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Abstract

Genomics, epigenomics, transcriptomics, proteomics and metabolomics efforts rapidly

generate a plethora of data on the activity and levels of biomolecules within mammalian

cells. At the same time, curation projects that organize knowledge from the biomedical

literature into online databases are expanding. Hence, there is a wealth of information

about genes, proteins and their associations, with an urgent need for data integration to

achieve better knowledge extraction and data reuse. For this purpose, we developed the

Harmonizome: a collection of processed datasets gathered to serve and mine knowledge

about genes and proteins from over 70 major online resources. We extracted, abstracted

and organized data into �72 million functional associations between genes/proteins and

their attributes. Such attributes could be physical relationships with other biomolecules,

expression in cell lines and tissues, genetic associations with knockout mouse or human

phenotypes, or changes in expression after drug treatment. We stored these associations

in a relational database along with rich metadata for the genes/proteins, their attributes

and the original resources. The freely available Harmonizome web portal provides a

graphical user interface, a web service and a mobile app for querying, browsing and

downloading all of the collected data. To demonstrate the utility of the Harmonizome, we

computed and visualized gene–gene and attribute–attribute similarity networks, and

through unsupervised clustering, identified many unexpected relationships by combin-

ing pairs of datasets such as the association between kinase perturbations and disease

signatures. We also applied supervised machine learning methods to predict novel
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substrates for kinases, endogenous ligands for G-protein coupled receptors, mouse

phenotypes for knockout genes, and classified unannotated transmembrane proteins for

likelihood of being ion channels. The Harmonizome is a comprehensive resource of

knowledge about genes and proteins, and as such, it enables researchers to discover

novel relationships between biological entities, as well as form novel data-driven hypoth-

eses for experimental validation.

Database URL: http://amp.pharm.mssm.edu/Harmonizome.

Introduction

Currently, biomolecular data are stored in many disjoint

online databases. The data within these databases is struc-

tured, and thus suitable for data integration; however,

most attempts to integrate knowledge from multiple re-

sources have only succeeded in accomplishing this for a

few resources. For example, web-based platforms such as

BioGPS (1), NCBI’s Entrez Gene Database (2), UniProt

(3), GeneWeaver (4), MSigDB (5), GO-Elite (6) or

Ingenuity Target Explorer, provide knowledge about genes

from the Gene Ontology (GO) (7), protein domains, pro-

tein–protein interactions, expression in tissues, member-

ship in pathways, and literature references but there are

many other sources that these sites are missing. The know-

ledge that is commonly missing includes, e.g. gene-

phenotype associations, putative regulation of genes by

transcription factors, membership of proteins in com-

plexes, putative regulation of genes by microRNAs, and

changes in expression after drug treatment, or changes in

expression in disease, or after single gene perturbations

such as knockdown, knockout, mutation or over-

expression. GeneCards (8) is becoming one of the most

comprehensive resources for collective knowledge about

genes and proteins, aggregating information from over 120

resources. However, GeneCards is a commercial product

that does not provide the data through an open and free

application programming interface (API). GeneCards is

advertising commercial products such as antibodies, com-

pounds, recombinant proteins, and gene sequencing ser-

vices. This limits the utility of GeneCards for integrative

knowledge discovery and pure data mining. Another lead-

ing resource is UniProt (9). UniProt focuses on sequence in-

formation and employs careful manually curated protein

pages with less emphasis on data from omics resources.

Other resources use text-mining strategies to collect infor-

mation about genes and proteins. For example, resources

such as WikiGenes (10), iHOP (11), Genes2Wordcloud

(12) and EvidenceFinder (http://labs.europepmc.org/evf)

identify and highlight genes and other semantic entities in

sentences from abstracts and full-text publications to sum-

marize gene and protein functions. These resources suffer

from literature research focus biases (13); the uneven atten-

tion researchers give to well-studied genes and proteins

(14).

One of the challenges related to integrating knowledge

about genes and proteins is the standardization of data for-

mats and harmonizing identifiers (15). Integration efforts

made in subdomain areas such as protein–protein inter-

actions have already developed successful solutions (16,

17). These solutions require some level of abstraction (15,

18, 19), i.e. ignoring quantitative details specific to a data

resource (20, 21). Here we demonstrate that such an ab-

straction approach is feasible for integrating data about

genes and proteins from many online resources. Using a

simple schema, such data integration effort directly trans-

lates to a useful web service and a gateway to knowledge

discovery with many applications (Figure S1D).

Results

Datasets and data resources

To create the Harmonizome, we collected information

about human and mouse, genes and proteins, from 125

unique datasets (Tables 1–9, Supplementary Table S1)

hosted by 72 open online resources (Supplementary Table

S2). The collected datasets cover six broad categories of in-

formation about mammalian genes or proteins: (i) disease

and phenotype associations, (ii) genomic profiles, (iii)

physical interactions, (iv) proteomic profiles, (v) structural

or functional annotations and (vi) transcriptomic profiles

(Supplementary Figure S1A). The datasets provide evi-

dence for associations between genes/proteins and biolo-

gical entities spanning nine broad categories

(Supplementary Table S3 and Supplementary Figure S1B),

whereas the evidence types supporting the gene-entity asso-

ciations span five broad categories (Supplementary Table

S4 and Figure S1C). Half of the datasets are from high-

throughput, data-driven studies, a third are from low-

throughput, hypothesis-driven studies, and the remainder

are from mixed sources.

