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HPV-Positive HNSCC Cells,
unctional Restoration of the p53/
21 Pathway by Proteasome
hibitor Bortezomib Does Not
ffect Radio- or
hemosensitivity1,2
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Abstract
Human papillomavirus (HPV) associated squamous cell carcinomas of the head and neck region (HPV+ HNSCCs)
harbor diverging biological features as compared to classical noxa-induced (HPV−) HNSCC. One striking
difference between subtypes is that the tumor suppressor gene TP53 is usually not mutated in HPV+ HNSCCs.
However, p53 is inhibited by viral oncoprotein E6, leading to premature proteasomal degradation. We asked
whether bortezomib (BZM), a clinically approved inhibitor of the proteasome, can functionally restore p53 and
investigated in how far this will result in an enhanced radio- or chemosensitivity of HPV+ HNSCC cell lines. For all
four HPV+ cell lines tested, BZM led to functional restoration of p53 and transactivation of downstream protein
p21. In HPV+ cells, BZM also restored the radiation-induced p53/p21 transactivation. Consistently, in HPV+ cells,
a restored G1 arrest as well as enhanced apoptosis were seen when BZM was given prior to irradiation (IR) or
cisplatin (CDDP). BZM alone reduced the clonogenic survival of both HPV− and HPV+ cells. However, if BZM was
combined with IR or CDDP, BZM did not significantly enhance radio- or chemosensitivity of HPV+ or HPV−
HNSCC cell lines.
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uamous cell carcinomas of the head and neck region (HNSCCs)
e recognized as two distinct entities with diverging biological
atures. One entity is induced by classical risk factors like tobacco
d alcohol abuse, while the other is associated with high-risk human
pillomavirus (HPV) infection [1]. In contrast to a stable incidence
r the first entity, the incidence of HPV-associated tumors (HPV+)
ses in Europe and the United States [2–4]. This entity is associated
ith a better response towards simultaneous radiochemotherapy,
ading to a better prognosis [5] as compared to HPV negative tumors
PV−). In spite of these facts, current evidence-based treatment
idelines [6] do not recommend alternative management decisions
cording to HPV status, which may go along with an overtreatment
d preventable side effects in patients with HPV+ HNSCC.
herefore, clinical trials aim to individualize treatment of HNSCC to
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oid side effects without compromising the good response rates of
PV+ HNSCC [7].
The molecular mechanisms leading to the better treatment
tcome of HPV+ HNSCC are only partly understood. The main
asons that have been identified so far based on in vitro experiments
e an impaired DNA repair capacity and defective cell cycle
gulation [8–12] as well as an enhanced induction of p53-dependent
optosis [13]. Apoptosis might occur in HPV+ HNSCC because
ese tumors usually harbor the wild-type form of the TP53 tumor
ppressor gene. However, the level of p53 is very low because the
ral oncoprotein E6 initiates a premature degradation of p53 by the
oteasome [14]. In contrast, in HPV− HNSCC, p53 is mostly
utated [15].
It was already shown for several other tumor entities, that increase
wild-type p53 levels and the restoration of p53-related pathways
e both effective and specific strategies to sensitize tumor cells
wards antineoplastic drugs [16]. Both strategies can therefore be
ed for anti‐cancer treatments. We investigate here whether in HPV
HNSCC cells blocking of the proteasomic activity with bortezomib
ZM) lead to a functional restoration of p53 and with that also
crease the treatment response of these cells. BZM is an inhibitor of
e proteasome that targets the proteolytic subunit leading to reduced
otein degradation [17]. It is approved for the treatment of
matopoietic malignancies, leading to good response rates with
ly few side effects [18].
In HPV+ HNSCC cells, treatment with BZM alone increases p53/
1 expression, resulting in a cell-cycle arrest as well as induction of
optosis [19,20]. In several studies, BZM was also tested in
mbination with ionizing irradiation (for overview, see [21]).
owever, so far, it is unclear whether or not this will lead to an
creased radiosensitivity, and data are still lacking for HPV+
NSCC cells.
We now studied in HPV+ cell lines whether BZM can also be used
restore the p53-dependent functions critical after treatment with
nizing irradiation (IR) or cisplatin (CDDP) and whether this might
fect the cellular radio- or chemosensitivity of HNSCC cells. The
periments were performed with four HPV+ HNSCC cell lines and,
r control, with four HPV− HNSCC cell lines.
se
th
tr
a
m
on
ta
ou
22
co
at
fo
w
ea
ca
F
ca

