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Radiation has been a pillar of cancer therapy for decades. The effects of
radiation on the anti-tumour immune response are variable across studies
and have not been explicitly defined in poorly immunogenic tumour
types. Here, we employed combination checkpoint blockade immunother-
apy with stereotactic body radiation therapy and examined the effect on
tumour growth and immune infiltrates in subcutaneous and orthotopic
mouse models of pancreatic cancer. Although immune checkpoint blockade
and radiation were ineffective alone, their combination produced a modest
growth delay in both irradiated and non-irradiated tumours that corre-
sponded with significant increases in CD8+ T cells, CD4+ T cells and
tumour-specific T cells as identified by IFNγ ELISpot. We conclude that radi-
ation enhances priming of tumour-specific T cells in poorly immunogenic
tumours and that the frequency of these T cells can be further increased
by combination with immune checkpoint blockade.
1. Background
Pancreatic malignancies remain among the deadliest cancers, with an overall
survival rate under 10% [1]. Though survival varies based on cancer stage and
type, 85% of pancreatic cancer patients are diagnosed with pancreatic ductal
adenocarcinoma (PDAC) and are diagnosed post-metastatic spread [2]. Pancreatic
tumours induce systemic immune and metabolic alterations, resulting in adipose
and muscle wasting with significant morbidity [3,4]. Furthermore, PDAC is
characterized by dense fibrotic stroma consisting of fibroblasts, extracellular
matrix, macrophages, granulocytes and monocytes, which collectively form an
immunosuppressive microenvironment [2,5]. Although both CD4+ and CD8+
T cells are present in pancreatic cancer, they are frequently located away from
the tumour cell nests. Instead, tumour cells are more commonly found in close
proximity to alternatively activated macrophages or fibroblasts, both of which
portend poor prognosis [6–9].

Although combination chemotherapy regimens are the mainstay of pancrea-
tic cancer treatment, radiation is frequently included, particularly in resectable
or locally advanced disease as a means of reducing tumour burden prior to sur-
gery [10–12]. Despite its widespread use, the clinical benefit of radiation in local
or metastatic PDAC has not been established [11,13,14]. Accordingly, a variety
of strategies have been used to increase the efficacy of radiation, including
employing intraoperative radiotherapy, examining the unintentional targets of
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radiation, combining radiation with other therapies and using
stereotactic beam radiotherapy (SBRT) following external
beam radiotherapy (EBRT) [14–19].

Immunotherapies have transformed the state of cancer
therapy [20,21]. While a variety of immunologic strategies
have been employed against different tumours, the most suc-
cessful has been immune checkpoint blockade therapy [22].
Monoclonal antibodies targeting programmed cell death
protein-1 (PD-1) and cytotoxic T-lymphocyte-associated anti-
gen 4 (CTLA-4) revolutionized the field by demonstrating
that reinvigorating exhausted T cells in cancer patients was
not only a viable strategy, but also was capable of inducing
durable remissions in a subset of patients with diverse
malignancies [22]. However, despite the successes of immune
checkpoint blockade therapies in melanoma and other
cancers, these treatments have largely proven ineffective against
pancreatic tumours outside of the approximately 1% of PDAC
tumours with deficiencies in mismatch repair genes [23–26].

Immune checkpoint blockade reinvigorates existing T cell
responses and is thus most effective when used in patients
with robust endogenous T cell priming. In order to increase
the effectiveness of immune checkpoint blockade against
pancreatic cancer, various strategies have been employed to
augment priming and infiltration of tumour-specific T cells
[27,28]. Notably, agonistic antibodies to CD40 have shown
efficacy in early-stage trials of pancreatic cancer, in part via
their ability to mobilize dendritic cells to present tumour
antigens and prime naive T cells [29–32]. Cytotoxic therapies
that lead to inflammatory tumour cell death can also release
endogenous adjuvants from dying tumour cells, activating
dendritic cells and enhancing T cell priming [33,34]. This
concept is broadly termed immunogenic cell death, although
the exact therapies responsible for inducing immunogenic
cell death and the nature of released adjuvants remain
unclear [35]. Regardless, radiation probably induces immu-
nogenic cell death, and this stimulation of tumour-specific
T cell responses can lead to the clinical phenomenon of
shrinking tumour lesions outside the field of radiation [36].
These so-called abscopal responses are rare, indicating that
the immunogenic effects of radiation are subtle and largely
insufficient to induce robust T cell priming and tumour
regressions. However, the combination of radiation with
checkpoint blockade has shown clinical tolerability and
even benefit in several tumour types, including melanoma,
small cell lung cancer and renal cell cancer; understanding
the mechanism of each agent will be critical to deciphering
which patients or which tumour types might be most
amenable to this approach [37–40].