To harmonize the 125 datasets we: (i) organized each

incoming dataset into a matrix with genes labeling the
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rows and biological entities (attributes) labeling the col-

umns; and (ii) standardized identifiers for genes and biolo-

gical entities; while also (iii) calculated standardized scores

for gene-biological entity associations; and (iv) computed

gene–gene and entity–entity similarity matrices. These

matrices were then: (v) saved to text files and (vi) loaded

into a relational database. To manage gene or protein iden-

tifiers, we mapped them all to NCBI Entrez Gene Symbols.

To consolidate biological entity identifiers we mapped

these to existing ontologies for tissues, cell lines, chemicals,

functional terms, phenotypes and diseases (Supplementary

Table S5). To serve the data in useful formats, we provide

Table 1 Datasets. List of datasets group by attribute, with

dataset citations

Dataset Citations

Achilles Cell Line Gene Essentiality Profiles (22–24)

BioGPS Cell Line Gene Expression Profiles (1, 25, 26)

CCLE Cell Line Gene CNV Profiles (27)

CCLE Cell Line Gene Expression Profiles (27)

CCLE Cell Line Gene Mutation Profiles (27)

COSMIC Cell Line Gene CNV Profiles (28, 29)

COSMIC Cell Line Gene Mutation Profiles (28, 29)

GDSC Cell Line Gene Expression Profiles (30)

Heiser et al., PNAS, 2011 Cell Line Gene Expression

Profiles

(31)

HPA Cell Line Gene Expression Profiles (32)

Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene

CNV Profiles

(33)

Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene

Expression Profiles

(33)

Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene

Mutation Profiles

(33)

BioGPS Human Cell Type and Tissue Gene

Expression Profiles

(1, 25, 26)

BioGPS Mouse Cell Type and Tissue Gene

Expression Profiles

(1, 25, 26)

HPM Cell Type and Tissue Protein Expression Profiles (34)

ProteomicsDB Cell Type and Tissue Protein

Expression Profiles

(35)

Roadmap Epigenomics Cell and Tissue DNA

Methylation Profiles

(36, 37)

Roadmap Epigenomics Cell and Tissue Gene

Expression Profiles

(36, 37)

Allen Brain Atlas Developing Human Brain Tissue

Gene Expression Profiles by Microarray

(38–40)

Allen Brain Atlas Developing Human Brain Tissue

Gene Expression Profiles by RNA-seq

(38–40)

GTEx Tissue Sample Gene Expression Profiles (41, 42)

HPA Tissue Sample Gene Expression Profiles (32)

TCGA Signatures of DEGs for Tumors (43)

Allen Brain Atlas Adult Human Brain Tissue Gene

Expression Profiles

(37–40, 44)

Allen Brain Atlas Adult Mouse Brain Tissue Gene

Expression Profiles

(38, 39, 45)

Allen Brain Atlas Prenatal Human Brain Tissue Gene

Expression Profiles

(38–40, 46)

GTEx Tissue Gene Expression Profiles (41, 42)

HPA Tissue Gene Expression Profiles (32)

HPA Tissue Protein Expression Profiles (32)

TISSUES Curated Tissue Protein Expression

Evidence Scores

(47)

TISSUES Experimental Tissue Protein Expression

Evidence Scores

(47)

TISSUES Text-mining Tissue Protein Expression

Evidence Scores

(47)

List of datasets group by attribute, with dataset citations. Datasets provid-

ing evidence for associations between genes and ‘cell lines, cell types or

tissues’.

Table 2 Datasets providing evidence for associations between

genes and ‘chemicals’

Dataset Citations

CTD Gene-Chemical Interactions (48, 49)

SILAC Phosphoproteomics Signatures of

Differentially Phosphorylated Proteins for Drugs

DrugBank Drug Targets (50, 51)

Guide to Pharmacology Chemical Ligands of

Receptors

(52)

HMDB Metabolites of Enzymes (53, 54)

CMAP Signatures of DEGs for Small Molecules (55)

GEO Signatures of DEGs for Small Molecules (56–58)

LINCS L1000 CMAP Signatures of DEGs for Small

Molecules

(59)

KinomeScan Kinase Inhibitor Targets

Table 3 Datasets providing evidence for associations be-

tween genes and ‘diseases, phenotypes or traits’

Dataset Citations

GEO Signatures of DEGs for Diseases (56, 57)

CTD Gene-Disease Associations (48, 49)

DISEASES Curated Gene-Disease Assocation Evidence

Scores

(61)

DISEASES Experimental Gene-Disease Assocation

Evidence Scores

(60)

DISEASES Text-mining Gene-Disease Assocation

Evidence Scores

(60)

GAD Gene-Disease Associations (61)

GAD High Level Gene-Disease Associations (61)

GWASdb SNP-Disease Associations (62)

PhosphoSitePlus Phosphosite-Disease Associations (63, 64)

ClinVar SNP-Phenotype Associations (65)

GWAS Catalog SNP-Phenotype Associations (66)

GWASdb SNP-Phenotype Associations (62)

HPO Gene-Disease Associations (67)

HuGE Navigator Gene-Phenotype Associations (68)

MPO Gene-Phenotype Associations (69–72)

OMIM Gene-Disease Associations (73, 74)

dbGAP Gene-Trait Associations (75, 76)
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all gene–entity-value triplets for download as text files in

matrix, gene-set library, biological entity-set library and bi-

partite graph formats. In addition, gene–gene and entity–en-

tity similarity networks for each dataset are also available.

