area from the rest of the image. The
parsed image annotations along with the respective pre-
processed images were used to train the Faster R-CNN
(region-based convolutional neural network) model. The
overall workflow for developing the AIPS-N model is
demonstrated in Fig. 2.

Data collection
The LIDC-IDRI image dataset (Cohort 5) downloaded
from TCIA15 is preprocessed to demonstrate specific
anatomy and pathology in the images. The images
collected from 1010 patients are in 3D-DICOM format
and consist of multiple slices, which means the reso-
lution of the images has three components - length,
height, and width. We normalised the intensity values of
the DICOM images to a standardised range (between
0 and 255) before applying windowing techniques. This
step ensured that the object detection models received
input with consistent intensity ranges across images in
different cohorts and avoided any biases resulting from
varying intensity scales (Appendix p 9). Additional steps
were taken to ensure the representativeness of Cohort 5
3
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Fig. 1: Workflow of the proposed AIPS and study design. (A) The LIDC-IDRI image and annotation dataset is downloaded from The Cancer
Imaging Archive (TCIA) (B) AIPS-Nodule (AIPS-N) automated lung segmentation and nodule property prediction model is trained using the
LIDC-IDRI image and annotation dataset. (C) CT images from study datasets of the Indian and White populations are fed into the trained AIPS-N
model. (D) AIPS-N scores for different nodule features are calculated for each of the study datasets. (E) The AIPS-N scores, EGFR molecular
genotype, and the clinical factors of the study datasets are merged. (F) Merged data is used for building the AIPS-Mutation prediction (AIPS-M)
ML and DL models to ultimately predict the mutational status (wild-type or mutant) of the EGFR gene.
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for training the AIPS-N model and its subsequent
generalisation to Cohorts 1–4 (Appendix p 11).

Preprocessing (windowing)
To suppress noise and irrelevant bright intensities (e.g.,
bones), and to demonstrate individual anatomy and
Cohort 1 (n = 1379) Cohort

Data source India India

Age, years 62.4 (23–92) 61.7 (21

Sex

Male 905 (65.6%) 356 (60

Female 474 (34.4%) 235 (39

Smoking

Never 736 (54.4%) 356 (60

Smoker 643 (46.6%) 235 (39

Histology

Adenocarcinoma 903 (65.5%) 408 (69

Squamous cell carcinoma 259 (18.8%) 101 (17

Others 217 (15.7%) 82 (13.9

EGFR genotype

Wild-type 699 (50.7%) 286 (48

Mutant 680 (49.3%) 305 (51

NA 0 0

The patient characteristics are unavailable for Cohort 5.

Table 1: Characteristics of patients in Cohorts 1–4.
pathology in lung ROI, we preprocessed the lung ROI
through windowing.16 During windowing, the window
width (WW set to 1500 HU), described as the range of
CT numbers and the window level (WL set to −500 HU),
described as the midpoint of the range of the CT
numbers are adjusted to alter the slice contrast and
2 (n = 591) Cohort 3 (n = 96) Cohort 4 (n = 211)

India USA

–90) 58.6 (24–86) 67.96 (24–87)

.2%) 64 (66.7%) 135 (63.9%)

.8%) 32 (33.3%) 76 (36.1%)

.2%) 67 (69.8%) 48 (22.7%)

.8%) 29 (30.2%) 163 (77.3%)

.0%) 93 (96.9%) 172 (81.5%)

.1%) 3 (3.1%) 35 (16.6%)

%) 0 (0.0%) 4 (1.9%)

.4%) 69 (71.9%) 133 (63%)

.6%) 25 (28.1%) 38 (18%)

0 40 (19%)

www.thelancet.com Vol 24 May, 2024
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Fig. 2: Overall workflow for developing the AIPS-N model.

Articles
brightness respectively for the evaluation of lung pa-
renchyma17 (Appendix p 9).

