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Abstract.
Background: Memory dysfunction is characteristic of aging and often attributed to Alzheimer’s disease (AD). An easily
administered tool for preliminary assessment of memory function and early AD detection would be integral in improving
patient management.
Objective: Our primary aim was to utilize machine learning in determining initial viable models to serve as complementary
instruments in demonstrating efficacy of the MemTrax online Continuous Recognition Tasks (M-CRT) test for episodic-
memory screening and assessing cognitive impairment.
Methods: We used an existing dataset subset (n = 18,395) of demographic information, general health screening questions
(addressing memory, sleep quality, medications, and medical conditions affecting thinking), and test results from a conve-
nience sample of adults who took the M-CRT test. M-CRT performance and participant features were used as independent
attributes: true positive/negative, percent responses/correct, response time, age, sex, and recent alcohol consumption. For
predictive modeling, we used demographic information and test scores to predict binary classification of the health-related
questions (yes/no) and general health status (healthy/unhealthy), based on the screening questions.
Results: ANOVA revealed significant differences among HealthQScore groups for response time true positive (p = 0.000) and
true positive (p = 0.020), but none for true negative (p = 0.0551). Both %responses and %correct had significant differences
(p = 0.026 and p = 0.037, respectively). Logistic regression was generally the top-performing learner with moderately robust
prediction performance (AUC) for HealthQScore (0.648–0.680) and selected general health questions (0.713–0.769).
Conclusion: Our novel application of supervised machine learning and predictive modeling helps to demonstrate and validate
cross-sectional utility of MemTrax in assessing early-stage cognitive impairment and general screening for AD.
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INTRODUCTION

Memory dysfunction is notably characteristic of
aging and can often be attributed to Alzheimer’s
disease (AD) [1]. With its widespread prevalence
and escalating incidence and public health burden
[2], a simple tool that can be readily distributed
and easily administered for valid preliminary assess-
ment of memory function and early AD detection
would be desirable and integral in improving patient
management. Such advance insight could also be
instrumental in potentially slowing the disease pro-
gression. Specifically, quick, clear, and valid insight
into cognitive health status as an initial screen
could measurably assist in diagnostic support and
planning an individualized stratified care approach
in medically managing those patients with early
onset cognitive impairment. The computerized Mem-
Trax tool (http://www.memtrax.com) was explicitly
designed for such a purpose, and it is based on a
simple and brief online and highly germane timed
episodic memory challenge where the user responds
to repeat images and not to any initial presentation
[3, 4]. However, the clinical efficacy of this new
approach in initial AD screening has not been suf-
ficiently demonstrated or validated.

Traditional assessment of episodic memory using
selected words recall or reproducing figures are char-
acteristically imprecise, non-specific, and unreliable
[5, 6]. And even more complex and contemporary
computerized versions designed to address the multi-
dimensional aspects of the memory process fail to
measurably improve accuracy, reliability, or clini-
cal interpretation across a highly variable spectrum
of individual memory disorders and related subcom-
ponents [7, 8]. These deficiencies in screening and
detection remain barriers to suitably addressing the
growing and widespread prevalence of AD and those
affected [2].

There are numerous integrated and influencing fac-
tors to consider in interpreting the complex, highly
variable, and evolving individual exhibiting charac-
teristics of AD onset and progression. This presents
a consequent well-recognized challenge to clinicians
in validly assessing cognitive function and poten-
tial impairment, especially longitudinally. To better
guide the practitioner in this difficult assessment
and more optimally direct informed clinical manage-
ment, advances in technology supported by artificial
intelligence and machine learning could provide a
distinct practical advantage. Notable examples fea-
turing clinical utility of machine learning in brain