The harmonizome web resource

To accommodate users who seek information about a sin-

gle gene, as well as computational biologists who can pro-

grammatically operate on the data, the Harmonizome

includes advanced search functionality, and serves the data

in text file and JSON formats through an API. The

Harmonizome landing page displays a search bar where

users can type in any search term with autocomplete capa-

bilities (Supplementary Figure S2A). The engine searches

for matching datasets, genes and attributes. On the search

results pages users can choose to view datasets, genes or at-

tributes pages (Supplementary Figure S2B). These pages

contain metadata and provide various views. The

Harmonizome site also has a global summary visualization

of the knowledge about each gene across all of the data-

sets. This interactive heat map, called the Harmonogram,

displays the genes as the rows and the datasets as the

columns. The intensity of each square on the

Harmonogram indicates the relative number of functional

associations that each gene has in each dataset

(Supplementary Figure S2C). This visualization reveals

gaps in knowledge about genes, and suggests where to

Table 4 Datasets providing evidence for associations be-

tween genes and ‘functional terms, phrases or references’

Dataset Citations

GO Biological Process Annotations (7, 77)

GeneRIF Biological Term Annotations (78)

Phosphosite Textmining Biological Term Annotations

COMPARTMENTS Curated Protein Localization

Evidence Scores

(79)

COMPARTMENTS Experimental Protein Localization

Evidence Scores

(79)

COMPARTMENTS Text-mining Protein Localization

Evidence Scores

(79)

GO Cellular Component Annotations (7, 77)

LOCATE Curated Protein Localization Annotations (80)

LOCATE Predicted Protein Localization Annotations (80)

GO Molecular Function Annotations (7, 77)

Biocarta Pathways

HumanCyc Pathways (81, 82)

KEGG Pathways (83, 84)

PANTHER Pathways (85, 86)

PID Pathways (87)

Reactome Pathways (88, 89)

Wikipathways Pathways (90)

CORUM Protein Complexes (91, 92)

NURSA Protein Complexes (93, 94)

ESCAPE Omics Signatures of Genes and Proteins for

Stem Cells

(95)

GeneSigDB Published Gene Signatures (96, 97)

Table 5 Datasets providing evidence for associations be-

tween genes and ‘other genes, proteins or microRNAs’

Dataset Citations

MSigDB Cancer Gene Co-expression Modules (98)

GEO Signatures of DEGs for Gene Perturbations (56, 57)

LINCS L1000 CMAP Signatures of DEGs for Gene

Knockdowns

(59)

MSigDB Signatures of DEGs for Cancer Gene

Perturbations

(98)

SILAC Phosphoproteomics Signatures of Differentially

Phosphorylated Proteins for Gene Perturbations

Hub Proteins Protein–Protein Interactions (99)

BIND Biomolecular Interactions (100, 101)

BioGRID Protein–Protein Interactions (102, 103)

DIP Protein–Protein Interactions (104)

HPRD Protein–Protein Interactions (105, 106)

IntAct Biomolecular Interactions (107, 108)

NURSA Protein–Protein Interactions (93, 94)

Pathway Commons Protein–Protein Interactions (109)

GEO Signatures of DEGs for Kinase Perturbations (56, 57)

KEA Substrates of Kinases (110)

PhosphoSitePlus Substrates of Kinases (63, 64)

SILAC Phosphoproteomics Signatures of Differentially

Phosphorylated Proteins for Protein Ligands

Guide to Pharmacology Protein Ligands of Receptors (52)

MiRTarBase microRNA Targets (111, 112)

TargetScan Predicted Conserved microRNA Targets (113–115)

TargetScan Predicted Nonconserved microRNA Targets (113–115)

DEPOD Substrates of Phosphatases (116)

GEO Signatures of DEGs for Transcription Factor

Perturbations

(56, 57)

CHEA Transcription Factor Targets (117)

ENCODE Transcription Factor Targets (118, 119)

JASPAR Predicted Transcription Factor Targets (120, 121)

TRANSFAC Curated Transcription Factor Targets (122, 123)

TRANSFAC Predicted Transcription Factor Targets (122, 123)

Virus MINT Protein-Viral Protein Interactions (124)

Table 6 Datasets providing evidence for associations be-

tween genes and ‘molecular profiles’

Dataset Citations

Kinativ Kinase Inhibitor Bioactivity Profiles

ENCODE Histone Modification Site Profiles (118, 119)

Roadmap Epigenomics Histone Modification Site Profiles (36, 37)

CHEA Transcription Factor Binding Site Profiles (117)

ENCODE Transcription Factor Binding Site Profiles (118, 119)
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focus future experiments to illuminate functions of unan-

notated genes to increase potential for novel discoveries.

For further visual exploration of the data, the

Harmonizome includes interactive heat maps of hierarchically

clustered: (i) datasets (gene–biological entity relationships

matrices), (ii) gene–gene similarity matrices, (iii) entity–entity

similarity matrices and (iv) dataset pairs (matrices comparing

biological entities from one dataset to biological entities

from another dataset based on similarity of their gene

associations).

