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Abstract: In this study, the resistive switching phenomenon in Al/SiO2/n++-Si structures is observed
and studied by means of DC, small-signal admittance, and complex impedance spectroscopy mea-
surements. Possible transport mechanisms in the high and low resistance states are identified. Based
on the results of the applied measurement techniques, an electrical equivalent circuit of the structure
is proposed. We discuss the effect of parasitic elements influencing the measurement results and
show that a proper model can give useful information about the electrical properties of the device. A
good agreement between the characteristics of the proposed equivalent circuit and the experimental
data, based on different measurement procedures, confirms the validity of the used methodology
and its applicability to the electrical characterization of RRAMs.

Keywords: resistive switching; RRAM; memristor; silicon oxide; MIS structure; small-signal
measurements

1. Introduction

The Resistive Random-Access Memory (RRAM) is a promising type of next-generation
non-volatile computer memories due to its possible fast switching and low power con-
sumption [1]. It offers promising properties for memory applications, hardware security,
in-memory computing, and neuromorphic computing [2–4]. The latter application field, in
particular, has attracted significant attention. It has been shown that RRAM devices can
exhibit accumulative behavior whereby the resistance can be incrementally increased or
decreased upon application of successive programming pulses of the same amplitude. This
attribute can be used to emulate an artificial synapse, a crucial application for neuromorphic
computing [5–7]. The two most studied types of RRAM devices are the conductive-bridge
RAM (CBRAM), which is an electrochemical metallization memory (ECM) device, and
the oxide RAM (OxRAM), a valence change memory (VCM) device [8]. The OxRAM is a
device with an oxide resistive layer sandwiched between two inert electrodes. The inert
electrode is an electrode that is not (or weakly) electrochemically active. Oxide ions and
vacancies are generated upon application of the electric field across the layer. Vacancies
form a conductive filament, which links electrodes as an electrical conduction path. A
change in the polarization direction results in a disruption of the conductive filament due
to Joule heating. Various transport processes in the oxide-based RRAM structures can
be responsible for the resistive switching effect depending on the material stack and a
fabrication method, e.g., trap-assisted tunneling, Poole-Frenkel emission, SILC, or hopping
transport [9]. Many oxide materials exhibiting resistive switching (RS) have been examined
in recent years, including HfO2, TiO2, and Ta2O5 [10–19]. Silicon oxide has also been tested
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as a potential candidate for an RS layer in CBRAM and OxRAM devices [20–27]. It would
be a promising candidate for these applications due to its well-known properties and
fabrication techniques [28,29]. However, there is only a limited number of works related to
SiO2 as an RS layer, and further studies are needed.

Many works on the study of memristor devices concern the metal–insulator–metal
(MIM) configuration. The metal–insulator–semiconductor (MIS) structure may be favor-
able in terms of compatibility with standard CMOS technology. Usually, a memory cell
comprises an RRAM device and a selector device, which can be an MOS field-effect tran-
sistor. In this case, we have a 1T-1R memory cell configuration. The MIS structure can
be easily incorporated into the transistor architecture as a part of the drain region, and
the combined device consists of a resistive storage node in series with a select transistor.
This type of device is called Contact RRAM (CRRAM) [30–32]. This work shows that the
MIS silicon diode can also exhibit resistive switching properties. Similar structures were
analyzed in the past but in different material configurations [22,23,33–38]. Most of the
works regarding RRAM focus on DC measurement-based electrical characterization and
extracting a possible conduction mechanism of the switching layer. We show and analyze
the measurement results obtained for Al/SiO2/very highly doped Si(n) structures with the
use of the admittance and impedance spectroscopy measurements. We show that a change
in the compliance current results in different conductance levels, which is common for
some types of RRAM devices [39,40]. Possible transport mechanisms in the high resistance
state (HRS) and the low resistance state (LRS) are indicated and identified. An equivalent
circuit of the structure is proposed, which can provide useful information about the RS
layer. The results of the work give new insight into the possible origins of the RS effect in
the investigated structures.

