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Abstract. The use of artificial intelligence (AI) to help diagnose and manage disease is of increasing interest to researchers
and clinicians. Volumes of health data are generated from smartphones and ubiquitous inexpensive sensors. By using these
data, AI can offer otherwise unobtainable insights about disease burden and patient status in a free-living environment.
Moreover, from clinical datasets AI can improve patient symptom monitoring and global epidemiologic efforts. While these
applications are exciting, it is necessary to examine both the utility and limitations of these novel analytic methods. The
most promising uses of AI remain aspirational. For example, defining the molecular subtypes of Parkinson’s disease will be
assisted by future applications of AI to relevant datasets. This will allow clinicians to match patients to molecular therapies
and will thus help launch precision medicine. Until AI proves its potential in pushing the frontier of precision medicine, its
utility will primarily remain in individualized monitoring, complementing but not replacing movement disorders specialists.
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Artificial intelligence (AI) algorithms continue to
proliferate in neurological research and health care. In
fact, AI-based approaches have emerged in innumer-
able facets of healthcare including clinical decision
support [1], disease detection from imaging [2], and
the reduction of disparities in care [3]. One can thus be
forgiven for wondering if human and machine sources
of “intelligence” are destined to clash and whether
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AI might emerge as the more reliable and accurate
source of diagnoses. By extension, it is natural to con-
sider whether AI might relegate movement disorders
specialists to a secondary role in caring for patients
with Parkinson’s disease (PD). Arbitrating the rela-
tionship between AI and clinicians must resolve three
conceptual nodes: 1) big data, 2) validation, and 3)
the meaning of a diagnosis.

BIG DATA

AI’s central utility relies on its ability to process
big data into logical pieces of information that can be
interpreted into previously accepted clinical labels.
Importantly, the data on which AI-based algorithms
operate must be more representative of a patient’s dis-
ease burden than those accrued during a clinical visit.
Furthermore, the data must be an accurate source of
the construct of interest. For example, the data contin-
uously captured and stored by portable smartphones
is often transformed into a measure of activity. The
validity of big data is often assumed given the prolif-
eration and wide usage of smartphones from which
data is derived. However, assuming a measure of
activity can be distilled from these data is dangerous
if researchers do not account for the many potential
variables spuriously affecting the reliable use of a
smartphone during action and inaction.

Consequently, we must recognize that big data
does not necessarily equal good data. The translation
of big data into digestible information may be inaccu-
rate or even misleading if not done with high quality
methods. Nevertheless, AI-based measures of activity
may be helpful in assisting epidemiologic efforts by
screening for parkinsonism at a population level and
in remote monitoring of already-diagnosed patients
[4]. In and of themselves, at present, the data can-
not usefully be used to suggest, let alone confirm or
refute a diagnosis—at least not with the sophistica-
tion required at a clinical level [5].

VALIDATION

If AI-based tools are to be used as endpoints
in clinical trials, contribute to regulatory approvals,
identify at risk populations, and inform the alloca-
tion of medical resources, validation of an algorithm’s
performance is of critical importance. However,
validating any AI output is particularly difficult
for a disease with a progression characterized by
long time horizons. Moreover, the gold standard

clinician-based measure of PD is subjective and rater-
dependent [6, 7]. Thus, researchers must develop
methodologies for validating AI-based decisions
especially when they are not consistent with in-clinic
measurements (a scenario that should be expected if
AI is to supplant clinicians in diagnosing molecu-
lar disease subtypes). This is a problem for which
there is no clear resolution. The validation strategies
used for clinical scales and questionnaires, where a
new instrument must correlate with another already-
validated measure, may not be sufficient for the
validation of AI-generated outputs. While recogniz-
ing that the use of a “biomarker” identified from a
population might not be appropriate for application
to an individual [8], researchers may still need to com-
pare AI outputs with those of established techniques
such as quantitative MRI/SPECT [9], corneal con-
focal microscopy [10], camera tremor magnification
[11], and retinal nerve fiber layer thickness [12].