health screening include Falcone et al. [9] who used
Support Vector Machine (SVM) to detect concussion
based on isolated vowel sounds extracted from speech
recordings. Dabek and Caban [10] also utilized SVM
in predictive modeling of military service members
developing post-traumatic stress disorder after trau-
matic brain injury. And Climent et al. [11] conducted
a cross-sectional study including an extensive array
of clinically relevant variables and two screening
tests while using decision tree machine learning mod-
eling and complementary ensemble techniques to
detect early mild cognitive impairment and associ-
ated risk factors in older adults. This new approach
in utilizing machine learning to address the com-
plexity of various human health challenges is only
recent; but the demonstrated advantages in more aptly
considering myriad interrelated factors that reflect
the multiple domains of real-world systems biol-
ogy are increasingly being realized. Accordingly,
to thoroughly validate the practical clinical utility
of MemTrax, individual test performance charac-
teristics and a selected respective array of relevant
influencing variables (e.g., age, medications, symp-
toms, etc.) must be considered and appropriately
analyzed and modeled concomitantly in aggregate.

In this study, we explored an existing dataset
consisting of demographic information, answers
to general health screening questions (addressing
memory, sleep quality, medications, and medical con-
ditions affecting thinking), and test results from a
convenience sample of adult individuals who took
the MemTrax online Continuous Recognition Tasks
(M-CRT) test for episodic-memory screening [3, 4].
We then performed predictive modeling on these
data, using the demographic information and test
scores to predict binary classification of the health-
related questions (yes/no) and general health status.
Thus, our primary aim was to utilize machine learn-
ing in determining initial viable models to serve
as complementary instruments toward ultimately
demonstrating the validated efficacy of MemTrax (via
the M-CRT in this instance) as a clinical decision
support screening tool for assessing cognitive impair-
ment. Whereas the connection between responses to
the general health-related questions and individual
health status in the context of cognitive impairment
was only speculative, we hypothesized that these
self-reported indicators and the M-CRT online per-
formance features would be confirmed as effective in
our preliminary modeling to demonstrably support
the low-cost and easily administered practical and
relevant clinical efficacy of MemTrax.

http://www.memtrax.com
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MATERIALS AND METHODS

Data overview

The original dataset consisted of 30,435 instances
of the M-CRT test conducted online between 9/22/11
and 8/23/2013 as part of the HAPPYneuron program
(http://www.happy-neuron.com/) [3]. The study from
which these data were provided for our present anal-
ysis was previously reviewed and approved by and
administered in accord with the ethical standards of
the Human Subject Protection Committee of Stan-
ford University. The convenience sample was mix of
people (adults) who were participating in this struc-
tured program to stimulate cognition. Whereas the
sample was not truly representative of the general
population, these individuals were generally healthy,
though some may have had light cognitive or other
impairments.

There were 25,146 total users who each took the
test between 1 and 24 times. Each instance comprised
20 attributes including information from each user
and respective test instance. The M-CRT online test
included 50 images (25 unique and 25 repeats; 5 sets
of 5 images of common scenes or objects) shown in a
specific pseudo-random order. The participant would
(per instructions) press the space bar of the computer
to begin viewing the images series and again press the
space bar as quickly as possible whenever a repeated
picture appeared. Each image appeared for 3 s or until
the space-bar was pressed, which prompted imme-
diate (after 500 ms) presentation of the next picture.
Response time was measured using the internal clock
of the local computer and was recorded for every
image, with a full 3 s recorded indicating no response.
Response times less than 300 ms were interpreted
as “no response”. Additional details of the M-CRT
administration and implementation, data reduction,
and other data analyses are described elsewhere [3].
We focused our modeling on the four health-related
screening questions and corresponding answers in
the dataset. These questions were included in the M-
CRT to establish, via self-reporting, whether each test
respondent: 1) Has memory problems; 2) Has diffi-
culty sleeping; 3) Is taking any medication; 4) Has any
medical conditions that might affect his/her thinking.

Data cleaning

We first cleaned and examined the data for
descriptive purposes and to determine the scope and
incidence of information at hand. We followed a

similar data cleaning process as described by Ash-
ford et al. [3] to remove seemingly invalid M-CRT
test results from the data prior to analysis. One cri-
terion dictated eliminating M-CRT tests from users
who provided invalid birth dates (indicating ages less
than 21 years or over 99 years on the date of the test).
Tests from users who did not provide their sex or who
provided 5 or fewer total responses were also elimi-
nated. This resulted in 18,477 tests from 18,395 users
(based on unique user ID). With same-day and tests
taken on subsequent days (after his/her first test) by
the same user removed to eliminate bias from repeat
instances and potential learning effects, we used only
the 18,395 unique user tests for our analyses and
health-related questions prediction modeling.