Hierarchically clustered data matrices in the

Harmonizome collection can uncover new knowledge. For

example, we organized phenotype data from the

Mammalian Phenotype Ontology (MPO) (129) into a bin-

ary matrix with genes labeling the rows, phenotypes label-

ing the columns, and matrix elements set equal to 1 to

indicate which phenotypes were observed following knock-

out of a gene. Hierarchical clustering of this matrix shows

patches of common phenotypes for groups of genes

(Figure 1A). By exploring the clustered heat map visualiza-

tion of the MPO dataset, we noticed a small group of genes

(NCOR1, BAG3, SIRT7, STEAP4, CXCL14, CEBPA,

PROX1, AGPAT2, BSCL2, LIPA, NR1H4 and PPARG)

that are associated with abnormalities of both the immune

system and metabolism, such as glucose homeostasis, lipid

homeostasis and feeding behavior (Figure 1B). Interactive

hierarchical clustering plots with zooming and panning

capabilities are available on the Harmonizome site, ena-

bling further exploration of this type of clustering analysis.

Table 7 Datasets providing evidence for associations be-

tween genes and ‘organisms’

Dataset Citations

GEO Signatures of DEGs for Viral Infections (56, 57)

Virus MINT Protein-Virus Interactions (124)

Table 8. Datasets providing evidence for associations be-

tween genes and ‘sequence features’

Dataset Citations

GTEx eQTL (41, 42)

Table 9. Datasets providing evidence for associations be-

tween genes and ‘structural features’

Dataset Citations

InterPro Predicted Protein Domain Annotations (125–128)

Figure 1. Hierarchical clustering of gene-term, term-term and gene-gene matrices. (A) Gene-phenotype associations from the MPO organized into a

binary matrix and clustered using hierarchical clustering. (B) Zooming into a cluster of genes with similar associated phenotypes, filtered to show

higher level phenotypes associated with at least half of the genes in the cluster but no> 10% of all genes. (C) The gene–gene and cell-line/cell-line

similarity matrices are from the CCLE gene expression dataset. Along the main diagonal of both matrices, there are several distinct zones of high red

intensity, indicating clusters of cell lines with similar differentially expressed genes (DEGs) and clusters of genes with similar patterns of expression

across cell lines. (D) Zooming into the lung cancer cell-lines cluster.
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Hierarchically clustered functional association net-

works (130) can also be explored for each dataset. We

derived gene–gene and entity–entity functional association

networks by computing the cosine similarity of the rows

and columns of each dataset, respectively. In the cancer

cell-line encyclopedia (CCLE) dataset, as an example, we

can observe correlated gene expression modules and

groups of cell lines (Fig. 1C). The cell lines from CCLE pre-

dominantly cluster by tissue of origin. However, in a few

interesting instances, some cell lines are in clusters of a dif-

ferent tissue; e.g. NCI-H660 is marked as prostate tissue,

but appears within a cluster of 43 lung cancer cell-lines

(Figure 1D). The ATCC website states that NCI-H660 was

originally a small-cell lung carcinoma cell-line, but this cell

line was later reclassified to extra-pulmonary lymph node

metastatic cancer originating from the prostate (131–133).

The cell-line similarity heat map strongly supports a lung

origin/phenotype. Interactive gene-gene and attribute–

attribute functional association networks with zooming

and panning capabilities are available on the

Harmonizome site, potentially uncovering many other un-

expected relationships.

Users of the Harmonizome can combine two or more

datasets to identify relationships that are only possible to

uncover once these datasets have been abstracted, normal-

ized, organized and combined. We devised two related

case studies to demonstrate this concept. For the first case

study, we integrated differentially expressed gene (DEG)

signatures for kinase perturbations with DEG signatures

for diseases. The similarity scores for 233 disease signa-

tures paired with 285 kinase perturbation signatures

mostly did not match; however, we observed clear patches

of positive and negative correlations (Figure 2A). The posi-

tive correlations (red patches) suggest that the kinase, or its

pathway, is likely perturbed in the disease. The negative

correlations (blue patches) suggest diseases in which down-

regulating the kinase may reverse expression toward the

normal tissue expression and promote a more favorable

phenotype. Hence, these kinases are potential drug targets

for the specific disease. To confirm this conjecture, we

found that some of the similarity scores were predictive of

kinase-disease associations obtained from genome-wide as-

sociation studies (GWAS) and other genetic association

datasets in the Harmonizome (Figure 2B). Finally, we inte-

grated knowledge about small molecules that inhibit kin-

ases by combining the kinase-disease similarity network

with the LINCS KinomeScan dataset to create a tri-partite

graph connecting small molecules to kinases to diseases as

potential therapeutics (Figure 2C).

In the second case study, we performed a similar ana-

lysis, but here we replaced the disease signatures with signa-

tures of DEGs for cancer cell lines from CCLE to derive

similarity scores for 1037 cancer cell lines paired with 285

kinase perturbations (Figure 2D). These similarity scores

were predictive of driver gene mutations in the cancer cell

lines as reported by the COSMIC resource (28) (Figure 2E).

Finally, we integrated the LINCS KinomeScan dataset to

create a tri-partite graph connecting cancer cell lines to

likely driver kinases to kinase-inhibitor compounds (Figure

2F). Experimental methods can assess whether some of

these compounds selectively influence the phenotype of

these cells. Integration with the recently published cancer

cell-line sensitivity data is an alternative (27,30, 31,134).