To this end, a landmark study examined the immunologic
effects of SBRT, anti-CTLA-4 and anti-PD-1 in mouse models
of melanoma and pancreatic cancer, and found that radiation
plays a non-redundant role in combination with CTLA-4 and
PD-1 blockade [41]. The authors used flow cytometric
analysis of immune infiltrates to demonstrate that as part of
combination therapy CTLA-4 blockade reduces activity of
regulatory T cells, whereas PD-1 blockade increases prolifer-
ation and activation of CD8+ T cells. Radiation did not
augment T cell frequencies but, importantly, broadened the
clonality of the T cell response as indicated by sequencing
of the TCR genes [41]. Radiation and PD-1 blockade are
also effective in mice with orthotopically implanted PDAC
tumours that show baseline responsiveness to single-agent
PD-1 blockade, indicating that radiation can further enhance
T cell responses to immunogenic tumours [42]. Combination
of radiation and agonistic anti-CD40 in mouse models of
pancreatic cancer also increases T cell priming, as evidenced
by the development of local vitiligo from loss of tolerance to
melanocyte antigens in the irradiated field [43,44].

Here, we used a poorly immunogenic model of pancreatic
cancer that is critically unresponsive to combination check-
point blockade. We investigated the immunologic impact of
combining dual CTLA-4 and PD-1 blockade with radiation
and compared tumour immune infiltrates and therapeutic effi-
cacy in the subcutaneous and orthotopic settings. We show
only PDAC immune infiltrates in a distant, unirradiated
tumour, indicating the combined systemic effects of radiation
and immune checkpoint therapy. We find that addition of
SBRT extended mouse survival and correlated with increased
IFNγ-producing, tumour-specific T cells. These results support
the use of radiation to induce immunogenic cell death as part
of a combination immunotherapy regimen, even in cancers
that are otherwise poorly immunogenic.
2. Methods
2.1. Cell line
The 6694c2 cell line was derived from a LSL-KrasG12D;p53+/
floxed, Pdx-cre, YFP-floxed mouse and was a gift from Ben
Stanger (University of Pennsylvania) [45]. Cells were cultured
at 37°C with 5% CO2 in RPMI media (Life Technologies) sup-
plemented with 10% (v/v) FBS, 2 mmol l−1 L-glutamine
(Gibco), 1% (v/v) penicillin/streptomycin (Gibco), 1% (v/v)
MEM non-essential amino acids (Gibco), 1 mmol l−1 sodium
pyruvate (Gibco) and 0.1 mmol l−1 β-mercaptoethanol (Sigma).

2.2. Animal models
C57BL/6 mice were purchased from Jackson Laboratories
(stock no. 000664) and housed according to DFCI guidelines.

2.3. Subcutaneous tumours
A total of 200 000 6694c2 cells were subcutaneously injected
in HBSS (Gibco). Tumour size was measured twice weekly,
and tumour volume calculated by multiplying the three
dimensions of the tumour. Mice reached study endpoint cri-
teria and were euthanized with CO2 when tumours reached
2000 mm3 or had gross ulceration. Other humane endpoint
criteria included body condition score less than or equal to
2 or weight loss greater than 10% of initial body weight,
although no mice in this study met these humane endpoints.

2.4. Orthotopic tumours
Orthotopic tumours were inoculated as previously described
[46]. Briefly, C57BL/6 mice were anaesthetized with a
ketamine/xylazine cocktail, shaved on the left flank and the
surgical site cleaned with ethanol and betadine. An incision
was made in the skin and peritoneum, and the pancreas exter-
nalized with forceps. 6694c2 cells were resuspended in
phosphate-buffered saline (PBS) and mixed 1 : 1 by volume
with matrigel (Corning) for a total of 100 000 cells per 30 µl.
The cell suspension was kept on ice and drawn into a chilled
insulin syringe. Cells were then injected into the tail of the



royalsocietypublishing.org/journal/rsob
Open

Biol.11:210245

3
pancreas, and a bubble was observed. Mice that showed signs
of leakage were removed from the experiment. The pancreas
was left external to the body cavity for 1 min with the mice
on a warming pad to solidify the matrigel. The pancreas was
then reinserted, peritoneum sutured with one stitch of absorb-
able suture and the skin stapledwith a sterilewound clip. Mice
were given analgesia (Buprenex) and monitored post-surgery
according to protocols approved by the Dana-Farber IACUC.
Mice were euthanized no more than 18 days post-surgery.
Tumours were weighed at the time of euthanasia.