Data transformation

For our exploration, the data did not require
an extensive amount of cleaning beyond the steps
described above; but there were some additional
items we addressed prior to beginning our analysis.
Three attributes in the original dataset had responses
in both English and French. Two of these attributes,
occupation and employment status, were not used as
part of our initial analysis, as they were not deemed
relevant to our aims for this study; accordingly, these
are not addressed/utilized here. For the third attribute
regarding whether the user suffered from memory
problems, the dataset was populated with values of
“Yes,” “No,” “Oui,” or “Non” (or left blank). Because
this translation is unambiguous, we translated the
French answers into English prior to completing our
analysis.

The original data did not include the user’s age; but
we were able to derive ages by the user’s birthday and
date of the respective test, thus creating a numerical
attribute representing the user’s age on the date the
M-CRT test was taken. For precision, age was repre-
sented in days rather than years in our analyses and
models.

Based on the M-CRT test results, two derived fea-
tures were created for each individual user’s overall
engagement: one for the percentage of total images
shown to which the user registered an active response
(keyboard spacebar click) and the other to indicate the
percentage of the repeat and initial images (50 total)
to which the user responded correctly. Percentage of
total images prompting a response (%responses) was
calculated using an established [3, 4] formula: true
positive + (25 – true negative) with this total being
divided by 50 representing the total images shown.

http://www.happy-neuron.com/
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The percentage of correct responses (%correct) was
calculated using the formula true positive+true neg-
ative divided by 50.

Finally, we created an additional new attribute
called HealthQScore, so that we could quantify each
user’s collective answers to the four general health
questions. Assigning each response to these ques-
tions a value of 0 or 1, all M-CRT test instances
were given an aggregate HealthQScore between 0 and
4, based on the number of general health questions
the user answered affirmatively. A HealthQScore was
assigned only to test instances where the user pro-
vided answers to all four general health questions
(and it was the user’s first test, as repeat tests were
already eliminated). Thus, we had a set of 4,645 M-
CRT unique user tests from which to develop our gen-
eral health status (HealthQScore) prediction models.

Experimental datasets

For these preliminary experiments, we created
eight versions of the original data, using each of
the individual general health questions, as well as
various forms of the aggregate score, as the alter-
nating dependent variable. Broadly, each derived
dataset served one of two purposes: 1) Prediction
of answers to individual general health questions
or 2) Prediction of general health status based
on HealthQScore. For each of the eight dataset
versions, the following M-CRT performance and par-
ticipant characteristic (demographic) features were
used as independent attributes: true positive/negative,
%responses/correct, response time true positive, age,
sex, and whether the user had consumed alcohol in the
preceding 24 h. For predictive modeling, we used the
demographic information and test scores to predict
binary classification of the health-related questions
(yes/no) and general health status (healthy/unhealthy)
for the test taker, based on the provided answers to
the screening questions.

For each of the general health questions (memory
problems, medications, difficulty sleeping, and med-
ical conditions that affect thinking), two variations of
each dataset were created, both using the respective
general health question attribute as the class label.
An instance was part of the positive class if the user
answered “Yes” to the question, or it was part of the
negative class if the user answered “No”. In one varia-
tion of each of these datasets, the answers to the other
three general health questions were used as indepen-
dent features, while in the other variation they were
not included. This distinction is denoted as 4Q and
1Q, respectively.

The four HealthQScore versions of the data
differed based on how the data were split for
binary classification. The binary classifications of the
HealthQScore versions were based on our assump-
tion that the more questions to which the user
responded affirmatively, the more likely he or she
is at risk for having a cognitive brain health deficit.
Thus, we started our exploratory analysis by examin-
ing the most extreme cases only (scores of 0 versus
4 as the negative and positive classes, respectively)
to see how well we could differentiate between the
two groups. The challenge with this approach was
that it only allowed for 1,004 instances to be used
for analysis, which may not have been enough to
build robust models on this dataset. For this reason,
we also added combinations with aggregate scores
of 1 and 3 into the negative and positive classes (0
or 1 versus 4; 0 or 1 versus 3 or 4; and 0 versus 3
or 4). All four (4) combinations of these groupings
were tested.