Parsing of annotations
Every slice in a 3D image that embodies a lung cancer
nodule has its corresponding annotation to locate the
coordinates of the mask and features of the nodule. The
coordinates and the features are a result of an image
annotation process performed by four thoracic radiolo-
gists in two phases - blinded-read phase and unblinded-
read phase to locate and describe all lung nodules as
comprehensively as possible (Appendix p 12). The
calculated inter-rater reliability (Cohen’s Kappa) is
approximately 0.8448. This indicates a very strong level
of agreement among the four radiologists in marking
nodules greater than or equal to 3 mm. These annota-
tions are parsed using PyLIDC Python library18 and
saved into a JSON-based annotation file for each slice.
The image slices, masks, and the corresponding JSON-
based annotations are arranged in different folders ac-
cording to the patient ID. The output directory has
folders assigned with a patient ID (Appendix p 21).

We divide the image slices, masks, and the corre-
sponding JSON-based annotations into training, valida-
tion, and testing subsets. The training subset generally
contains a significant portion of the dataset. For
instance, we used 70% of the total dataset for training
purposes. The validation subset (15% of the total data-
set) was used for testing the trained model. This is not
the same as using the validation dataset for hyper-
parameter tuning. Instead, it is used to evaluate the
model’s performance on unseen data after it has been
trained. Finally, the testing subset (15% of the total
dataset) allows the evaluation of the model’s general-
isation and accuracy on unseen data, ensuring its reli-
ability and effectiveness in real-world scenarios
www.thelancet.com Vol 24 May, 2024
(Appendix p 33). To mitigate the influence of class
imbalance on the model’s performance, we balanced the
number of images in the training subset according to
the class with the fewest images (Appendix p 34).

Lung segmentation and object detection
We used Facebook Research’s Detectron2 Faster R-CNN
R101-FPN119 for acquiring and extracting the lung re-
gion of interest (lung ROI) and suppressing the non-
lung areas in every slice of a 3D image that embodies
a lung cancer nodule (Fig. 3), followed by the extraction
of image features, and the training of object detection
models to detect and classify lung nodules.

Detectron2 provides numerous base models19 pre-
trained on a large image set such as ImageNet.20 These
base models serve as the foundation for our network and
are used to extract image features and train our model.
One such model is the ResNet101-Feature Pyramid
Network (R101-FPN) Faster R-CNN pre-trained base
model. It exhibits a 42% Average Precision (AP) on the
ImageNet benchmark dataset, indicating its effectiveness
in detecting and classifying objects within the lung ROI,
including lung nodules.

The training subset containing the annotations,
masks, and image slices was fed into this pre-trained
base model. The base model with the ResNet back-
bone extracts features from the input image and pro-
vides high-level semantic convolutional feature maps at
all scales21 (Fig. 4). These feature maps contain valuable
semantic information that helps identify and under-
stand lung nodules’ presence.

Next, a small subnetwork called the Region Proposal
Network (RPN) is used on the multi-scale feature maps.
The purpose of the RPN is to predict region proposals,
which are potential areas in the image that may contain
objects of interest. The RPN accomplishes this by
5
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Fig. 3: Lung region of interest. A yellow box is used to visually highlight and enclose the region of interest (ROI) corresponding to the lungs.
This box serves as a visual reference, indicating the specific area within the image. By enclosing the lung area with a yellow box, it becomes
easier to identify and focus on the relevant portion of the image for further analysis.
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producing two outputs: objectness scores and anchor
deltas. The RPN assigns an objectness score to each
region proposal, indicating the probability of an object’s
presence in that proposed region. Higher scores suggest
a higher likelihood of an object being present. Anchor
deltas are predefined bounding boxes of different sizes
and aspect ratios placed over the feature maps. The RPN
generates anchor deltas, which represent the adjust-
ments to the anchor box sizes and positions relative to
the original image size. These deltas help refine the
anchor boxes to align more accurately with the objects in
the image.
Fig. 4: The three components of the AIPS-N Faster R-CNN model archite
the backbone network, the region proposal network (RPN), and the box
various tasks and contribute to the overall functionality of the model. To
classify objects of interest.
Using the objectness scores and anchor deltas, the
RPN generates box candidates. This process involves
selecting regions with high objectness scores and
applying the anchor deltas to adjust the size and posi-
tion of the anchor boxes. The scales and aspect ratios are
essential parameters that control the size and shape
variations of the proposed boxes, allowing for the
detection of objects at different scales and proportions.

