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A B S T R A C T   

Infectious zoonotic disease emergence, through spillover events, is of global concern and has the potential to 
cause significant harm to society, as recently demonstrated by COVID-19. More than 70% of the 400 infectious 
diseases that emerged in the past five decades have a zoonotic origin, including all recent pandemics. There have 
been several approaches used to predict the risk of spillover through some of the known or suspected infectious 
disease emergence drivers, largely using correlative approaches. Here, we predict the spatial distribution of 
spillover risk by approximating general transmission through animal and human interactions. These mass action 
interactions are approximated through the multiplication of the spatial distribution of zoonotic virus diversity 
and human population density. Although our results indicate higher risk in regions along the equator and in 
Southeast Asia where both virus diversity and human population density are high, it should be noted that this is 
primarily a conceptual exercise. We compared our spillover risk map to key factors, including the model inputs of 
zoonotic virus diversity estimate map, human population density map, and the spatial distribution of species 
richness. Despite the limitations of this approach, this viral spillover map is a step towards developing a more 
comprehensive spillover risk prediction system to inform global monitoring.   

1. Introduction 

Global efforts to reduce the impacts of emerging zoonotic diseases 
acknowledge that spillover to humans arises from a complex interplay 
between humans, animals, and their shared environment. This demon
strates the importance of employing a One Health approach to better 
understand the underlying drivers and factors of a spillover risk. Indeed, 
the recent COVID-19 pandemic demonstrated the value of researchers 
and policymakers collaborating to identify solutions to mitigate the 
probability of future pandemics. In 2020–21 the Pan-European Com
mission on Health and Sustainable Development published a report that 
identified seven objectives with “operationalising the concept of One 
Health at all levels” being the first one [1]. 

Spillover can be defined as the cross-species transmission of patho
gens, including viruses and bacteria, into susceptible host populations. 
Spillover can occur between different animal species, such as lumpy skin 
disease that can be transmitted between cattle and water buffalo [2]. 

Viruses can also transmit from infected animal hosts into human hosts, i. 
e. zoonoses, as seen with Japanese encephalitis virus [3], Monkeypox 
[4], and severe acute respiratory syndrome coronavirus [4]. Either way, 
the emergence and spread of infectious diseases have demonstrated a 
substantial impact on the economy, society and, in the case of zoonotic 
pathogens, human lives [5,6]. Consequently, predicting spillover risk 
has become a significant focus at a global level. 

While known mechanisms and drivers of spillover risk cover the 
entire One Health spectrum [5], existing studies mostly focus on 
discovering host-pathogen relationships [7,8] and the risk of pathogens 
being zoonotic [7–12]. For example, the study conducted by Mollentze 
and Streicker [12] suggests there is no evidence that the taxonomic 
identity of reservoirs affects the probability that the viruses they harbour 
are zoonotic. The results of their research indicate that the differences in 
zoonosis frequency among various animal orders can be understood 
without needing to propose unique ecological or immunological con
nections between hosts and viruses. A large number of studies also 
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concentrate on better understanding the drivers and factors that 
contribute to the spillover risk [8,9,13–15] by implicitly including these 
drivers in the data sets of statistical or machine learning models. How
ever, a limitation of a purely data-driven approach will inherently be 
biased by the data available, especially the spatial bias in knowledge of 
disease emergence events [6,13]. 

An effective way to mitigate the risk of spillover is by proper man
agement of the human-animal-environment interfaces [8], but data 
about the interface of spillover risk is scarce [16] (Fig. S1 depicts this 
sparsity for detected pathogen diversity or “richness”). Spillover risk can 
be identified as the combined probability of successful transmission of a 
pathogen from an infectious host into a susceptible host (transmission of 
infection) and the probability of an infection transitioning to a state of 
disease in the latter (transition to disease) [17]. In the case of human 
spillover, this successful transmission happens when an infectious ani
mal host comes into contact with a susceptible human host, who in turn 
becomes infected [18,19]. 