2.5. In vivo treatment
Mice treated with immune checkpoint blockade were
administered 10 mg kg−1 αPD-1 (BMS RMP1-14), and/or
10 mg kg−1 αCTLA-4 (BMS 9H10) weekly. Control mice were
treated with 10 mg kg−1 of each relevant isotype control, also
weekly. Treatmentwas begun 6 days after tumour implantation.

2.6. Radiation
Mice were inoculated with bilateral subcutaneous flank
tumours (described above), and one of the two tumours was
irradiated with a single 5 Gy dose of SBRT. A small animal
radiation research platform was used for radiation, allowing
radiation to be delivered precisely to the tumour site.

2.7. Flow cytometry
Tumours were excised, and orthotopic tumours wereweighed.
Tumours were chopped and incubated at 37°C in RPMI with
collagenase IV (Sigma) and trypsin inhibitor (Life Technol-
ogies). Tumour pieces were further manually digested before
being filtered through a 40 μM cell strainer, washed with PBS
and centrifuged. The resulting pellet was resuspended in PBS
with 2%FBS and stainedwith two separate panels of flow cyto-
metry antibodies. Samples were stained for 30 min at 4°C,
washed with PBS and resuspended in 1% formalin before
analysis on a Sony spectral flow cytometer (SP6800). Flow cyto-
metry antibodies were purchased from BioLegend. Myeloid
panel: CD11c FITC (no. 117305), CX3CR1 PE (no. 149006),
Ly6G PE-Cy7 (no. 127617), SiglecF Brilliant Violet 421 (no.
155509), CD11b Pacific Blue (no. 101223), Ly6C Brilliant
Violet 570 (no. 128030), I-A/I-E Brilliant Violet 510 (no.
107635), CD45 Brilliant Violet 711 (no. 103147), NK1.1 Brilliant
Violet 785 (no. 108749), F4/80 APC (no. 123116).

Lymphoid panel: CD45 Brilliant Violet 711 (no. 103147),
CD11b Pacific Blue (no. 101223), CD25 Alexa Fluor 488 (no.
102017), CD103 PE (no. 121405), PD-1 PE-Cy7 (no. 109109),
CD4 Brilliant Violet 510 (no. 100553), B220 Brilliant Violet
605 (no. 103243), CD8α Brilliant Violet 785 (no. 100749),
CD11c APC (no. 117309).

2.8. ELISpot
ELISpot plate (BD Biosciences) was treated with sterile-
filtered 70% ethanol before being washed three times with
sterile PBS 1×. IFNγ capture antibody (BD Biosciences no.
551881) was plated and the plate was sealed and left to incu-
bate at 4°C overnight. Positive control wells were also plated
with anti-CD3ε (BioLegend no. 100340). The plate was
washed three times with sterile PBS and blocked with 10%
(v/v) FBS in PBS overnight at 4°C. IFNγ-stimulated 6694c2
or B16F10 cells were plated, except in the unstimulated and
positive control wells. Pancreatic draining lymph nodes
were excised from treated mice bearing orthotopic tumours,
and lymph nodes were macerated to form a single-cell sus-
pension. Lymph node cells (one-third of lymph node per
well) were plated on top of pre-plated tumour cells with
human IL-2 (PeproTech), and positive control wells also
received anti-CD28 (BioLegend no. 102116). Plate was incu-
bated at 37°C for 24 h before being washed with sterile
water followed by PBST. IFNγ detection antibody (BD Bio-
sciences no. 551881) was added, and plate was incubated
for 2 h at room temperature. Wells were washed with PBST,
and streptavidin-HRP (BD Biosciences) was added. Plate
was incubated for 1 h at room temperature before being
washed with PBST and PBS. AEC chromagen substrate (BD
Biosciences) was added, and plate was developed. Plate
was dried and analysed.
3. Results
3.1. Pancreatic cancer is poorly immunogenic
To characterize the immune microenvironment of 6694c2
pancreatic tumours, we implanted subcutaneous tumours into
immune-competent C57BL/6 mice and assessed tumour
immune infiltrates by flow cytometry. Tumour immune infil-
trates were primarily comprised CD11b+ myeloid cells, with a
paucity of CD4+ and CD8+ T cells, as previously reported
(figure 1a) [45]. We then assessed the response of 6694c2
tumours to immune checkpoint blockade. Anti-PD-1 and anti-
CTLA-4, delivered alone or in combination, did not induce
tumour regression or improve mouse survival (figure 1b,c).