A

pr
aterial and Methods

ell Lines
Four HPV−, p53-mutated HNSCC cell lines (UM-SCC-3, UM-
C-11b, UT-SCC-33, UD-SCC-1) and four HPV+, p53 wild-type
NSCC cell lines (UD-SCC-2, UM-SCC-47, UM-SCC-104,
PCI:SCC152) were used. Detailed characteristics of the cell lines
d confirmation of HPV status as well as culture conditions have
en previously described [8,13,22,23]. Authentication of all cell
es was performed by short tandem repeat analysis at the German
ollection of Microorganisms and Cell Cultures (DSMZ, Germany).

reatment
Bortezomib (BZM; Cell Signaling Technology, Danvers, MA) was
luted in dimethyl sulfoxide (DMSO, stock: 1 mM) according to the
anufacturer's instructions and stored at −20°C upon use. Further
lution steps were carried out directly before application, and an
ual dilution of DMSO was used as solvent control. Cisplatin
DDP; TEVA, Ulm, Germany) was supplied as a stock solution
mg/ml) (Center for Cytostatics Preparation, University Hospital
ießen and Marburg, Germany) and further diluted in pure water
tock: 1 mM) directly before application. X-ray irradiation (IR) was
rried out using an X-RAD 320 iX (Precision X-Ray Inc., Denver,
O) X-ray tube; anode voltage: 320 kV, current: 10 mA, dose rate:
2 Gy/min, focus object distance: 60 cm, filter: 0.5 mm Cu and
5 mm Al. Further treatment conditions are indicated in the results
ction.

estern Blot Analysis
Whole-cell lysates were prepared, separated in 11% SDS-PAGE
ls, and blotted on Immobilon-PVDF membrane (Merck Millipore,
illerica, MA) as previously described [11]. Membranes were
cubated with antibodies against p53 (DO-7, BD Biosciences,
ranklin Lakes, NJ; 1:1500), p21 (CP36/CP74, Merck Millipore,
illerica, MA; 1:1000), or GAPDH (14C10, Cell Signaling
echnology, Danvers, MA; 1:3000). Secondary HRP-conjugated
tibodies (Goat-anti mouse IgG and Goat-anti rabbit IgG, Merck
illipore, Billerica, MA; each 1:5000) and ECL chemiluminescent
bstrate were used for visualization at a ChemoCam Imager 3.2
NTAS, Göttingen, Germany). Band densities were quantified using
uantityOne 4.6.7 (Bio-Rad, Hercules, CA). For control, always two
lues were used to reduce the overall scatter of the data. Densities of
3 and p21 bands were normalized to the expression of the
usekeeping protein GAPDH and then corrected for the intensity of
e total blot.

pecific Targeting of p53 by RNA Interference
Transfection of siRNA oligonucleotides was performed using
ipofectamine 2000 (Life Technologies, Carlsbad, CA) according to
anufacturer's instructions. Briefly, cells were seeded into six-well
ates and left overnight for adherence. Transfection of cells was carried
t with 100°nM siRNA and 5°μl Lipofectamine for 4 hours in Opti-
EM (Life Technologies). The TP53 and nontargeting siRNA
igonucleotides (ON-Targetplus, SMARTpool) were purchased
om Dharmacon (Horizon Discovery Group, Cambridge, UK).

olony Formation Assay
Depending on cell line and treatment, 150-10,000 cells were
eded in 6-cm Petri dishes in triplicate. Depending on the
erapeutic scheme (as indicated in the results section), cells were
eated with BZM either directly after seeding or after attachment by
medium change. CDDP was applied directly into the growth
edium at indicated time points. A final medium change including
e third of conditioned growth medium (sterile filtrated superna-
nts of preserved growth medium of each cell line) was done to wash
t BZM and/or CDDP. Cells were then allowed to grow for 7-
days (depending on cell line and treatment). As treatments delayed
lony formation, colonies were fixed at different time points aiming
equal colony sizes as compared to controls. After fixation (10%
rmaldehyde) and staining (0.1% crystal violet), colonies (N50 cells)
ere counted manually. Plating efficiencies (PEs) were calculated for
ch subgroup, and clonogenic surviving fractions (SFs) were
lculated by normalization to untreated/unirradiated controls [24].
or each condition, at least three independent experiments were
rried out.