The box candidates, obtained from the RPN, then
undergo the RoI pooling layer. This layer reshapes the
proposed regions to a standardised size, preparing them
as inputs for the subsequent Box Head neural network.
cture. The model architecture consists of three primary components:
head neural network. These components work together to facilitate
gether, these components enable the model to accurately detect and

www.thelancet.com Vol 24 May, 2024
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The Box Head network performs two main tasks:
classification and prediction of bounding box offsets. It
classifies the input image by assigning object class la-
bels to the proposed regions, determining the presence
of specific objects within them. Additionally, the
network predicts the precise offset values for the
bounding boxes within the proposed regions, enabling
accurate localization of the objects. During the training
process of the Faster R-CNN model, hyperparameter
configurations were kept as default from Detectron2 to
optimise the model’s performance. The hyper-
parameters used while training the Faster R-CNN model
are in the Appendix (p 13).

The workflow involved in constructing an automated
lung segmentation and object detection model is per-
formed individually for each nodule feature. Following
this process, five AIPS-N feature models are obtained,
one for each feature. These models can predict the
location of each nodule within a lung slice, denoted by a
red bounding box, within the designated lung region of
interest (ROI) marked by a green rectangular box along
with the predicted class. For instance, using the AIPS-N
malignancy model, a prediction of 4 corresponds to
“Moderately Suspicious”, while a prediction of 2 using
the AIPS-N margin model corresponds to “Near Poorly
Defined,” as stated in the Appendix (p 14). The AP50
value, which represents the intersection over union
(IoU) threshold of 50%, is used as a measure to validate
the prediction capability of the model. The Average
Precision at 50% IoU (AP50) is a commonly used eval-
uation metric in object detection and instance segmen-
tation tasks. It measures the accuracy of predictions by
considering the overlap between predicted bounding
boxes or segmentation masks and ground truth
annotations.

Development of the AIPS-mutation (AIPS-M) model
EGFR mutations are reported to be identified with
specific clinical factors including age, gender, smoking
status, and histopathology6; therefore, diagnostic clinical
factors were merged with the AIPS-N results to create
the AIPS-M machine learning and deep learning (DL)
based classifiers for predicting the AIPS-M score (EGFR
mutation probability score) of a patient.

The AIPS-N scores were combined with the clinical
factors of each patient, resulting in merged data with 9
input features (Appendix pp 14–15) from 1379 Indian
patients in Cohort 1 (Table 1, Appendix p 35). Numer-
ical and categorical data with missing clinical factors
were imputed using mean value and value with the
highest frequency respectively (Appendix p 15). Next, we
used RandomOversampler to over-sample the minority
class, in our case, the mutant class, by picking samples
at random with replacement (Appendix p 36). The
oversampled data was then split into training and vali-
dation subsets (Appendix p 37). This data was used to
train and validate machine learning (ML) algorithms
www.thelancet.com Vol 24 May, 2024
and the deep learning algorithm separately. A summary
of the AIPS-M experiments conducted during the study
is depicted in Fig. 5.