A summary of all datasets and respective variations
is presented in Table 1.

Descriptive statistics

Significant differences among HealthQScore
groups for selected components of M-CRT

Table 1
Summary of datasets and variations (indicating respective # of participants) used for preliminary analysis

Dataset Total Negative Positive
Instances Class Size Class Size

MemoryProblems 1Q/4Q 17,042 6,822 (40.0%) 10,220 (60.0%)
Medications 1Q/4Q 4,999 2,854 (57.1%) 2,145 (42.9%)
DifficultySleeping 1Q/4Q 5,496 3,007 (54.7%) 2,489 (45.3%)
MedicalConditions 1Q/4Q 5,506 4,601 (83.6%) 905 (16.4%)
HealthQScore 0v4 1,004 679 (67.6%) 325 (32.4%)
HealthQScore 01v4 2,431 2,106 (86.6%) 325 (13.4%)
HealthQScore 01v34 3,203 2,106 (65.8%) 1,097 (34.3%)
HealthQScore 0v34 1,776 679 (38.2%) 1,097 (61.8%)
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performance—i.e., True Positive, True Negative,
%Responses, %Correct, and Response Time True
Positive—were determined using Analysis of Vari-
ance (ANOVA). These same M-CRT performance
metrics differentiated by answers to each of the
general health questions were also compared using
ANOVA.

Predictive modeling

For our preliminary analysis, we built 10 models
for each of the 12 variations of our dataset to predict
responses to the four general health questions and
calculated index of general health status by binary
classification. The 10 learners chosen for this analy-
sis were 5-Nearest Neighbors (5NN), two versions
of C4.5 decision tree (C4.5D and C4.5N), Logis-
tic Regression (LR), Multilayer Perceptron (MLP),
Naïve Bayes (NB), two versions of Random Forest
(RF100 and RF500), Radial Basis Functional Net-
work (RBF), and Support Vector Machine (SVM).
Detailed descriptions to explain and contrast these
algorithms have been described elsewhere [12].
These were chosen because they represent a variety
of different types of learners and because we have had
demonstrated success using these in previous experi-
ments. Moreover, the parameter settings were chosen
based on our previous research which showed them to
be robust on a variety of different data [13]. Because
this was a preliminary investigation and because our
data were limited, further tuning of parameters was
not employed as it would have increased the risk of
overfitting our models and thus reduced the broader
clinical utility beyond these specific data.

Each model was built using 10-fold cross valida-
tion, and model performance was measured using
Area Under the ROC Curve (AUC). Our cross-
validation process began with randomly dividing
each of the 12 data sets into 10 equal segments, using
nine of these respective segments to train the model
and the remaining segment for testing. The number
of instances in each segment varied by the size of the
respective dataset as indicated in Table 1 (i.e., 1/10 of
the total number of instances for each dataset) This
procedure was repeated 10 times, using a different
segment as the test set in each iteration. The results
were then combined to calculate the final model’s
result/performance. For each learner/dataset combi-
nation, this entire process was repeated 10 times with
the data being split differently each time. Repeat-
ing this procedure reduced bias, ensured replicability,
and helped in determining the overall model perfor-

mance. Differences between learner-specific model
performance were examined using ANOVA and
Tukey’s Honest Significant Difference (HSD) test.
In total, 12,000 models were built (12 datasets × 10
learners × 10 runs × 10 folds = 12,000 models).

RESULTS

Of our 18,395 test results, 17,405 included answers
to at least one of the four general health questions
(most users only answered one of these questions).
The distribution of the number of answers for each
question is shown in Table 2. Only 4,645 of the M-
CRT participants included answers to all four general
health questions.