Although immune checkpoint blockade therapy did not
affect tumour growth, it could still have altered immune
populations within the tumour microenvironment. Accord-
ingly, we harvested subcutaneous tumours from mice
treated with anti-PD-1, anti-CTLA-4, both anti-PD-1 and
anti-CTLA-4 or relevant isotype controls, and we assessed
immune infiltrates by flow cytometry (electronic supplemen-
tary material, figure S1). There were no significant changes in
intratumoural frequencies of CD4+ T cells, including CD4+
CD25+ cells, which include but are not necessarily entirely
composed of Tregs, among any of the groups (figures 1d,e).
Tumour-infiltrating CD8+ T cell frequencies were mostly
unaffected, although intratumoural CD8+ T cell frequencies
increased between mice treated with single-agent anti-
CTLA-4 and mice treated with combination checkpoint
blockade (figure 1f ). Frequencies of various myeloid popu-
lations in the tumour, including monocytes and neutrophils,
were not affected by therapy (figures 1g–i).

3.2. Radiation improves the anti-tumour response to
immune checkpoint blockade

We next wondered whether radiation, delivered in addition
to combination checkpoint blockade therapy, would enhance
the minimal effect of the checkpoint blockade delivered
alone. Mice were inoculated with bilateral subcutaneous
6694c2 tumours, one of which was irradiated once with
5 Gy 6 days post-tumour inoculation. Combination anti-PD-
1 and anti-CTLA-4 therapy was also initiated on the day of
radiation (figure 2a). Radiation alone had no effect on
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Figure 1. Checkpoint blockade treatment in the absence of radiation is ineffective against a poorly immunogenic pancreatic cancer cell line. (a) C57BL/6 mice were
inoculated with bilateral subcutaneous 6694c2 tumours. Tumours were harvested at day 16, digested and stained for myeloid and lymphoid markers, and then
analysed by spectral flow cytometry. (b) Schematic of experimental timeline for tumour growth and survival data. (c) C57BL/6 mice were implanted with subcu-
taneous 6694c2 tumours and treated intraperitoneally with isotype controls, anti-PD-1, anti-CTLA-4 or combination anti-PD-1 and anti-CTLA-4 (200 µg each
antibody) every 7 days starting on day 6. Tumour size and survival were monitored. n = 5 mice per group. p-values were calculated by Mantel–Cox log rank
test. (d–i) C57BL/6 mice were inoculated with bilateral subcutaneous 6694c2 tumours. Mice were administered 200 µg each of anti-PD-1, anti-CTLA-4 or isotype
controls intraperitoneally every 7 days starting on day 6. Tumours were harvested at day 16, digested and stained for myeloid and lymphoid markers, and then
analysed by spectral flow cytometry. n = 5 mice in the isotype group and n = 4 mice per group in the other groups. Data are mean ± s.e.m. Data points show
biological replicates. p-values were determined by ANOVA.
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tumour growth of either the irradiated or non-irradiated
side, consistent with the radioresistant nature of PDAC as
previously reported [44]. Combination of radiation and
checkpoint blockade therapy moderately delayed tumour
growth and extended survival (figure 2a,b). Both the treated
and untreated tumours of mice receiving combination
therapy grew at slower rates, suggestive of a systemic
anti-tumour immune response.

Tounderstand the immunological underpinningsof systemic
tumour control provided by combination radiation and immune
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checkpoint blockade therapy, we harvested non-irradiated
tumours at a mid-point of growth and assessed immune infil-
trates. Tumour-infiltrating effector CD4+ T cells increased in
combination-treated mice, compared to both isotype-treated
and radiation-treated mice (figure 2c). CD4+ CD25+ T cells
increased in the untreated tumours ofmice treatedwith radiation
alone; however, this increase in intratumoural Tregs was abro-
gated in the combination-treated mice, leading to an overall
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significant increase in the intratumoural CD8+T cell-to-Treg ratio
in mice treated with the combination therapy (figures 2d,e).