In this study, we focused on a conceptual exercise to explore how 
well a straightforward and over-simplified mechanism-based approach 
predicts detected viral spillover risk as a function of pathogen diversity 
(from wildlife hosts) and human population density. We predicted the 
spillover risk through principled consideration of the transmission pro
cesses. The mass action principle is a basic tenet of epidemiology, 
relating the number of new infections to the infected population (current 
number of cases) and susceptible population, requiring contact between 
those infectious and susceptible. This approach leads to a straightfor
ward model based on zoonotic virus diversity in mammals and birds and 
population estimates of a susceptible host species (i.e., humans). To 
explore the validity of our approach, we compared our prediction to 
existing methods and risks of known drivers such as species richness and 
human population. 

2. Material and methods 

We developed a spatial model of viral spillover risk. We chose the 
year 2020 as a reference year for human population count data to align 
with the viral pathogen population data [12] as the proportion of viral 
viruses in mammal and bird taxonomic orders was generated in 2020. 

2.1. Transmission processes – the mass action principle 

Infectious disease transmission is often captured by compartmental 
mathematical models. The classic compartmental model is the 
Susceptible-Infectious-Removed (SIR) model, where the population is 
compartmentalised by these disease statuses. The “Removed” compart
ment definition is a common generalisation of the “Recovered” version 
of the model, which conceptually captures those who are no longer able 
to transmit the pathogen, either through recovery and immunity, or 
otherwise [20,21]. The transition from “susceptible” to “infectious” can 
only occur when those susceptible come into contact with those infec
tious. This transition rate is known as the force of infection. Our focus is 
on the infection term from these compartmental transmission models, 
which is based on the principle of mass action. The specific infection 
function depends on whether the transmission is density-dependent 
(DD) or frequency-dependent (FD) (see, for example, [22]). For a sin
gle species, the classic SIR model has a transmission term with the force 
of infection λ and susceptible population S for density-dependent 
transmission (also known as pseudo-mass action) of the form 

λS = β× I × S, (1)  

and for frequency-dependent transmission (also known as true mass 
action) of the form 

λS = β̂ ×
I
N
× S, (2)  

where I is the infectious population, N is the total population, and β and 
β̂ are the transmission rates. The transmission rate is composed of the 
contact rate, which differs by the frequency or density-dependent 
assumption, and the probability of infection given that contact occurs. 

In the DD-based transmission process (1), the number of both sus
ceptible and infectious populations is multiplied, as the contact rate 
increases with population density. In the FD-based transmission process 
(2), the number of susceptible and proportion infectious are multiplied, 
since there is no relation between the contact rate and population 
density. Since we are focused on cross-species viral transmission where 
the contact rate likely increases with population densities, all results 
shown here are for DD transmission with respect to the human 
population. 

The classical SIR model is for a single species, and so if we consider 
there are j mammals and bird taxonomic order with zoonotic viruses that 
could transfer into humans, the mass action term would become, for 
density-dependent transmission, 

λS =
∑

j
βjIjS. (3) 

This SIR model approach is not spatially explicit and makes a number 
of simplifying assumptions including assuming homogeneity within 
compartments (i.e., all individuals within a compartment are identical). 
We focus on using the pseudo-mass action principle the classical SIR 
model is developed from, with further assumptions (outlined in the 
section “prediction of viral spillover risk” below). For this approach, we 
require estimates of Ij and S, which are described in the next two 
subsections. 

2.2. Zoonotic virus diversity estimate (the IjS) 

The values for Ij was taken directly from a study by Mollentze and 
Streicker [12]. The authors identified viruses likely to be zoonotic, 
which we then used to construct our viral pool. The authors used liter
ature searches to construct a database of mammals and avian virus- 
reservoir relationships in conjunction with their histories of human 
infection. A virus was included in the database when it satisfied three 
conditions: both humans and multiple independent mammalian or avian 
reservoir orders maintained the virus with different transmission cycles; 
the virus infecting humans was confirmed to species level by PCR or 
sequencing; and a zoonotic maintenance cycle. The final dataset con
tained eleven animal and bird taxonomic orders (namely Rodentia, 
Primates, Perissodactyla, Lagomorpha, Diprotodontia, Chiroptera, 
Cetartiodactyla, Carnivora, Passeriformes, Galliformes, Anseriformes) 
and the number and proportion of zoonotic virus species associated with 
each reservoir.1 This estimate allowed for an implicit consideration of 
the probability of infection as part of the transmission process outlined 
in the “Transmission processes” Section. 