The AIPS-N scores were combined with the clinical
factors of each patient, resulting in merged data with 9
input features from 1379 Indian patients in Cohort 1.
Random oversampling (RO) was applied to balance the
classes, specifically oversampling the minority class
(mutant class) using the RandomOversampler. The
oversampled data was split into training and validation
subsets. The ML models and the DL model were
generated using the training and validation subsets. The
trained ML models and the DL model were validated
using the validation subset and tested independently
using two Indian testing cohorts (Cohort 2 & Cohort 3)
and a White testing cohort (Cohort 4). The performance
evaluation of the models was conducted using metrics
such as receiver operating characteristic curve (AUC),
accuracy, recall, precision, and F1-score (Fig. 5).

The AIPS-M ML algorithms employed were support
vector machine (SVM), random forest, decision tree clas-
sifier, and XGBoost. Additionally, we employed grid
search cross-validation (CV) and randomised search cross-
validation (CV) on the random forest model to optimise
the hyperparameters of the random forest algorithm.

The AIPS-M DL algorithm was trained separately from
the machine learning models and served as an alternative
approach. Before training the DL model, we conducted
hyperparameter tuning to find out the optimum value of
parameters (Appendix p 16). The robustness of the DL
algorithm is boosted by hyperparameter tuning, particu-
larly when a hyperparameter affects a significant fraction
of the variance.22,23 The AIPS-M DL model consists of four
layers - one input layer, two hidden layers, and one output
layer (Fig. 6). The total number of clinical factors and the
AIPS-N scores of each nodule determines the number of
nodes in the input layer (9 nodes in the input layer)
(Appendix p 15). A fully connected layer (1 × FCL), an
activation function (1 × leaky ReLU24), and a batch nor-
malisation layer25 (1 × BNL) make up a single hidden layer
of the DL model. The output layer is composed of a single
FCL (1×) with 2 nodes. The 2 nodes are representative of
the two output variables (wild-type and mutant). The
probability of each output variable was calculated using
softmax activation.26 During the early stages of algorithm
training, the minimal loss was calculated by a constant
bias initializer with a value obtained using log (total
number of positive samples/total number of negative
samples). Subsequently, we implemented Adam opti-
mizer27 during training (Fig. 6).

In addition, we trained the AIPS-M models using only
the clinical factors (Appendix p 15). This approach
allowed us to evaluate the performance of the models in
comparison to the models trained using both the clinical
factors and the AIPS-N scores. By analysing the results,
we gained insights into the impacts of incorporating the
AIPS-N scores on the overall performance of the models.
7
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Fig. 5: Summary of AIPS-M experiments conducted during the study.
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In a separate experiment, random oversampling was
applied to balance the classes in Cohort 4 (White pop-
ulation). Subsequently, Cohort 4 was divided into
training, validation, and testing subsets. However, in-
dependent testing of Cohort 4 could not be performed
due to the unavailability of data (Appendix p 17).

Role of funding source
The funder had any role in the design, conduct, analysis,
or interpretation of the study, or in the decision to
submit the results for publication.
Fig. 6: Construction of the
Results
Results of the AIPS-N model
The preprocessing of the lung-ROI carried out through
the process of windowing resulted in CT slices with
adjusted contrast and brightness. The contrast between a
CT slice before and after preprocessing is demonstrated in
Appendix (p 22). We applied windowing to improve CT
image visibility and interpretability for human observers,
which is valuable for medical image analysis tasks. The
use of windowing enhanced result interpretability without
impacting the performance of the ML and DL models.
deep learning model.

www.thelancet.com Vol 24 May, 2024
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The Faster R-CNN-based AIPS-N model is trained
using the participant folders containing the pre-
processed CT slices, corresponding masks, and anno-
tations (Appendix p 21). The model achieved an average
AP50 value (IoU ≥ 50%) of 70.19% in predicting the
location of nodules within the lung-ROI during valida-
tion. The confidence value is a machine learning prob-
ability score that indicates how confident the algorithm
is that it has extracted the correct class of the nodule
property. A sample prediction for all five properties is
shown in Fig. 7.