Previous reports of radiation inmousemodels of pancreatic
cancer revealed an increase in immunosuppressive monocytes
recruited by CCL2, and combination therapy modestly
increased the frequency of tumour-infiltrating monocytes
(figure 2f ) [47]. We did not observe significant alterations
in the frequency of conventional neutrophils, all given limit-
ations in sample size. Immunosuppressive SiglecF+
neutrophils were increased in mice treated with radiation
alone, and importantly, SiglecF+ immunosuppressive neutro-
phils were significantly decreased by the combination of
radiation and immune checkpoint blockade (figure 2h).

3.3. The immune microenvironment differs between
subcutaneous and orthotopic pancreatic tumours

To determine whether radiation and combination checkpoint
blockade would affect the immune microenvironment of
primary pancreatic tumours, we compared the immune com-
position of 6694c2 tumours implanted either subcutaneously
or orthotopically in the pancreas. In both cases, mice were
also inoculated with a subcutaneous tumour on the right
flank to serve as the irradiated lesion. We compared the
immune microenvironment of the non-irradiated orthoto-
pic or subcutaneous tumours (figure 3a–d) in order to
understand any potential abscopal effect of the therapy.
Orthotopic pancreatic tumours had fewer CD4+ and CD8+
T cell infiltrates than subcutaneous tumours and a larger frac-
tion of SiglecF+ granulocytes. Combination radiation and
immune checkpoint blockade modestly shifted the immune
profile of orthotopic tumours but did not increase CD4+ or
CD8+ T cells to the frequencies observed in subcutaneous
tumours (figure 3a–d ).
3.4. Radiation and checkpoint blockade augment
T cell priming against pancreatic cancer in
the orthotopic setting

To more closely determine the effect of radiation and
combination checkpoint blockade on orthotopic tumour
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Figure 4. Systemic anti-PD-1 and anti-CTLA-4, combined with radiation at a distant tumour site, induces immune-mediated tumour control in the orthotopic
setting. (a) Diagram showing that radiation was delivered to the subcutaneous tumour only. (b–e) Mice were implanted with subcutaneous and orthotopic
6694c2 tumours. On day 6 following inoculation, the subcutaneous tumour was irradiated (1 × 5 Gy). Mice were administered 200 µg each of anti-PD-1, anti-
CTLA-4 or isotype controls intraperitoneally every 7 days starting on day 6. At day 14, orthotopic tumours were harvested, weighed and digested. Following
tumour digestion, cells were stained for immune markers for spectral flow cytometry analysis. ( f ) In addition to harvesting orthotopic tumours, pancreatic draining
lymph nodes were harvested from orthotopic tumour-bearing mice. Lymph nodes were mechanically digested, and cells were cocultured with 6694c2 cells or an
unrelated cell line and analysed for IFNγ production by ELISpot. Spot number is reported with background subtracted. Data are shown as mean ± s.e.m. and
p-values were calculated by Mann–Whitney test. n = 5 mice in the radiation αPD-1 αCTLA-4-treated group and n = 4 mice in the isotype-treated group; one
mouse reached endpoint in the study prior to tumour harvest.