Among the five available performance attributes
to describe the M-CRT test results (true posi-
tive/negative, %responses/correct, and response time
true positive), certain patterns emerged demonstrat-
ing an apparent link to a higher HealthQScore. Using
a 95% confidence level, ANOVA revealed significant
differences among HealthQScore groups for response
time true positive (p = 0.000). There were also sig-
nificant differences among HealthQScore groups for
true positive (p = 0.020), but none for true negative
(p = 0.0551). Both %responses and %correct also
had significant differences (p = 0.026 and p = 0.037,
respectively). Further examination showed that for
both true positive and %responses, those with a
HealthQScore of 0 performed significantly better
than those with a 3 (p = 0.0253 and p = 0.0166, respec-
tively), but all other HealthQScore groups (1, 2,
and 4) overlapped with both. A similar pattern was
demonstrated with %correct, as there were significant
differences between participants with a HealthQS-
core of 1 and those with a 4 (p = 0.0402), but the
other three groups (0, 2, and 3) overlapped with both.
For the true positive response time variable, those
respondents with a HealthQScore of 0 responded sig-
nificantly faster than those with a 1 or 2 (p = 0.000),
who in turn responded significantly faster than those
with a HealthQScore of 3 or 4 (p = 0.000). Mean M-
CRT test results for all five performance attributes

Table 2
Distribution of number of answers to each general health question

Question # of answers % of all instances

Memory Problems 17,042 92.6%
Medications 4,999 27.2%
Difficulty Sleeping 5,496 29.9%
Medical Conditions 5,506 29.9%

Affecting Thinking
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Table 3
Mean M-CRT test results separated by HealthQScore group

Score Group True True %Responses † %Correct‡ Response Time True
(# of instances) Positive∗ Negative Positive§

0 (679) 21.1 22.8 46.6% 87.9% 901.4
1 (1427) 21.0 23.0 45.9% 87.9% 943.1
2 (1442) 20.9 22.8 46.2% 87.4% 960.0
3 (772) 20.6 23.0 45.2% 87.1% 1011.0
4 (325) 20.6 22.5 46.3% 86.2% 1023.2
∗Significant differences among HealthQScore groups for True Positive (ANOVA; p = 0.020).
†Significant differences among HealthQScore groups for %Responses (ANOVA; p = 0.026). ‡Significant
differences among HealthQScore groups for %Correct (ANOVA; p = 0.037). §Significant differences
among HealthQScore groups for Response Time True Positive (ANOVA; p = 0.000).

Table 4
Mean M-CRT test results differentiated by answers to general health questions

Question Response True True %Responses %Correct Response Time
Positive Negative True Positive

Memory Problems Yes 23.0 23.8 48.5% 93.6% 918.5
No 23.4∗ 23.8 49.2%† 94.5%∗ 876.1‡
n/a 23.3∗ 24.0 48.5% 94.5%∗ 888.1

Medications Yes 20.8 22.8 46.1% 87.3% 998.7
No 20.9 23.0 45.9% 87.7% 930.1
n/a 24.0 24.2 49.8% 96.4% 878.5

Difficulty Sleeping Yes 20.8 22.8 46.1% 87.2% 966.2
No 21.0 23.0 45.9% 87.9% 958.4
n/a 24.2 24.2 49.9% 96.7% 874.3

Medical Conditions Yes 20.6 22.8 45.6% 86.7% 1014.9
Affecting Thinking No 21.0 22.9 46.1% 87.7% 950.8

n/a 24.2 24.2 49.9% 96.7% 874.5

n/a denotes no response. ∗Significantly different than respective “Yes” response group (ANOVA; p ≤ 0.01), but
not each other. †Significantly higher response rate than “Yes” and “n/a” response groups (ANOVA; p = 0.000).
‡Significantly less (faster) than “Yes” and “n/a” response groups (ANOVA; p < 0.05).

across the HealthQScore groups (0–4) are presented
in Table 3.