Indeed, some of the predicted small molecules have already

been tested and shown to have favorable effects on the can-

cer cell lines and diseases suggested by our analysis. For ex-

ample, sorafenib has shown promise for the treatment of

colorectal cancer (135); dinaciclib for the treatment of ma-

lignant gliomas (136); and bosutinib for melanoma (137),

prostate cancer (138) and pancreatic cancer (139). These

confirmations suggest that some of our predictions are cor-

rect, and some can serve as a global reference point for fur-

ther analyses to provide other rational and novel

hypotheses for experimental validation. These case studies

illustrate just two of many ways to combine the

Harmonizome datasets for discovery and hypothesis gener-

ation. The Harmonizome website provides the ability to ex-

plore similar relationships between pairs of datasets by

performing unsupervised hierarchical clustering of similar-

ity matrices comparing biological entities between datasets.

The harmonizome mobile app

The Harmonizome mobile application serves the biological

knowledge we collected in an easy-to-access interface

where a user can enter a gene of interest to discover prop-

erties and functions for the gene (Supplementary Figure

S3). Developed using the Facebook React Native platform,

the Harmonizome mobile app serves knowledge about

genes organized into eight categories, and provides links to

external sources for further exploration of gene-function

associations. The Harmonizome mobile application is free

and available at the Google Play Store (http://goo.gl/

JWlI8H) for Android devices, and the App Store (http://

appstore.com/harmonizome) for iOS devices. A demon-

stration video with a case study is available on YouTube

at: https://youtu.be/dkYcD51pnfY.

Machine learning case studies

On its own, the Harmonizome web resource is a valuable

tool for discovery and hypothesis generation by enabling

exploration of functional associations between mammalian

genes and diseases/phenotypes, tissues and other biological
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entities collected from over a hundred diverse datasets.

However, there is also the opportunity for discovering new

knowledge about mammalian genes and proteins by the

‘guilt-by-association’ concept, i.e. genes and proteins that

share some common functional properties are likely to

share more of those properties. To demonstrate this con-

cept we utilized the Harmonizome data for developing

four predictive models using Machine Learning. These case

studies demonstrate how to use the Harmonizome data for

predicting novel properties for genes and proteins.

Predicting ion channels from uncharacterized

transmembrane proteins

Discovery of novel ion channels could open new lines of re-

search and reveal potential drug targets (140). Ion channels

have diverse structures and this makes it challenging to dis-

cover ion channels based on sequence information alone.

For example, ion channels vary in their number of trans-

membrane domains and are commonly part of macro-

molecular complexes (141). Searching gene or protein

sequences for transmembrane domains is useful for

Figure 2. Example of combining datasets: matching kinases with diseases and drugs. (A) Hierarchical clustering of kinase perturbation signatures ex-

tracted from GEO and disease signatures extracted from GEO. (B) Validation of kinase-disease associations with genomics datasets. ROC curve show-

ing concordance of kinase-disease associations derived by comparing gene expression profiles and kinase-disease associations collected from

GWAS and other genetic association datasets. Low, medium and high labels correspond to confidence levels of associations from GWAS datasets.

(C) Network showing top predictions of drug-kinase-disease associations. Red edges indicate kinase-disease associations that have supporting

GWAS evidence. (D) Hierarchical clustering of signatures of DEGs for kinase perturbations extracted from GEO compared with signatures for cancer

cell lines from CCLE. (E) ROC curve showing concordance of kinase-cell line associations derived by comparing gene expression profiles and driver

kinase mutations for cell lines from COSMIC. (F) Network showing top predictions of drug-kinase-cell line associations. Red edges indicate kinase-cell

line associations supported by COSMIC as having a driver mutation in the cell line.
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predicting proteins that are located in the plasma mem-

brane, but channel activity is much more difficult to pre-

dict computationally from sequence alone. Roughly 5500

genes have been predicted to give rise to transmembrane

proteins (142). We can use the omics data within the

Harmonizome to construct a Machine Learning classifier

to predict if any uncharacterized transmembrane proteins

are likely ion channels. Our overall modeling approach can

be broken down into three stages: (i) gene and dataset se-

lection; (ii) dimensionality reduction and feature selection;

and (iii) model training, cross-validation and finally mak-

ing predictions.

We began with 5428 human genes predicted by

Fagerberg et al. (142) to encode for transmembrane pro-

teins. We next divided these genes into three classes: 341

known ion channels, 4510 non-ion channels and 577

uncharacterized genes. Next, we selected datasets from the

Harmonizome to obtain attributes for the ion channel clas-

sifier. We considered only omics datasets, ranked each

dataset by the predictive value of its attributes, and re-

tained a final set of 8 datasets covering 320 ion channels

(94%), 3928 non-ion channels (87%) and 396 uncharac-

terized transmembrane genes/proteins (69%).

From each of those eight datasets we next selected the

best attributes as predictors for training the ion channel

classifier. For this we performed principal component ana-

lysis on each of the selected datasets, retained the principal

components needed to capture 99% of the variance of

each dataset, and then concatenated the principal compo-

nents from all datasets into a single matrix. This process

yielded 6985 total predictors. We performed receiver oper-

ating characteristic (ROC) analysis to rank the value of

each predictor for discriminating between ion channels

and non-ion channels. We used the Breiman Random

Forest algorithm with decision trees to train ion channel

classifiers and found that 70 features and 300 trees were

sufficient to achieve near minimal out-of-bag error. The

final set of 70 features contained contributions from all

eight datasets, with the majority of the features coming

from the InterPro structural domains dataset

(Supplementary Table S6).