royalsocietypublishing.org/journal/rsob
Open

Biol.11:210245

7

growth, rather than to compare subcutaneous and orthotopic
tumours, we followed the same treatment scheme, whereby
mice were inoculated with both a subcutaneous tumour (to
serve as the irradiated lesion) and an orthotopic tumour,
and mice were treated as shown (figure 4a). Combination
radiation and immune checkpoint blockade induced a trend-
ing decrease in orthotopic tumour mass in treated mice
that did not reach statistical significance, potentially due to
limitations in sample size (figure 4b).
To determine whether combination treatment affected the
T cell response to orthotopic PDAC tumours, we analysed
immune infiltrates by flow cytometry. Tumour-infiltrating
CD4+ T cells showed a trending increase in combination-trea-
tedmice (figure 4c). Frequencies of tumour-infiltrating CD8+ T
cells increased significantly, although the overall number was
still low, at around 1% of CD45+ cells (figure 4d ). Treg and
immunosuppressive myeloid population frequencies were
unchanged (figure 4e; electronic supplementary material,
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figure S2). Because anti-tumour T cell priming often occurs in
the tumour-draining lymph node, we analysed T cells in the
tumour-draining lymph nodes by IFNγ ELISpot to determine
whether the modest increase in CD8+ T cells corresponded to
an increase in tumour-specific T cell priming (figure 4f )
[34,48]. After subtracting background levels of IFNγ pro-
duction in wells containing no tumour cell antigen, we
observed an increase in tumour-specific IFΝγ production
from cells in the tumour-draining lymph node. We therefore
conclude that tumour-specific, IFNγ-producing T cells were
significantly increased in mice treated with radiation and
checkpoint blockade, consistent with augmentation of T cell
priming and activation (figure 4f ).

4. Discussion and conclusion
Radiation exerts both immune-promoting and immune-
suppressing effects, which complicates its use in combination
immunotherapy regimens. Here, we combined dual PD-1
and CTLA-4 blockadewith radiation in a poorly immunogenic
model of pancreatic cancer and found that the combination
therapy augments tumour-specific T cell priming. These find-
ings are consistent with a phase II trial that evaluated two
dosing regimens of SBRT combined with either durvalumab
(anti-PD-L1) or durvalumab plus tremelimumab (anti-CTLA-
4) [49]. In this trial, the overall response ratewas 5.1% (2 partial
responses of 39 evaluable). However, in a subset of patients for
whom pre- and post-treatment biopsies were obtained, all
patients showed an increase in intratumoural CD8+ T cells,
regardless of their clinical response [49]. Collectively, these
data indicate that for both mice and humans with pancreatic
cancer, radiation and immune checkpoint blockade can
increase T cell priming and augment anti-tumour immunity.

Mouse studies in melanoma have revealed that, when
added to checkpoint blockade therapy, radiation diversifies
the clonality of the anti-tumour T cell response [41]. We show
a similar finding for pancreatic cancer; combination of radiation
and immune checkpoint blockade can increase tumour-specific
T cell priming as determined by IFNγ ELISpot. Not only do our
data correspond with a T cell-mediated mechanism of tumour
control, but they also generally corroborate data indicating
that combining radiation with anti-PD-L1 or with checkpoint
blockade and anti-CD40 therapy slows tumour growth in a
KPC model of pancreatic cancer [43,44,50]. Other attempts at
T cell priming using peptide-based vaccines or other T cell-
directed therapies that do not induce tumour cell death have
been less effective, suggesting that release of tumour antigens
from dying malignant cells is a critical component of successful
immunotherapy in PDAC [23,51].

Beyond increasing T cell priming, radiation-induced immu-
nogenic cell death also induces negative feedback in the form of
immunosuppressive myeloid cells that infiltrate the area to
support wound healing and tissue homeostasis. Damaged
tissue can not only recruit myeloid cells from circulation, but it
can also affect hematopoiesis in the bone marrow, leading to
the systemic release of immune-suppressive myeloid cells into
circulation [52]. Previous analysis of radiation in similar
models of pancreatic cancer revealed increased CCL2 in irra-
diated tumours leading to increased intratumoural monocytes
[47]. Although we did not observe increased monocytes in our
analysis of non-irradiated tumours, we did observe significant
increases in SiglecF+ neutrophils, a cell type that increases in
mice-bearing Kras+ tumours and is potently immuno-
suppressive [53,54]. The presence of this immunosuppressive
population underlines the 6694c2 line’s lack of immunogenicity.
Functional redundancy amongmyeloid cells is common, as has
been frequently observed in studies aimed at depleting one type
of myeloid cell only to find compensatory increases in other
myeloid cell types [55,56]. Notably, our addition of combination
immune checkpoint blockade to radiation prevented the expan-
sion of SiglecF+ neutrophils without generating a compensatory
increase in other immune-suppressive cells, suggesting that T
cell activation may be able to induce durable reprogramming
of the tumour microenvironment.

PDAC is among the most treatment-refractory of all
tumour types. Although induction of tumour-specific T cell
responses is insufficient to provide long-term tumour control
in this disease [49], we propose that the combination of radi-
ation and immune checkpoint blockade be considered as part
of combination therapy strategies.
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