We accessed mammal and avian species distributional data through 
the IUCN Red List of Threatened Species [23,24] and filtered the dis
tribution based on the eleven taxonomic orders listed above. The pres
ence feature in IUCN data categorises into Extant, Probably Extant, 
Possibly Extant, Possibly Extinct Extinct, and Presence Uncertain. We 
consider the value of 1 for the first three categories as present and 
removed other categories from our analysis. Furthermore, we filtered 
data by removing all the samples that were compiled after 2020. We 
developed the estimates of zoonotic virus diversity (Fig. 1) by multi
plying the presence data with the proportion of zoonotic viral pathogens 
and summing up the values for each species at a 1 km-by-1 km spatial 
resolution. We note there is an implicit relationship between this esti
mate and species richness, which we explicitly consider in Fig. S4. 

1 We highly encourage the interested readers to read through the original 
paper to understand how data is generated. 
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2.3. Estimated human population density (the S) 

We used the spatial distribution of human population counts in 2020 
from WorldPop [25] at a resolution of 30 arcs (approximately 1 km by 1 
km). This data contains the estimated total number of people per pixel. 
Details on the approach to calculating the population counts in a pixel 
can be found in [26–28]. We reprojected and resampled this data with 
sum interpolation in a way that its coordinates reference system, extent, 
and resolution matched with the detected viral spillover risk data. This 
data also represented estimated human density per pixel, i.e., the 
number of people per km2. 

2.4. Prediction of relative viral spillover risk 

Our viral spillover risk prediction is based on the pseudo-mass action 
transmission process, using estimates of virus diversity and human 
density as described above. That is, to predict a measure of viral spill
over risk, we multiplied the zoonotic virus diversity estimate (

∑

j
Ij), 

where detection data exists, by human population density (S). We then 
divided the resulting values by the maximum to calculate the relative 
detected viral spillover risk. 

To apply the pseudo-mass action transmission process framework to 
the spillover risk estimate, we made a number of assumptions. First, we 
assume a static nature of the spatial transmission, in that we only ac
count for population estimates within a pixel. Second, we do not 
explicitly account for a relative risk of viral cross-over between species, 
though they are implicitly accounted for by the proportion of zoonotic 
viruses [12]. Third, we do not take into account the explicit contact rate 
between species. These latter two assumptions amount to ignoring the 
transmission rate in the mass action process (the βj and β̂j parameters in 
Eqs. (1) and (2), for j viruses). Due to the lack of data on the animal 
densities, we have implicitly assumed frequency dependence with 
respect to the animal populations, and so reference to “frequency” and 
“density” dependent transmission in our results and discussion is with 
reference to the human population only. We assume that selected animal 
orders able to be infected with a known zoonotic virus subsequently 
pose a risk of infecting humans (implicitly assuming all animals that can 
be infected are able to infect humans). Since we consider spillover risk to 
humans of zoonotic viruses, we also assume all humans are susceptible, 
allowing us to approximate this component of the spillover to humans 
model by the human population density. 

2.5. Comparison between different maps 

To gain a deeper understanding of how our results compared to the 
state-of-the-art and the underlying factors, we employed a difference- 
map technique. This involved subtracting our generated maps from 
other maps to highlight the disparities between them. Specifically, we 
compared our map of spillover risk (Fig. 2) to the zoonotic virus di
versity estimate (Fig. 1), human population density (Fig. S2), and spe
cies richness. We further compared our viral spillover risk map with a 
previous spillover risk prediction (i.e., by Allen et al. [13]). To allow 
direct comparisons, we standardised the values of all the maps by 
dividing each value by the maximum value of the map, ensuring that all 
values fall within the range of 0 to 1. 

3. Results 

3.1. Viral spillover risk predictions 

The distribution of virus diversity is globally uneven with high values 
across the tropics and lower values in temperate areas, largely following 
global mammal species richness (Fig. 1). Accordingly, our results sug
gest that spillover risk is elevated in countries across the equator and 
Southeast Asia where the human population, mammals and avian spe
cies richness and zoonotic virus diversity are the highest (Fig. 2). 
Furthermore, we show that spillover risk is lower than human popula
tion density in Asia but higher in South America and across the continent 
of Africa. We interpret this behaviour of the model as the risk of spillover 
does not rely on human population or species richness, but rather a 
combination of zoonotic virus diversity and human population. 