The area under the ROC curve of the final classifier was

0.99 (Figure 3A). The F1 score and Matthew’s Correlation

Coefficients (MCC) had maximum values of 0.922 and

0.918 (Figure 3B, Supplementary Figure S4 and

Supplementary Table S7). These performance statistics,

calculated from the out-of-bag data, estimate how well the

classifier generalizes to data not seen while training the

model. We used the model to predict and rank ion channel

probabilities for the 396 uncharacterized genes

(Supplementary Table S8). To provide context for these

predictions, we computed a network connecting each

predicted ion channel to its most similar known ion chan-

nels (Figure 3C). In summary, we can determine with high

confidence the molecular function of uncharacterized

transmembrane genes/proteins that are likely ion channels

and have the potential to become drug targets. The first

step for experimentally validating such predictions is to ex-

press these genes in artificial systems that can test channel

activity.

Predicting mouse phenotypes for single gene knockouts

The Mouse Phenotype Ontology (129) currently contains

phenotype data for �7000 single gene knockouts in mice.

Knockout phenotype data are valuable for generating

hypotheses about the function, tissue specificity and dis-

ease relevance of mammalian genes. The International

Mouse Phenotyping Consortium is working toward sys-

tematically phenotyping single gene knockouts for the re-

mainder of the genome (143). This is an expensive and

time-consuming effort projected to complete in 2021.

In a similar way as described earlier for ion channels,

we used omics datasets from the Harmonizome to build a

model to predict phenotypes for single gene mouse knock-

outs. Instead of training a single model to predict a single

gene label, i.e. an ion channel, we trained many models to

predict many labels (2666 phenotypes). Observed pheno-

types of mice harboring single gene knockout mutations

obtained from the Mouse Genome Database (71, 129)

were the positive training examples, while single gene

knockouts with unobserved phenotypes were the negative

training examples. The area under the ROC curve of the

phenotype classifier was 0.88 (Figure 3A). The F1-score

and MCC had maximum values of 0.24 and 0.23

(Figure 3B, Supplementary Figure S5 and Supplementary

Table S7). We used the model to predict phenotypes for

7934 single gene mouse knockouts (Supplementary Table

S9), and created a gene-phenotype network to visualize a

subset of the top predictions (Figure 3D). Our computa-

tional predictions of phenotypes for single gene knockouts

can assist in prioritizing genes for experimental phenotyp-

ing. Furthermore, such predictions, if combined with

mouse models of disease, have the potential to identify

novel drug-target candidates.

Predicting endogenous ligands for G protein-coupled

receptors

G-protein-coupled-receptors (GPCRs) are important bio-

logically and pharmacologically due to their roles as sensors

and signal transducers (144). GPCRs are the most successful

protein family currently serving as targets for drugs; yet

most research efforts have focused on relatively few GPCRs

(145). At present, there are over 140 orphan GPCRs,

which are GPCRs with no known ligand (146). So far,
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most computational approaches have attempted to predict

ligands for GPCRs using structure-based methods. As a

complementary method, we used datasets from the

Harmonizome to build a classifier to predict protein ligands

for GPCRs, although we are aware that GPCRs can bind

non-protein ligands. First, we extracted known GPCR-

ligand interactions from the Guide to Pharmacology (52).

This allowed us to assign GPCR-candidate ligand pairs to

positive, negative, or unknown classes for model training

and predictions. Using the same procedure as described

above for ion channels, the area under the ROC curve of the

GPCR-ligand interaction classifier was 0.91 (Figure 3A).

The F1-score and MCC had maximum values of 0.59

(Figure 3B, Supplementary Figure S6 and Supplementary

Table S7). We used the model to classify 368 953 GPCR-

ligand pairs involving either a GPCR with no known en-

dogenous protein ligand, or a candidate ligand with no

known GPCR interaction (Supplementary Table S10).

Finally, we created a GPCR-ligand network to visualize a

subset of the top predictions (Figure 3E). The discovery of

endogenous ligands for these GPCRs could open new lines

of biological and pharmacological research. Methods that

screen ligands for GPCRs rapidly emerge (147, 148) and

these predictions can inform such efforts.

Figure 3. Example of supervised machine learning: classifiers to predict ion channels (IC), phenotypes of single gene knockouts in mice (MP), ligands

of GPCRs (G-L), and substrates of kinases (K-S). (A) ROC curve of the classifiers. (B) MCC as a function of the fraction of correct predictions. (C)

Network showing candidate ion channels, predicted at a false discovery rate (FDR) of 0.67, connected to their most similar known ion channels, and

limited to no more than three edges per node. (D) Network showing candidate gene-phenotype associations, predicted at a FDR of 0.33, limited to no

more than three edges per node, and trimmed to remove clusters with all edges supported by prior knowledge. Red edges indicate known associ-

ations. (E) Network showing candidate GPCR-ligand interactions; predicted at a FDR of 0.67 and limited to no more than three edges per node. Red

edges indicate known interactions. (F) Network showing candidate kinase-substrate interactions predicted at a FDR of 0.67 and limited to no more

than three edges per node. Red edges indicate known interactions.
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Predicting substrates of kinases