We also differentiated these test scores based on the
responses to the individual general health questions
(Table 4). The values indicated in Table 4 were cal-
culated considering all valid unique users, regardless
of whether they answered the respective question or
any of the other general health questions. For nearly
every combination of health question and M-CRT
performance attribute, users who did not answer the
respective health question scored significantly better
than those who did. Exceptions to this are noted in
Table 4.

The results from our modeling to predict binary
(yes/no) classification of the health-related questions
and general health status (healthy/unhealthy) based
on a calculated HealthQScore are shown in Table 5.
Each of these data values in Table 5 indicates the
aggregate model performance based on the AUC
respective mean derived from the 100 models (10
runs × 10 folds) built for each learner/dataset combi-
nation, with the statistically overlapping (confidence

interval) highest performing learners for each dataset
indicated in bold. Logistic regression was gener-
ally the top-performing learner in nearly all cases
with moderately robust prediction performance for
HealthQScore and the general health questions spe-
cific to medications and medical conditions affecting
thinking (though, only when using the other three
health questions responses as independent variables
for the latter).

DISCUSSION

From the original HAPPYneuron program dataset,
we cleaned and analyzed individual measures of
episodic memory performance from MemTrax and
respective selected demographic information from
the M-CRT test. Then, using machine learning,
we developed a series of models to separately
predict the binary classification responses to four
individual general health questions and a calcu-
lated binary classification index of implied general
health status—HealthQScore. Logistic regression
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Table 5
Binary classification performance (AUC; 0.0 – 1.0) results for each of the 10 learners

Dataset 5NN C4.5D C4.5N LR MLP NB RF100 RF500 RBF SVM

MemoryProblems 1Q 0.5489 0.5802 0.5902 0.5945 0.5873 0.5841 0.5554 0.5568 0.5850 0.5512
MemoryProblems 4Q 0.5647 0.5863 0.5995 0.6110 0.6054 0.5985 0.5704 0.5717 0.5969 0.5722
Medications 1Q 0.6214 0.6532 0.6638 0.7129 0.7069 0.7027 0.6480 0.6501 0.6873 0.7123
Medications 4Q 0.6962 0.7087 0.7045 0.7687 0.7624 0.7534 0.7243 0.7261 0.7291 0.7663
DifficultySleeping 1Q 0.5270 0.5518 0.5533 0.5589 0.5600 0.5636 0.5286 0.5291 0.5638 0.5208
DifficultySleeping 4Q 0.5701 0.5968 0.5989 0.6247 0.6223 0.6195 0.5814 0.5824 0.6133 0.5572
MedicalConditions 1Q 0.5419 0.5025 0.5638 0.5753 0.5758 0.5772 0.5436 0.5451 0.5514 0.5380
MedicalConditions 4Q 0.6767 0.5054 0.7498 0.7532 0.7648 0.7492 0.7054 0.7085 0.7425 0.6417
HealthQScore 0v4 0.6008 0.5958 0.6162 0.6802 0.6599 0.6626 0.5998 0.6028 0.6262 0.6780
HealthQScore 01v4 0.5678 0.5237 0.5972 0.6498 0.6392 0.6475 0.5858 0.5873 0.6195 0.5646
HealthQScore 01v34 0.5620 0.6095 0.6049 0.6475 0.6312 0.6388 0.5864 0.5886 0.6149 0.6259
HealthQScore 0v34 0.5821 0.6237 0.6261 0.6800 0.6510 0.6561 0.6044 0.6053 0.6294 0.6727

Statistically overlapping (confidence interval) highest performing learners for each dataset indicated in bold (statistically different than all
others not in bold for the respective model; p = 0.000).

was generally the top-performing learning algorithm
indicated by its highest or nearly highest AUC per-
formance on all datasets. Classification prediction
for HealthQScore was moderately robust, as were
the models for the general health questions spe-
cific to medications and medical conditions affecting
thinking (when the responses to the other three ques-
tions were considered as independent variables for
the latter). Accordingly, these initial models demon-
strate the potential valid clinical utility of MemTrax
(administered as part of the M-CRT test) in screening
for variations in cognitive brain health. Moreover, we
are also introducing supervised machine learning as a
modern approach and new value-add complementary
tool in cognitive brain health assessment and related
patient management.