DIAGNOSIS

The diagnosis of PD remains a clinical judgment.
This judgment is based on a neurological examina-
tion at the bedside to positively ascertain supportive
clinical features and judiciously rule out exclusionary
clinical features [5]. A positive PD diagnosis can-
not be more certain than probable, even with the use
of a DAT SPECT as ancillary testing, as dopamin-
ergic deficiency is shared with other parkinsonian
disorders beyond PD. Thus, clinicians must accept
increasing variability in motor and nonmotor presen-
tations, which neither directly aligned with biological
markers nor accurately predict response to treatment
[13]. Consequently, biomarker validation (usually of
peptides, such as alpha-synuclein, amyloid-beta 42,
and tau) anchored on clinical diagnosis has yielded
poor reproducibility within and between cohorts [14].
Further complicating the diagnosis of PD is the body
of evidence that demonstrates pure alpha-synuclein
pathology is the exception rather than the rule, with
a median of 3 (out of up to 9) pathologies in patients
with autopsy-confirmed PD [15]. Moreover, crite-
ria meeting Alzheimer’s disease pathology is present
in nearly 80% of those with autopsy-confirmed PD
[16], thus blurring the diagnostic distinction between
PD and Alzheimer’s disease. While many AI models
have been developed to measure PD based on motor
symptoms and other phenotypic evidence [17], they
cannot allay these fundamental limitations of diagno-
sis. Until AI is sufficiently developed as to elucidate
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the range of molecular pathways in PD, it can only
assist in the movement disorder specialist’s clinical
judgement. AI models have been demonstrably use-
ful in detecting changes in PD symptoms [18], but
the diagnosis of PD, for now, remains clinical rather
than biological.

WHAT IS THE BEST PATHWAY FOR AI IN
MANAGING AND DIAGNOSING PD?

Treating PD as a single disease has been helpful
for the development of symptomatic therapies, which
target common denominators, most often dopamine
deficiency, but it has been futile in disease modifi-
cation efforts as unique biological targets may be
pathogenic in some, but not in most of those affected.
Hence, it is important to separate the role of AI
in assisting symptomatic versus disease-modifying
efforts.

Symptom monitoring and management - Yes

Fundamentally, AI algorithms can take a vast array
of input data and classify patients based on the fea-
tures relevant to a therapy’s effect. In this way, these
techniques minimize the reliance on clinician judge-
ment and speculation for characterizing and modeling
a patient’s disease burden.

Traditional symptom monitoring efforts have
relied on in-clinic patient evaluation. While clinical
assessments are important for treating patients with
PD, the measures collected during these visits can
only serve as a proxy for a patient’s daily experience.
An authentic examination of disease burden requires
the context of a patient’s typical day. By continuously
collecting movement, voice, and other relevant data
[19], smartphones, and the sensors embedded therein,
generate a vast amount of data that permit an accu-
rate and objective assessment of a patient’s movement
impairment [20], speech limitation [21], somnolence
[22], and other disease-related burdens. Because AI-
based tools are designed to draw conclusions from
high dimensional data, they have been effective in
using sensor data to “measure” disease. For example,
algorithms have been designed to quantify Parkin-
son’s disease motor symptom severity [23].

The management of a disease requires an accurate
and thorough understanding of a disease’s effects on
the way a patient feels and functions. It is thus not
surprising that the Food and Drug Administration
has continued to emphasize the necessity to capture a
patient’s experience in the development of therapies

[24, 25]. Before AI, efforts to understand an individ-
ual’s disease burden required methods that were often
able to detect larger changes in symptom severity but
insufficient for subtler shifts in a patient’s quality of
life [26]. The introduction of AI-based methods has
allowed for pattern-detection unencumbered by com-
monly accepted anchors (e.g., “ON medication state”,
“wearing off”, or “diphasic dyskinesia”) that may
more appropriately represent a patient’s experience
[23].