Results of the AIPS-M model
The ML algorithms trained using Cohort 1 achieved an
average area under the Receiver Operating Character-
istic (ROC) curve value of 0.85 in the validation subset.
Among the ML algorithms, Random Forest yielded a
slightly higher AUC value in the validation subset
(Appendix pp 24, 38). Additionally, we tested the trained
ML models using Cohort 2 and Cohort 3. Randomised
Search Cross-Validation yielded a slightly higher AUC
value of 0.91 (95 per cent confidence interval, 0.82–0.99)
testing Cohort 2 (Appendix pp 25, 39). XGBoost yielded
a slightly higher AUC value of 0.88 (95 per cent confi-
dence interval, 0.81 to 0.95) in testing Cohort 3
Fig. 7: Predictions made by the AIPS-N model. The AIPS-N model predicte
cancer nodule. The AIPS-N scores are used to train the AIPS-M ML and

www.thelancet.com Vol 24 May, 2024
(Appendix pp 26, 40). We tested the ML models trained
on the Indian population (Cohort 1) on the White cohort
(Cohort 4). The models achieved an average area under
the receiver operating characteristic curve (AUC) value
of 0.82 (Appendix pp 27, 41).

The DL algorithm trained using Cohort 1 achieved
an AUC value of 0.86 in the validation subset. Addi-
tionally, we tested the trained DL model using Cohort 2
and Cohort 3 (Indian population), and Cohort 4 (White
population). The AIPS-M DL model achieved an AUC
value of 0.79 in both testing Cohort 2 and Cohort 3
(Appendix pp 28, 42). As previously mentioned, the
developed deep learning (DL) model offers an alter-
native to the machine learning (ML) models. To facil-
itate a comprehensive comparison between the two
approaches, we have included a diagram in Appendix
(p 23).

In another experiment, we trained the ML and DL
algorithms using only the clinical factors to evaluate
their performance compared to models trained with
both clinical factors and AIPS-N scores. Including AIPS-
N scores led to improved performance in the machine
learning models. For instance, in the testing Cohort 4,
which comprised the White population, the average
AUC value of the ML models trained using Cohort 1
d the AIPS-N score of five properties for a CT slice embodying a lung
DL models.

9
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(Indian population) increased from 0.6 to 0.9. This
highlights the beneficial impact of incorporating AIPS-
N scores on the predictive capabilities of the models
(Appendix p 43).

The publicly available cohort 4 (White population)
contained 133 wild-type class and 38 mutant-class pa-
tients. We applied RandomOversampler to the entire
sample of Cohort 4 to over-sample the minority class.
Next, we split Cohort 4 into training, validation, and
testing subsets. AIPS-M ML algorithms trained using
the training subset of Cohort 4 achieved an average
AUC value of 0.81 on the validation subset (Appendix pp
29, 44) and an average AUC value of 0.85 on the testing
subset (Appendix pp 30, 45).

AIPS-M DL algorithm trained using Cohort 4 ach-
ieved a validation AUC value of 0.9 and a testing AUC of
0.86 (Appendix pp 31, 46).

Case study
The following case study serves as a demonstration of
the full system’s functionality, encompassing AIPS-N
and AIPS-M, from a clinical perspective:

The clinical data for a patient with ID XXX637, a
71-year-old Indian male with a history of smoking was
obtained from Rajiv Gandhi Cancer Institute and
Research Center. The patient was included in the
study based on his diagnosis of Squamous Cell Car-
cinoma, confirmed through histology, and the pres-
ence of the EGFR mutation, as determined by
genomics data.

Role of AIPS-N
The AIPS-N model successfully predicted the location
and characteristics of the detected nodule. It classified
Sphericity and Spiculation as class 1 with confidence
values of 90% and 85%, respectively. The Margin
feature was predicted as class 2 with a higher confi-
dence value of 94%. Texture analysis resulted in a
prediction of class 3 with a confidence level of 93%.
Lastly, the Malignancy class was predicted with a 100%
confidence level (Fig. 8). A magnified version of the
predictions made by the AIPS-N model is depicted in
Appendix (p 32).