We created the HealthQScore attribute based on the
assumption that a “Yes” response to a greater number
of the four M-CRT general health questions suggests
a comparatively less overall healthy cognitive state
and potentially more likely that the respondent is
affected by AD or another form of cognitive impair-
ment. Conversely, users who answered “No” to all
the general health questions were assumed to have
more likely exhibited normal cognitive brain health
at the time of M-CRT participation. Correspondingly,
using only a HealthQScore of zero (0) in the negative
class resulted in better model performance. Although
we currently weighted each of the four general health
questions equally in determining a HealthQScore, we
recognize that there may be a clinically relevant ratio-
nale for weighting these questions differently (singly
or in combination) in determining a more appropriate
and useful aggregate score.

Nonetheless, there was apparent value in the
calculated HealthQScore in differentiating M-CRT

performance, in that certain patterns emerged relevant
to inferred health status. Whereas selected aspects
of M-CRT performance were notably distinct when
comparing HealthQScore near extremes (e.g., 0 ver-
sus 3 or 1 versus 4), the most consistent progressive
pattern of health status differentiation was demon-
strated with the true positive response time metric.
Moreover, M-CRT performance was also differenti-
ated by the participants’ decision to respond to the
general health questions, that is, generally those who
did not answer a given question (implied to suggest
the participant’s health was not negatively affected in
this respective way) performed better on the M-CRT.
This supports our hypothesis that individual health
status could be inferred from an aggregate of self-
reported indicators and complement (by inclusion)
the efficacy of selected features of M-CRT online
performance in our preliminary modeling.

Specific to our models targeting individual health
questions, it was evident that the models with
the other three questions included as independent
attributes performed better than those that did not.
Without a lot of attributes to consider, adding infor-
mation from three additional independent attributes
potentially makes a larger impact on algorithm learn-
ing potential. However, it is also possible that there
was some unknown dependency between some of
these attributes. For example, including the answers
to the other three questions had the greatest effect
on the question about medical conditions, raising
the highest AUC score by nearly 0.2. It is plausi-
ble (though the supporting data are limited) that if
someone was taking medications, he or she may have
been previously diagnosed with a relevant medical
condition. Accordingly, this could be skewing our
models. Also, numerous medications prescribed for
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a variety of conditions such as anti-cholinergic drugs
(including diphenhydramine) and GABA agonists
(benzodiazepines, barbiturates, most anti-epileptics)
can impair episodic memory and slow reaction time
[14–16]. Naturally, our models would likely bene-
fit from, and any underlying dependencies would be
clarified by, more definitive questions yielding more
precise clinical insight into each individual partici-
pant.

Deeper examination of these (or similar) data
might prompt select classification algorithm setting
changes that would favorably support building more
robust models. Interestingly, the models developed
for the memory problems question were among
the worst performing models for the four general
health questions. This was somewhat surprising given
that this variation of the dataset contained the most
instances, which typically enhances model perfor-
mance compared to models based on more limited
data. Arguably, an underlying reason for this may be
that there were still some noisy/faulty data included
in the dataset. Further efforts towards additional
data cleaning may help improve model performance.
Alternatively, while subjective memory complaint
can be predictive (in early stages) for future onset
and development of dementia, those individuals suf-
fering from or exhibiting cognitive dementia who are
diagnosed with AD (beyond mild cognitive impair-
ment) usually deny or are unaware of their memory
problems. And, complicating the specificity further,
most people recognize and readily admit that their
memories are not perfect [17–19].

Clinically, it is especially important and highly
valuable to have a simple, reliable, and widely acces-
sible tool to use as an initial screen in detecting early
onset cognitive deficits and potential AD. Such a pri-
ori valid insight would readily reinforce and augment
a stratified approach to case management and patient
care. Demarcation of relevant functional impairment
for research could also be advantageous in stratify-
ing those with early onset cognitive deficits and AD
patients in clinical trials to reduce variability and the
number of subjects needed and enhance statistical
power.