Disease understanding and disease modification
– Not yet

Approaches for disease modification can only suc-
ceed by targeting pathogenic molecular/biological
pathways. These pathways, however, are rarely com-
mon across populations defined solely by clinical
traits. PD is not a single disease but a collection
of diseases, thus disease modification demands a
match between molecular therapies and the relevant
disease-causing biology, even beyond the underly-
ing genotypes (e.g., LRRK2-PD is associated with
substantial phenotypic diversity [27]).

The reduction of several molecularly distinct dis-
orders into a single disease is a significant limitation
in realizing the dream of precision medicine for PD
and beyond [28]. A central principle of this approach
to disease management is the stratification of dis-
eases into subtypes. With statistical and AI-based
methods [29, 30] researchers have identified molec-
ular subtypes in diseases such as pancreatic ductal
adenocarcinoma, a condition for which subtypes
are particularly important for predicting a patient’s
response to chemotherapy [31].

The identification of disease subtypes is a promis-
ing frontier. In the near term, understanding a
disease’s biological mechanisms for a particular
individual will allow for improved prognosis and
therefore more effective personalized treatments. AI
for the purpose of subtyping has already proven to
be effective in other fields of medicine, oncology
most notably. For example, deep neural networks
have consistently demonstrated an ability to classify
breast cancer’s molecular subtypes [32]. By utilizing
biologic data to drive breast cancer’s nosology and
discovery of disease-modifying treatments, nearly 20
different disease subtypes have been identified, each
with a unique response to therapy and survival curve
[33].

If PD biomarkers can be developed with a systems-
biology model that assumes the disease comprises
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patients with several distinct genetic, biological, and
pathophysiologic abnormalities, AI can drive inno-
vation in the methods for characterizing them. These
powerful AI methods cannot be employed in PD with-
out the requisite molecular data, however. Before a
disease’s root cause can be identified, researchers
must define disease subgroups distinguished by clin-
ical manifestation, posit the mechanisms that could
form the subgroups, measure the hypothesized mech-
anisms, and then use AI to determine the molecular
drivers [34]. In this way, disease modification efforts
require AI applications not on clinical or biological
datasets alone but on combined datasets. Only then
will the resulting system outperform what clinicians
are able to do today with the clinical data at their
disposal.

Efforts to identify biological subgroups in PD, such
as those at the Cincinnati Cohort Biomarker Program
[35], are nascent but underway. The use of AI-driven
clinical and molecular subtyping to guide data col-
lection can enrich molecular-based subtyping efforts
and will thus be important to the launch of true pre-
cision medicine for PD and other neurodegenerative
disorders [36].

CONCLUSION

AI-based tools are embedding into healthcare prac-
tice and research. As these algorithms develop, it is
necessary to consider the relationship between AI and
clinicians for both symptom management and disease
modification. The ubiquity of smartphones and inex-
pensive sensors provides clinicians an unprecedented
opportunity to monitor symptoms. Tools designed
to capture the patient experience in a free-living
environment can enable the personalization of symp-
tomatic treatment to minimize disease burden.

This paper did not intend to be a systematic review
of the literature detailing AI’s role in diagnosing
and managing patients with PD; the choice of exam-
ples, papers, and overall conclusions were naturally
influenced by the authors’ interest in AI and pre-
cision medicine. We trust that these biases did not
preclude a balanced review of the benefits and chal-
lenges associated with leveraging AI. We believe
the use of AI for symptom management represents
meaningful progress. However, the ultimate frontier
for PD remains the discovery of disease-modifying
interventions. Because many distinct molecular and
biological abnormalities comprise the construct
of PD, disease modification efforts demand the

identification of subtypes for which unique thera-
peutics are suited. The creation of AI algorithms to
elucidate the molecular rather than clinical or patho-
logic nature of PD subtypes would be an important
advance in understanding the disease individualized
to those affected. This achievement requires an evolu-
tion of the clinician’s and machine’s roles and a shift
in the extent to which AI cannot just reproduce but
exceed what humans can pursue.
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