3.2. Comparison between spillover risk maps and other factors 

We compared our prediction of relative viral spillover risk with the 
zoonotic virus diversity estimate, and underlying factors such as human 
density estimates, and mammal and bird species richness [29,30] as 
depicted in Fig. 3 and Fig. S4. These results suggest that, as expected, 
areas with high human population density have a relatively higher risk 
in our spillover risk map, as inherently assumed in many models [13]. 
However, for key regions (see Fig. 3 (b)) the potential zoonotic virus 
diversity acted as an offset, resulting in a relatively lower risk of spill
over than a purely human population density-driven risk would suggest. 

For example, in Australia or the Amazon rainforest, the spillover risk 
is lower than expected given the high species richness or zoonotic virus 
diversity estimate, which indicates species richness or zoonotic virus 

Fig. 1. The spatial distribution of zoonotic virus diversity, which also represents the frequency-dependent (FD) spillover risk to humans.  
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diversity are not the main drivers of spillover risk. Instead, when we 
examined human population density, we found no difference between 
spillover risk and human population density in Australia or the Amazon 
rainforest, which indicates human population density is the main driver 
for spillover risk in these areas. In contrast, in Northern India, the 
spillover risk was higher than expected due to high human population 
density. 

3.3. Comparison between spillover risk map and previous predictions 

We compared our predicted viral spillover risk map with the result 
produced by Allen et al. [13] in Fig. 4. Positive values indicate that our 
model detected a higher relative viral spillover risk. Fig. 4 (a), illustrates 
the difference-map between our predicted spillover risk and their 
weighted model with reporting effort. Interestingly, they reported 
higher risk in countries with higher human activity (the US and coun
tries in Europe). Our results show smaller differences in their refined 
predictions when they factored out the reporting effort from their result 
and reweighted their model with the human population (Fig. S5). 
However, the difference in Fig. 4 (b) suggests that their results may 
remain biased towards higher human population densities, regardless of 
the species richness in those areas (Fig. S5). 

4. Discussion 

We developed a spatial model to predict the risk of spillover of vi
ruses known to be able to infect humans, based on the mass action 
assumption of transmission processes. While simple, this approach 
showed interesting peculiarities and spatial discrepancies compared to 
other models not explicitly built on the transmission process [13]. 

There is a large literature looking at the relationship between 
biodiversity and the transmission of infectious diseases [31–34]. These 
studies suggest that the risk of new and re-emerging pathogens increases 
by increasing biodiversity (a type of “amplification”), which increases 
the risk of spillover. However, higher biodiversity can generate a dilu
tion effect where the presence of many non-competent hosts reduces the 
overall viral density [35]. Additionally, biodiversity loss has a negative 
impact on human health by increasing the risk of human exposure to 
both new and re-emerging pathogens [34]. Our findings look at the 
distribution of mammalian and avian taxa groups across the globe and 

do not directly investigate the effect of biodiversity properties –e.g., 
species richness—on spillover risk. However, mapping the overlapping 
geographic ranges of mammal and avian hosts reveals that a higher 
population of infected host species with viral zoonotic pathogens occur 
in regions with high species richness, but it does not necessarily mean a 
higher risk of spillover. Our analyses demonstrate that the difference 
between spillover risk and zoonotic virus diversity reflects the difference 
between spillover risk and wildlife species diversity (i.e., richness). Such 
similarities are expected as species richness is implicitly included in the 
virus diversity estimate, and the number of zoonotic viruses tends to 
increase with species richness [12]. Moreover, high human population 
density does not necessarily mean high spillover risk when high human 
population is separated from high zoonotic virus diversity. The same 
argument can be made when comparing spillover risk and species di
versity. High species diversity does not mean high spillover risk when it 
is separated from high human population density. 

As we used a straightforward modelling framework, there are several 
limitations to our approach. The work presented here does not investi
gate the effect of environmental factors in predicting the risk of spill
over. Rather it focuses on the principle that pathogen transmission 
occurs when an infectious host comes into contact with a susceptible 
host. Fig. 3 illustrates the difference between the predicted viral spill
over risk and other factors. Specifically, zoonotic virus diversity esti
mate, which is mathematically equivalent to FD-based spillover risk 
with respect to animals for this subset of viruses (Fig. 3 (a)) and human 
population density (Fig. 3 (b)). 