Protein kinases are well-studied enzymes that regulate al-

most all cellular processes by reversible phosphorylation of

their substrates (149, 150). Kinases are also a promising

family of drug targets. While phosphoproteomics studies

have revealed many phosphorylation sites, and the human

kinome is highly annotated, our knowledge of kinase-

substrate interactions remains vastly incomplete. For de-

veloping the PhosphoSitePlus database, investigators from

Cell Signaling Inc. (151) aggregated information about

phosphorylation sites on proteins from low-throughput

published studies in the literature, and high-throughput

mass spectrometry studies, finding �108 000 phosphoryl-

ation sites on 12 500 human proteins. We also aggregated

information about kinase-substrate phosphorylation reac-

tions from few databases and found about 3500 human

proteins with at least one known kinase that phosphoryl-

ates them (110). This leaves thousands of proteins with at

least one phosphorylation site but with no known up-

stream regulatory kinase.

To attempt filling this knowledge gap, we used the

Harmonizome data collection to build a classifier to predict

substrates for kinases. We began with 8293 human proteins

with reported phosphorylation sites. We used the kinase en-

richment analysis (KEA) dataset (110) to divide these pro-

teins into two classes: 3552 substrates with a known

upstream kinase, and 4741 substrates with unknown up-

stream kinase. Next, we selected datasets from the

Harmonizome to build the classifier. We initially considered

34 datasets that cover at least 95% of the substrates. After

an initial dataset selection process, we ultimately left with a

final set of 12 datasets covering 3,363 substrates with at

least one known kinase (95%), and 4270 substrates with

unknown kinase (90%). We then performed feature selec-

tion using principal component analysis, retaining features

that capture 99% of the variance of each dataset. This ana-

lysis reduced the number of features to 75. Using a similar

scheme as described earlier, we predicted novel kinase–sub-

strate interactions between kinases and substrates with no

known kinase. Known kinase–substrate interactions from

KEA (110) were used to define positive and negative classes

for training the model. The area under the ROC curve of

the kinase-substrate interaction classifier was 0.88 (Figure

3A). The F1-score and MCC had maximum values of 0.23

and 0.22 (Figure 3B, Supplementary Figure S7 and

Supplementary Table S7). We used the model to classify

2 993 096 potential kinase-substrate pairs involving either

a kinase with no known substrate, or a candidate substrate

with no known regulatory kinase (Supplementary Table

S11). Finally, we created a kinase-substrate network to visu-

alize a subset of the top predictions (Figure 3F). The predic-

tion of kinase-substrate associations is still missing the site

of the phosphorylation, the functional effect of the phos-

phorylation, and the context of the phosphorylation.

However, it provides a reliable mapping at a more abstract

level, and a resource that can direct experimental testing to-

wards detailed direction of discovery. It can also assist in

the reconstruction of the human kinome network, i.e. how

kinases regulate each other.

Discussion

To create the Harmonizome resource, we had to make

many decisions in regards to cutoffs for significance of dif-

ferential expression analysis, data normalization methods,

similarity measures between genes and terms, merging IDs

for genes and proteins, and combining IDs across mamma-

lian organisms. In addition, in many cases we had to ignore

details such as the location of a single nucleotide poly-

morphism (SNP), the location of a binding site in proximity

of a coding region, location of phosphorylation sites on a

protein, physical interactions between proteins in a complex

and more. This form of data abstraction was necessary for

data integration (20, 21). To impute knowledge from

observed functional associations between genes and their at-

tributes, we constructed Random Forest classifiers for four

supervised Machine Learning tasks. We chose the Random

Forest classifier because it is nonlinear, nonparametric, reg-

ularized and simple to train (152, 153). To achieve better

performance, we could have trained an ensemble of differ-

ent high-performing classifiers. Furthermore, the perform-

ance of the classifiers can be improved in many ways, e.g.

by using a multivariate feature selection method. Another

limitation of our initial approach may be that the negative

class for the training examples was not always purely nega-

tive. For example, to predict substrates of kinases, ideally,

we would benefit from negative class examples. In practice,

the negative class consisted of proteins where it is unknown

experimentally whether the kinase phosphorylates the sub-

strate. Regardless of these potential limitations, we believe

that our predictions represent a set of credible data-driven

hypotheses suitable for experimental validation.

So far, we have noticed that the Harmonizome web ser-

vice has been highly accessed. Form October 2015 to May

2016, over 33 000 unique users accessed the site. In the

near future, we plan to add complex querying capabilities,

on the fly Machine Learning, and communities of users

centered on a gene or a dataset of interest. In addition, we

can organize and serve knowledge about drugs and small

molecules in a similar way. Another feature that we plan

to implement is providing suggestions for similar genes or

drugs to those currently displayed. We plan to continually

maintain and expand the Harmonizome while keeping it a

free and open resource.
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Methods