nalysis of Cell-Cycle Distribution
Cells were fixed at indicated time points, and after staining with
opidium iodide (PI), cell-cycle distribution was determined by a
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SR II flow cytometer (BD Biosciences, Franklin Lakes, NJ) and
aluated as previously described [11]. At least two independent
periments were carried out per cell line.

etection of Apoptosis
Apoptotic cells were assessed using the Annexin V-FITC detection
t (Promokine, Heidelberg, Germany). Cells were detached from the
rface, stained with Annexin V-FITC and PI according to the
anufacturer's instructions, and analyzed as previously described
1]. Annexin V/FITC and PI double-positive cells were considered
be apoptotic, and their portion of all analyzed cells was calculated as
eviously described [25]. At least two independent experiments were
rried out per cell line.

atistical Analysis
If not otherwise indicated, results are presented as mean ± standard
ror of the mean (SEM) calculated from the independent
periments. Statistical significance was tested using the two-tailed
udent's t test assuming a significance level of P b .05 (*), P b .01
*), and P b .001 (***).
co
p5
ex
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ZM Restores p53/p21 Transactivation in HPV+ Cell Lines
To confirm the hypothesis of a functional restoration of p53 by
ZM in HPV+ HNSCC cell lines, expressions of p53 and
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gure 1. Functional restoration of p53 in HPV+ cells after BZM
eatment. Cells were treated with increasing BZM concentrations
r 24 hours followed by protein analysis of p53 and p21 by
estern blot. (A) Expression of p53 and p21 in UM-SCC-3 cells
PV−) and UM-SCC-104 cells (HPV+). Level was normalized to
e respective control values. (B) Average expression of p53 (left)
d p21 (right) in three HPV− and four HPV+ cell lines. Mean
lues ± SEM for two independent experiments for each cell line
ter normalization to the respective GAPDH loading control.
wnstream protein p21 were analyzed in four HPV+ and four
PV− cell lines using Western blot (Figure 1A; for detailed results,
e Supplementary Figure S1). A low concentration of 10 nM BZM
ready led to a significant increase of p53 (P = .0154) and a strong
duction of downstream protein p21 (P = .0306) in HPV+ cell lines
igure 1B, black dots), which were further enhanced at a higher
ncentration of BZM. In contrast, in HPV− cell lines, expression of p53
as not affected, and only a marginal increase in p21 expression occurred
the highest concentration of BZM (Figure 1B, white circles).

ZM Enables IR-Induced p53/p21 Transactivation in HPV+
ell Lines
Since p53 activation is critical for the cellular response on DNA
mage caused by IR, we asked whether BZM also restores IR-
duced p53 activation. The respective experiments were performed
ith one HPV+ (UM-SCC-47) and one HPV− (UM-SCC-3) cell
e. For the HPV+ cell line, IR alone already led to a small increase of
th p53 and p21 (Figure 2). However, especially for p21, the
crease was much stronger when cells were pretreated with BZM
ith a further increase of about 35% after IR (Figure 2C, right
lumns). In contrast, for the HPV− cell line, IR slightly enhanced
3 expression, which was however abrogated by BZM. For p21,
pression was even significantly decreased when BZM was followed
IR (Figure 2, B and C, left columns).
The increase of p21 expression in HPV+ cells after BZM alone but
pecially in combination with IR was shown to result from a
nctional p53 and not from an off-target effect of BZM on p21
cause there was absolutely no increase of p21 when p53 was
rgeted by specific siRNA (Figure 2, D-F). Similar data were
eviously reported by others [19,20]. These data clearly demonstrate
at BZM can be used to restore the IR-induced transactivation of
3/p21 in HPV+ cells.