Role of AIPS-M
The AIPS-M models, trained using Cohort 1 (Indian
population), were utilised to predict the EGFR status
of Patient XXX637. According to the clinical data
obtained from RGCI, the patient’s actual EGFR status
is known to be ‘mutated’. To make the prediction, the
models utilised both the clinical data and the AIPS-N
feature scores. Remarkably, all six ML Algorithms
(SVM, Random Forest, Decision Tree Algorithm,
Grid Search Cross-Validation, Randomized Search
Cross-Validation, and XG Boost) predicted the status
as ‘mutated’, resulting in a ‘True Positive’ outcome.
Similarly, the deep learning model also produced a
‘True Positive’ result (Appendix p 47). This accurate
prediction of the patient’s EGFR status by the models
showcases the effectiveness of the applied
methodologies.
Discussion
The outcome of our study suggests that regular CT
imaging integrated with a fully automated lung nodule
detection and characterisation AI system can predict the
status of EGFR genotype and single out patients with a
mutation in a cost-effective and non-invasive manner.
The performance metrics of the AIPS model for both
the Indian and the White population suggest that CT
imaging provides information that complements clinical
factors.

NGS is the benchmark diagnostic procedure for
determining genotypes. However, it faces challenges
due to tumour tissue heterogeneity, the changeable
EGFR mutation status over time, tissue limitation in
lung cores, and its cost-effectiveness in resource-
constrained settings. Under such circumstances, AIPS
can be applied to triage patients requiring panel-based
NGS testing in a resource-constrained setting, subse-
quently guiding appropriate therapy. Patients confirmed
to have an EGFR mutation by gene sequencing were
tested using the AIPS, which showed a precise predic-
tion of the EGFR genotype.

AIPS-N detects lung nodules and characterises five
features using deep CNN. We enhanced the generaliz-
ability of our AIPS-N model by addressing systematic
differences in the Cohort 5 CT images due to site,
scanner, and scanning parameters. Site differences
affect clinical protocols and generalizability, scanner
variations impact image quality and consistency, and
scanning parameter disparities influence diagnostic ac-
curacy. Comprehensive handling of these differences
ensures AI models are robust and clinically valid,
increasing their effectiveness in diverse healthcare set-
tings. We applied rescaling and windowing to Cohort 5’s
images, addressing variability in imaging sources before
training the AIPS-N object detection models. This hel-
ped to tackle systemic differences due to site, scanner,
and scanning parameters.

While rescaling and windowing are useful tech-
niques for addressing variability in medical imaging,
they have limitations. Rescaling can lead to the loss of
subtle image details, especially if extreme adjustments
are made, potentially affecting diagnostic accuracy.
Windowing, while enhancing certain features, may
obscure others if not appropriately set, and the subjec-
tivity in parameter selection can introduce variability.
Additionally, these techniques may not fully correct for
all systematic differences, such as variations in image
resolution or noise levels between different scanners.
Therefore, we took additional measures to prepare
Cohort 5 for training the AIPS-N model and
www.thelancet.com Vol 24 May, 2024
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Fig. 8: Predictions made by the AIPS-N model on Patient XXX637.
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generalising to Cohorts 1–4, including consistent image
format, exclusive focus on lung cancer cases, a
comprehensive selection process, and data harmo-
nisation techniques. This guarantees the model’s accu-
racy and applicability across varied lung cancer
scenarios.