We made a number of assumptions in building this model. The re
sults shown throughout assume a density-dependent transmission pro
cess, with respect to the human population. As expected, a DD-based 
model is more sensitive to population densities and predicts a higher risk 
when we have a higher human population density. A refinement of the 
assumption that species crossover is equally likely and only depends on 
relative population pressures should also be explored before using this 
prediction to inform responses. This means our raw risk prediction 
represents an upper bound, but our relative risk would change in areas 
where humans have higher or lower susceptibility. Additionally, the 
most likely transmission process for spillover is density-dependent with 
respect to both animal and human populations, though here we 
implicitly assumed a frequency-dependent process with respect to ani
mals due to a lack of animal density estimates. This is a useful step 

Fig. 2. Prediction result for relative (density-dependent; DD) spillover risk from animals to humans, based on detected viruses, species distributions, and human 
population densities. This map is created by linearly mapping a given value to the 0–1 range and then applying a power-law normalisation (i.e., y = xγ , where γ is the 
power and set to 0.15) over that range to map colourmaps onto data in non-linear ways. The histogram of the distribution of spillover risk is depicted in Fig. S6. 
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towards a principled estimate, but the spatial patterns would likely 
substantially change with higher relative risk in areas with denser ani
mal populations (further removing the bias towards human population 
density). 

Allen et al. [13] selected a refined set of spatial predictors for their 
relevance to a priori hypotheses on plausible mechanisms underlying 
zoonotic disease emergence, including proxies for human activity 
(reporting effort), environmental factors, and the zoonotic pathogen 

Fig. 3. The comparison between predicted viral spillover risk and (a) zoonotic virus diversity estimate (Fig. 1), (b) human population density (Fig. S2), and (c) 
species richness (Fig. S3). We used our predicted spillover risk minus the factor being compared, so positive (or red colour) indicates the predicted viral spillover risk 
is larger, and conversely negative (or blue colour) values indicate the zoonotic virus diversity estimate, human population density, and species richness are larger, 
respectively. These maps are created by defining the data range that the colour map covers to − 1 and 1. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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pool from which novel diseases could emerge. Their results suggest that 
emerging infectious diseases of wildlife origin are more likely to occur in 
regions with higher human populations, greater wildlife diversity, and 
greater levels of land-use change. Given the required contact across the 
human-animal interface is, on average, dependent on the respective 
population densities, we think the density-dependent approach is more 
appropriate. Our difference maps further suggest that even with the 
correction for human population density, there is still a source of bias in 
the Allen et al. prediction (Fig. 4 (a)). 

A major limitation is that our estimates of relative spillover risk have 
not been validated against an independent data source. 

5. Conclusion 

In this study, we undertook a conceptual approach to explore spill
over risk prediction based on the mass-action principle underlying 
transmission processes, using data for zoonotic viruses, relevant animal 
population distributions, and human density. We subsequently pre
dicted both a global map of virus diversity and viral spillover risk for the 
subset of viruses known to be zoonotic. We implicitly used a One Health 
approach by considering humans, animals, and the environment in our 
modelling. We suggest that Fig. 3 (b) might be useful for the planning of 
zoonotic risk monitoring in areas at high potential risk of spillover, 
where early warning signals would be especially valuable. This is an 
important step towards the prevention of zoonotic epidemics and 

pandemics [36], albeit an often under-resourced one [37]. Although this 
simple approach seems promising, there are multiple avenues for further 
improvements, including ground truthing or validating this approach 
with independent data. In this study, we only explored human popula
tion density and zoonotic virus diversity datasets, due to data avail
ability. However, future studies should extend this by incorporating 
various data sources that represent qualitatively different risks, such as 
production animals and pets. Future work to improve our prediction also 
includes explicitly capturing the spatiotemporal interactions between 
key One Health systems and encoding these into transmission pathways 
to predict aggregated global spillover risks. We believe our method 
could work for all pathogens, providing there is sufficient knowledge of 
their wildlife host species. We also believe our approach has the po
tential to be used to forecast spillover risk under future scenarios [9], to 
help form the basis of a simulation system that can inform policy 
decisions. 
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