ZM Induces Transient G1 Arrest in HPV+ Cell Lines upon
radiation
Next, we analyzed the impact of BZM on cell-cycle regulation,
hich is an important mechanism depending on functional p53
pecially when cells are exposed to IR. To this end, cell-cycle
stribution was measured using flow cytometry (Figure 3, A) at 0, 7,
d 24 hours after IR (4 Gy) with or without pretreatment with
ZM (10 nM). The data summarized for all eight cell lines (Figure 3,
, C; for detailed results see Supplementary Figure S2) indicate that
HPV− cells, IR alone results in a moderate G2 arrest in contrast to
strong arrest detected for HPV+ cells, which is in line with previous
ta [8,9]. A G2 arrest was also detected after BZM alone, which,
wever, was clearly stronger for HPV− when compared to HPV+
lls (Figure 3, B, C). When BZM was given prior to IR, a further
crease of cells in G2 phase was seen for HPV− cell strains when
mpared to IR alone (Figure 3, B, right columns). In contrast, for
PV+ cells, a strong increase in G2 phase was detected after IR alone
t was clearly diminished with more cells arrested in G1 when cells
ere pretreated by BZM (Figure 3, C). These shifts in cell-cycle
stribution demonstrate that HPV+ cells pretreated by BZM are able
induce a transient G1 arrest, thereby blocking cells to enter G2.

ZM Enhances the CDDP- and IR-Induced Apoptosis Only in
PV+ Cell Line
We also analyzed whether BZM will affect the induction of
optosis, which is another critical mechanism regulated by p53. The
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Figure 2. Functional restoration of IR-induced transactivation of p53 and p21 in HPV+ cells by BZM. Cells pretreated with 10 nM BZM for
24 hours were irradiated with 4 Gy followed by an incubation for 2 hours, and protein analysis was determined by Western blot. (A)
Expression of p53 and p21 for UM-SCC-3 (HPV−) and UM-SCC-47 cells (HPV+). Level was normalized to the respective control value. (B,
C) Relative expression of p53 (B) and p21 (C) after BZM ± IR in UM-SCC-3 and UM-SCC-47 cells. (D) Knockdown of p53 by targeting with
specific siRNA in the HPV+ cell line UM-SCC-104. For targeting, cells were pretreated with TP53-specific or nontargeting siRNA for 24
hours. (E, F) Effect of knockdown of p53 on the expression of p53 and its transactivation of p21. Mean values ± SEM of three to five
independent experiments after normalization to the respective GAPDH loading control.
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duction of apoptosis was measured for one HPV− and one HPV+ cell
e 24 and 48 hours after treatment with either IR or cisplatin (CDDP)
one or both treatments using Annexin V-FITC/PI-staining (Figure 4,
, B). In HPV− cells, only a minor induction of apoptosis (b5%) was
en after IR, CDDP, or its combination (Figure 4, C, light columns).
his effect was not enhanced when cells were pretreated by BZM
igure 4, C, dark columns).
For HPV+ cells, a low level of apoptosis was detected after IR alone
igure 4, D, each first column). In contrast, a clear increase in
optosis occurred when cells were treated by CDDP alone or in
mbination with IR, especially apparent 48 hours after treatment
igure 4, D, seconds and third columns). Also, in HPV+ cells, BZM
eatment alone led to induction of apoptosis. This was further
hanced when BZM was combined either with IR, CDDP, or both
igure 4, D, dark columns). Overall, the increase in cell death was
ditive when compared to the effects seen without pretreatment with
ZM. These data indicate that for HPV+ cells, BZM appears to
store the p53-dependent apoptotic pathway especially observed
ter treatment including CDDP.

ZM Impairs Clonogenic Survival in Both HPV− and HPV+
ell Lines
Next, the effect of BZM alone on colony formation was
termined using two HPV− and two HPV+ cell lines, respectively.
rviving fractions of both HPV− and HPV+ cell lines were found to
crease with increasing concentration of BZM but with no obvious
fference between the two groups (Figure 5).