AIPS-M predicts the EGFR genotype using machine
learning and deep learning. Machine Learning en-
compasses a diverse range of algorithms utilised for
solving various data problems. Data scientists empha-
sise that no universally optimal algorithm can address
every problem effectively. The selection of a suitable
algorithm depends on various factors such as the na-
ture of the problem at hand, the number of variables
involved, and the most suitable model for the specific
task.27 In our specific case, we found that the Grid
Search Cross-Validation and Random Forest algo-
rithms exhibited slightly superior performance in the
testing cohorts of the Indian and White populations as
compared to other algorithms. The trained deep
learning algorithm exhibited promising performance,
indicating its effectiveness in capturing complex pat-
terns within the data. Additionally, we applied various
techniques to avoid data leakage, which is a critical
issue in machine learning training that can lead to
overestimation of model performance and invalid re-
sults. These techniques include train-validation split,
www.thelancet.com Vol 24 May, 2024
cross-validation, feature engineering, and data impu-
tation (Appendix p 18).

Our analysis reveals two prominent distinctions be-
tween Cohort 2 [n = 591] and Cohort 3 [n = 96]. Firstly,
Cohort 3 comprises significantly fewer samples than
Cohort 2. Secondly, Cohort 3 exhibits a class imbalance,
where positive and negative cases are unevenly repre-
sented. This imbalance can impact precision and F1
scores, contributing to the comparatively poorer preci-
sion and F1 score in Cohort 3, as compared to Cohort 2
(Appendix p 19).

We assessed the generalisability of the AIPS model
because the EGFR mutation rate differs between
ethnicities.28–30 Moreover, there are no mutation prediction
models such as the AIPS-M trained on the Indian popu-
lation, with most models primarily trained on Chinese
and White populations. Hence, we used data from an
Indian population to train the AIPS-M model and data
from aWhite population and another Indian population to
test the model; AIPS produced promising results in both
populations. We also trained the AIPS-M ML and DL
models using Cohort 4 (White population). Customising
AIPS-M models for Indian and White populations ac-
knowledges population-specific impacts on model perfor-
mance. This strategy optimises accuracy by accounting for
unique traits. Decision hinges on data availability and
potential imaging variations (Appendix p 20).
11
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We built the AIPS model to eliminate the need for
laborious CT imaging annotation and identification of
adenocarcinoma because it was trained using all types of
lung cancer.6,8 This preserves its fully automated func-
tionality and makes it more convenient for use in clin-
ical practice. Most significantly, we found that analysis
of lung nodule characteristics could play a role in lung
cancer diagnosis.

Our research has several limitations to consider.
Firstly, due to the absence of external annotated data,
we divided Cohort 5 into training, validation, and an
internal testing cohort. While this internal test set
assesses the model’s performance on unseen data, it’s
not fully independent. The study acknowledges this
limitation, as it can’t replace the need for an entirely
independent test set due to the lack of external vali-
dation data. Secondly, the Indian datasets were
sourced solely from one institution, which hinders
the generalizability of our findings to other settings
and may not fully encompass the diversity of lung
cancer cases. Moreover, we initially applied the
Random Oversampler technique to the entire sample
of Cohort 4, potentially introducing data leakage in
the test set. We recognize that limiting oversampling
exclusively to the training set is a well-established
practice known to improve the assessment of model
performance. Despite using multiple types of imaging
equipment to generate data at RGCI, potential issues
might arise when applying the platform to imaging
data from different instruments or manufacturers if
proper data harmonisation techniques are not
employed.

To enhance targeted therapy, it’s essential to analyse
genes beyond EGFR, such as ALK, KRAS, and ROS
simultaneously, especially in resource-limited settings
to save valuable resources. Incorporating a substantial
number of datasets from the Indian population is ex-
pected to bolster the system’s performance. Addition-
ally, we emphasise that the integration of data from
various imaging devices enhances the robustness of our
trained models, provided that all images undergo
consistent and standardised preprocessing. Future
research directions should prioritise external validation,
standardised protocols, comparative analyses, longitu-
dinal assessments, and validation across diverse
populations.

In conclusion, AIPS provides a non-invasive method
to predict EGFR genotype through the analysis of lung
nodules detected in CT images, which reveals that ge-
notype information can be extracted from the lung
nodules.
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