We recognize that this is an early stage in intro-
ducing machine learning to cognitive impairment
predictive modeling and we realize that the demon-
strated model performance in each instance was at
best only moderately robust. However, these findings
provide a promising indication of how the predictive
modeling decision support utility of computerized
neuropsychological tests such as MemTrax could

be enriched by assessing clinical condition—even
if simply via relevant self-reported health questions.
Of course, we also recognize that a more definitive
clinical diagnosis or assessment of cognitive dysfunc-
tion to train the learners would improve predictive
model performance and practical clinical utility of
MemTrax. Notably, however, a comparison of Mem-
Trax to the recognized and widely utilized Montreal
Cognitive Assessment Estimation of mild cognitive
impairment underscored the power and potential of
this new online tool and approach in evaluating short-
term memory in diagnostic support for cognitive
screening and assessment with a variety of clinical
conditions and impairments including dementia [20].
There is a corresponding urgent need to have quantifi-
able insight for individuals across the continuum from
normal through mild cognitive impairment [7, 21,
22]. A clinically effective MemTrax-based machine
learning predictive model could also be instrumental
in indicating and tracking the temporal severity and
progression of dementia across multiple cognitive
and functional domains.

Machine learning has an inherent capacity to reveal
meaningful patterns and insights from a large, com-
plex inter-dependent array of clinical determinants
and continue to “learn” from ongoing utility of prac-
tical predictive models. Thus, we are confident that
our models will improve with more and more diverse
clinically validated health status data (e.g., a broad
multifactorial scope including genomics, promising
biomarkers, and other functional, behavioral, and
lifestyle indicators) to train the models [2, 11, 23].
A robust, multi-faceted, and externally validated
model can uniquely complement and measurably
enhance the sensitivity and specificity of MemTrax
as a valid cognitive health screen tool and thus
greatly assist in clinical decision support and patient
management.

Data limitations and outstanding questions

Our initial exploration and assessment of the over-
all dataset revealed several issues and challenges.
Notably, numerous instances of missing informa-
tion across many features may have compromised
the accuracy of our current (and would for any
future) models trained on these data. Specifically,
the markedly large difference in the number of users
who answered whether they were having memory
problems compared to the prevalence of responses to
the other three general health questions, suggests the
need to examine when in the process these questions
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were presented to the participants and how the users
were prompted.

Whereas our analysis showed significant differ-
ences between some features, filter-based modeling
(i.e., training models only on a subset of top-ranked
features) did not demonstrate meaningful improve-
ment, and thus was not included in the current
methods or discussed. The limited number of use-
ful features in these data likely limited the efficacy
and utility of this filtering technique that typically is
more justified and useful with a greater number of
high-value features.

Key predictive modeling findings

• Models for selected health-related questions
and the calculated HealthQScore using logis-
tic regression (and several other classifiers)
performed moderately well with performance
(AUC) in the mid 60 to the mid 70% range.

• These models demonstrate the utility of incor-
porating MemTrax performance via the M-CRT
test in predicting binary health status clas-
sification (healthy versus unhealthy) when
complemented by select demographic informa-
tion and only self-reported indirect indicators of
general health.

• This novel application of supervised machine
learning and predictive modeling helps to
demonstrate and validate the cross-sectional
utility of MemTrax in assessing early-stage cog-
nitive impairment and general screening for AD.

This illustration is also an important step in advanc-
ing the approach for clinically managing this complex
condition. By considering and analyzing a wide array
of high-value (contributing) attributes across multi-
ple domains of the integrated systems biology and
functional behaviors of brain health, informed and
strategically directed advanced data mining, super-
vised machine learning, and robust analytics can
be integral (and indeed necessary) to healthcare
providers in detecting and anticipating further pro-
gression in AD and myriad other aspects of cognitive
impairment. Seamless utility and real-time interpre-
tation can notably enhance case management and
patient care through innovative technology transfer
and commercialization emanating from such mod-
els, screening tools, and development of practical
and readily usable integrated clinical applications
(e.g., via a hand-held device and app). Result-
ing new insights and discovery will also set the

stage for much more significant and impactful
future research.
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