ZM Affects Neither Radio- Nor Chemosensitivity of HPV− or
PV+ HNSCC Cell Lines
We also studied the effect of BZM on radio- and chemosensitivity
ing a concentration of 10 nM, which was shown to have an almost
ual effect on survival in all four cell lines used (Figure 5). For the
lony formation assay, different incubation times (10 to 21 days)
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Figure 3. BZM restores transient radiation-induced G1-arrest in
HPV+ cells. Cells pretreated with or without 10 nM BZM for
24 hours were irradiated with 0 or 4 Gy, and cell-cycle distribution
was determined after an incubation for 0, 7, and 24 hours using
flow cytometry. (A) DNA histograms of UM-SCC-3 (HPV−) and UM-
SCC-47 (HPV+) cells at 7 hours after treatment. (B, C) Percentage
of cells in G1, S, and G2/M phase as determined for three HPV−
and four HPV+ cell lines 0, 7, and 24 hours after treatment. Data
presented are mean values ± SEM of at least two independent
experiments. Statistical differences were determined via χ2 test.
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d to be used in order to reach similar colony sizes (Figure 6A). The
o HPV+ cell lines are significantly more radiosensitive when
mpared to the two HPV− cell lines as already shown previously
,11] (Figure 6B, open symbols). Killing was not enhanced for either
PV− or HPV+ cells cell when cells were pretreated with BZM and
ll survival was normalized to the effect of BZM alone (Figure 6B,
osed symbols).
The effect of CDDP was studied for an incubation of 26 hours at
ncentrations up to 0.50 μM. The HPV+ cell line UM-SCC-47 was
early more sensitive to CDDP as compared to the HPV− cell line
M-SCC-3 as already reported previously [11]. Again, killing was
t enhanced for either HPV− or HPV+ cells cell when cells were
etreated with BZM and cell survival was normalized to the effect of
ZM alone (Figure 6C).
We finally tested the effect of BZM on the combined treatment of
DDP and IR using the two cell lines UM-SCC-3 (HPV−) and UM-
C-47 (HPV+). For the two cell lines, different IR doses were
osen to adapt for divergence in sensitivity. For both cell lines,
DDP and BZM alone caused a slight reduction in surviving
action, leading to an additive effect when combined as mentioned
ove (Figure 6, D and E, left columns). These effects are slightly
ronger for HPV+ cells (Figure 6E). When IR was added to this
mbination, a further reduction of cell survival was seen, with the
rongest reduction when all three treatments were applied. This
duction was much stronger for the HPV+ cell line as compared to
e HPV− cell line. To test whether there are any synergistic effects,
rvival after combined treatments was normalized to the survival
easured after IR alone (Figure 6, D and E, right columns). For these
justed values, no significant differences were seen for either HPV−
HPV+ cells, indicating that the effect of the combined treatment
ith CDDP and IR is just additive irrespective of pretreatment with
ZM or not. Overall, these data clearly demonstrate that BZM affects
ither radio-/chemosensitivity nor the effect of a combined
eatment with CDDP and IR.

iscussion
he aim of this study was to examine whether the proteasome
hibitor BZM can be used to prevent the degradation of p53 usually
curring in HPV+ HNSCC cells and whether this will restore the
llular stress dependent p53/p21 transactivation and respective
wnstream processes such as G1 arrest and apoptosis and thereby
ill enhance the cellular radio- and chemosensitivity.
The experiments were performed with four HPV+ and three HPV−
NSCC cell lines, previously reported to reflect typical features of
ese two entities with an enhanced sensitivity of HPV+ cells to both
-irradiation and CDDP [8–11].
For HPV+ but not for HPV− HNSCC cells, treatment with BZM
as found to restore the transactivation of p53/p21 as previously
scribed by others [19,20]. It is now shown here for the first time
at this is also true for the radiation-induced transactivation, with a
rther increase of p21 in HPV+ cells when treated by BZM before
posure to IR (Figure 2).
We also observed that the restored transactivation of p53/p21
used by BZM reactivates other important p53-dependent mech-
isms such as G1 arrest and apoptosis (Figures 3 and 4). Treatment
BZM alone was found to induce a G2 arrest, which was slightly

ronger for HPV− cells (Figure 3, B and C). The identical
servation was made by Bullenkamp et al. [20] comparing five
PV+ with two HPV− cell lines. Most important, when BZM was
ven prior to IR in HPV+ cell lines, a transient G1 arrest was
duced, causing a decrease in the strong G2 arrest normally seen in
ese cell lines (Figure 3C). This is a typical feature of tumor cells with
functional p53-dependent cell-cycle regulation after IR [26,27].
A clear difference between HPV− and HPV+ cells was also
served in respect to apoptosis. When treated by BZM alone, almost
apoptosis was seen for HPV− cells, in contrast to a clear induction
HPV+ cells (Figure 4) as was also found by others [20]. Solely for
PV+ cells, a further increase in apoptosis was obtained when BZM
as given prior to IR, CDDP, or both of them (Figure 4D). This was
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Figure 4. BZM restores damage-induced apoptosis in HPV+ cells.
Cells treated with or without 10 nM BZM for 24 hours followed by
an incubation with or without 10 μM CDDP for 2 hours were
exposed to 0 or 4 Gy, and induction of apoptosis was determined
24 hours and 48 hours after IR using Annexin V-FITC/PI-staining.
(A, B) Representative histograms of UM-SCC-3 (HPV−; A) and UM-
SCC-47 (HPV+; B) cells 48 hours after indicated treatment.
Fraction of cells in Q2 and Q3 was considered to represent
apoptotic cells. (C) Fraction of apoptosis in the HPV− cell line UM-
SCC-3; (D) fraction of apoptosis in the HPV+ cell line UM-SCC-47.
Data presented are mean values ± SEM of at least two
independent experiments.