Data processing

We extracted gene- entity-value triplets from each dataset

and stored these data in matrices with genes labeling the

rows and biological entities labeling the columns. The val-

ues in these matrices are discrete or continuous, depending

on the data source. We standardized continuous-valued

datasets to create more harmonized datasets. Our strategy

was to standardize each continuous-valued dataset to have

values ranging from 0 to 1, or �1 to 1, where 1 indicates

strong positive gene-entity association, –1 indicates strong

negative gene-entity association and 0 indicates no

observed gene-entity association. Negative values applied

to datasets where it was appropriate to convey signed in-

formation, e.g. up-regulation and down-regulation for

gene expression datasets. To implement this strategy, for

each continuous-valued dataset, we converted the values to

empirical cumulative probabilities, which transformed the

values to range from 0 to 1. If the median values for the

genes were different, we computed the probabilities gene-

by-gene, otherwise we computed the probabilities on all of

the data at once. When appropriate to convey sign infor-

mation, we doubled the probabilities and subtracted unity,

which transformed the values to range from �1 to 1. After

creating the standardized datasets, we created binary or

tertiary datasets by applying a threshold to retain only

10% of the strongest gene-biological entity associations.

The processing steps to convert each data matrix to a

binary or tertiary matrix depends on the data type and pro-

cessing steps already taken by the original data provider.

Any of the following operations may have been part of a

data processing pipeline: filtering rows or columns, averag-

ing rows or columns, imputation, transformation/scaling

and quantile normalization. Each dataset page on the

Harmonizome website provides a script documenting the

processing steps used for each dataset. These scripts are

also available on GitHub.

Identifier mapping

For each dataset, we mapped gene or protein identifiers to

NCBI Entrez Gene Symbols and Gene IDs for human

genes. Overall, we encountered six types of identifiers:

NCBI Entrez Gene IDs, gene symbols, Ensembl Gene IDs,

UniProt Accessions, genomic coordinates given as nucleo-

tide position(s) on a chromosome and microarray Probeset

IDs. We utilized ID mapping tables maintained by NCBI

Entrez Gene, Ensembl, UniProt, Hugo Gene Nomenclature

Committee (HGNC), Mouse Genome Informatics (MGI)

and the Gene Expression Omnibus (GEO) to convert iden-

tifiers to NCBI Entrez Gene Symbols and Gene IDs. We

used the mapping table maintained by NCBI Homologene

to convert mouse NCBI Entrez Gene IDs to human Entrez

Gene IDs.

Specifically, for gene symbols, we obtained lists of

retired or synonymous gene symbols for NCBI Entrez Gene

IDs from NCBI Entrez Gene, HGNC and MGI. From these

lists, we created a table mapping gene symbols to NCBI

Entrez Gene IDs and official Gene Symbols. We then fil-

tered the table, removing symbols that mapped to more

than one NCBI Entrez Gene ID and removing symbols that

were identical to official Gene Symbols. For Ensembl Gene

IDs, we downloaded tables from Ensembl mapping

Ensembl Gene IDs to NCBI Entrez Gene IDs for human

and mouse genes. For UniProt Accessions, we downloaded

tables from UniProt mapping UniProt Accessions to NCBI

Entrez Gene IDs for human and mouse proteins. For gen-

omic coordinates, we downloaded tables from Ensembl list-

ing the chromosome, gene start position, gene end position

and transcription start site of each Ensembl Gene ID for

human and mouse genes. We joined these tables with the

previously described tables mapping Ensembl Gene IDs to

NCBI Entrez Gene IDs to derive a table mapping genomic

coordinates to NCBI Entrez Gene IDs. For microarray

Probeset IDs, we downloaded the platform annotation

tables from GEO, mapping Probeset IDs to gene symbols,

NCBI Entrez Gene IDs, or Ensembl Gene IDs. We joined

these tables with the mapping tables described above to de-

rive tables mapping Probeset IDs to NCBI Entrez Gene IDs.

We discarded data for unconverted gene or protein identi-

fiers. We documented the original identifier, number of

identifiers and fraction of unmapped identifiers

(Supplementary Table S12). The median fraction of un-

mapped identifiers was 3%. Many of the unmapped identi-

fiers correspond to predicted genes and other forms of

untranslated to protein non-coding genes.

We mapped labels for tissues, cell lines, chemicals, func-

tional terms, phenotypes and diseases to terms in relevant

ontologies and dictionaries, which we refer to as naming

authorities. If we matched a label to a term or synonym

from one naming authority, we linked the original label to

that term and its metadata including name, description,

identifier and persistent URL. Otherwise, we did not

change the original label.

Harmonizome web resource implementation

The Harmonizome web server is a Java servlet built with

Java 8 and running in an Apache Tomcat 8 container. The

application and all its dependencies are running within a

Docker virtual machine and deployed to a 16-node cluster.

The cluster distributes resources using Apache Mesos.

With Mesos, the Harmonizome can run on any of the 16
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nodes and switch to a new machine if its current node goes

down. The Harmonizome database runs on an internal

MariaDB server. MariaDB is a drop-in replacement for

MySQL. The application communicates with the database

through Hibernate object-relational mapping (ORM). An

ORM is a framework that maps a tabular schema onto an

object paradigm. For example, a single row in the

Harmonizome Gene Table is an instance of a Gene class in

Java. The search engine uses exact and full-text MariaDB

queries to search the database for relevant matches.

MariaDB’s natural language search functionality priori-

tizes the results. We implemented JavaServer Pages (JSP)

for most of the user interface. Styling is specified with Less,

a Cascading Style Sheets (CSS) pre-processor. We used

JavaScript for front-end scripting.
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