Figure 5. BZM reduces cell survival in both HPV− and HPV+ cells.
Cells were incubated with BZM for 24 hours at various concentra-
tions (0-100 nM) before medium was changed, and cells were
allowed to grow for colonies of at least 50 cells. Surviving fraction
is shown as a function of BZM concentration. Data presented are
mean values ± SEM of three independent experiments.
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tributed to the restored p53/p21 transactivation achieved for HPV+
lls by BZM (Figures 1 and 2).
For the effect of BZM on cell survival, a huge variation was
served with no obvious difference between HPV− and HPV+ cell
es (Figure 5). Such a variation was previously also found for other
ll lines and was suggested to result from different proteasome
tivities [28]. Our data also demonstrate that cell killing caused by
ZM does not primarily result from apoptosis since the fraction of
optotic cells was far below the total amount of cell killing achieved
igures 4 and 5). Certainly, other cell death mechanisms are of
levance such as autophagy [29,30].
Pretreatment by BZM did not result in an enhanced radio- or
emosensitivity either for HPV+ or for HPV− cells. Even for the
mbination of IR and CDDP, solely additive effects were observed
igure 6). In other reports, no or only a marginal radiosensitization
as seen when BZM was combined with IR [31–34]. However, it
ould also be noted that, in these studies, sensitization was
termined either via cell viability [32] or via colony assay, whereby
l colonies were stained at the same time interval after treatment
1,33,34]. Hence, this protocol did not account for the different
owth kinetics of the respective colonies as was done for here.
verall, these data indicate that BZM appears to increase the
hibitory effect of IR on cell growth but not on cell killing. This is in
e with recent data obtained for xenograft tumors where the
mbination of BZMwith IR was reported primarily to cause a strong
owth retardation [35,36]. Such a reduction in cell growth was
nerally also seen when BZM was combined with CDDP [37–40].
After IR as well as CDDP, cell killing primarily results from
romosomal damage arising from either non- or misrepaired DNA
uble-strand breaks. But to a small extent, cell death may also result
om a permanent G1 arrest or enhanced apoptosis [41]. However, even
r an X-ray dose of 2 to 4 Gy, both of these effects on its own have to
use cell death in at least 20% of the population in order to have a
gnificant impact on the total amount of cell killing [42]. This is far
ove the amounts seen here when BZM is combined with IR or
DDP. These data reveal that the restoration of p53/p21 transactiva-
on andwith that the induction ofG1 arrest and apoptosis seen inHPV
cells when treated by BZM are too small to cause a significant change
total cell killing when combined with IR, CDDP, or both.
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Figure 6. BZM does not affect radio- or chemosensitivity of HPV− and HPV+ HNSCC cell lines. (A, B) Effect on radiosensitivity was
studied for cells which were incubated immediately after seeding with or without BZM for 24 hours before being exposed to X-rays
followed by a further incubation for 24 hours. Thereafter, medium was changed, and cells were allowed to grow for colonies of about
equal size. (C) Effect on chemosensitivity was studied by adding CDDP 22 hours after start of BZM treatment followed by a further
incubation for 26 hours until medium was changed. (D, E) Effect of BZM on combined treatment was studied by adding CDDP 2 hours
prior to irradiation. Data presented are mean values ± SEM of three independent experiments.
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Overall, these data indicate that BZM combined with IR, CDDP,
both may not be an optimal regimen in the clinic as only additive
fects were observed and thus no reduction in side effects can be
hieved. In line with this, so far, BZM failed to show promising
sults in phase II clinical trials with solid tumors [43–45].
onclusions
conclusion, it was shown here for HPV+ HNSCC cells that

though BZM is able to restore p53/p21-dependent pathways such
G1 arrest and apoptosis after IR and CDDP, no significant effect
radio- or chemosensitivity is achieved.
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