2. Materials and Methods

MIS structures were fabricated using standard CMOS compatible processes: wet
processing, photolithography, thermal oxidation, and magnetron sputtering. We used 2”
n-type highly doped (arsenic) wafers with the resistivity in the range 0.001–0.005 Ω·cm
from Siegert Wafer Gmbh (Aachen, Germany). Wafers were cleaned using the standard
RCA method. The field oxide was fabricated in a high-temperature furnace using a wet
oxidation process. Then, the windows were opened using photolithography and wet
etching with HF acid. Subsequently, a thin silicon oxide layer (5–6 nm) was grown in a dry
thermal oxidation process (10 min at 820 ◦C). Aluminum gate electrodes were made using
the lift-off process after the photolithography and metal deposition processes. Then, the
bottom oxide layer was etched, and bottom Al metallization was formed. Structures were
annealed in H2/Ar atmosphere in 400 ◦C for 30 min. The schematic cross-section of the
investigated devices is presented in Figure 1.
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Figure 1. Cross-view of the investigated Al/SiO2/n++-Si device (not to scale). Figure 1. Cross-view of the investigated Al/SiO2/n++-Si device (not to scale).

Electrical measurements were made using Keithley 4200-SCS Semiconductor Char-
acterization System (Keithley Instruments, LLC, Solon, OH, USA) combined with Süss
MicroTec PM8 low noise probe shield. DC current–voltage characteristics were measured
with the static source-measure unit (SMU), whereas the admittance and impedance mea-
surements were carried out using the small-signal capacitance–voltage unit (CVU). Both
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units were connected to the device under test (DUT) through the ultra-fast remote switching
module (RPM). All measurements were carried out at room temperature. The measurement
setup is presented in Figure 2.
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Figure 2. Measurement setup used to characterize fabricated structures.

3. Results and Discussion
3.1. DC Measurements

In Figure 3, we show the current–voltage characteristics of an Al/SiO2/n++ Si structure
with a gate pad diameter of 156 µm (S1). Initial electroforming voltage is above 2.5 V.
Structures were measured with the compliance current (CC) of 20 mA. For a given CC,
the set voltage is above 1.2 V. We identify the transport mechanism as the space charge
limited current (SCLC). In Figure 4, we show the slope of I–V curves at different states
and voltage ranges. In the high-resistance state (HRS) of the SET cycle, we observe that
initially, the current is proportional to the applied voltage (Ohmic conduction), and then it
obeys Child’s quadratic law, which is related to partially filled traps [41,42]. In the high
field region, a higher slope of the curve is observed, which is related to fully filled traps. In
the low-resistance state (LRS), we have mainly Ohmic conduction. In the RESET cycle, the
Ohmic conduction is mainly observed at low voltages. At higher voltage values, carrier
transport through the dielectric is a mix of different types of transport mechanisms, and it
is hard to identify it in a simple way.
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CC = 20 mA at SET (a) and RESET (b) cycle with fitted curves of different slopes.

Figure 5 shows the current–voltage characteristics of the structure S2 with the gate
diameter of 74 µm for different CC values. The initial forming voltage is above 2.0 V.
At CC = 1 mA, we have not observed a reset current–voltage loop. For a higher CC, we
observe an increase in the current in both the high resistance state (HRS) and the low
resistance state (LRS). The CC level can be used to modify the conductance of the RRAM
structure. This is probably due to the fact that a higher CC increases the size or number of
conductive filaments (CF) within the structure [43]. For small CC values, this effect is less
pronounced. CFs are probably not completely formed, unstable and non-persistent, and
thus, they can be easily dissolved using a very small voltage value.

Materials 2021, 14, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 5. Measured current-voltage characteristics of Al/SiO2/n++ Si RRAM structure S2 with the 

gate diameter of 74 μm and various compliance set currents. 

3.2. Small-Signal Measurements 

In our study, we also used the small-signal measurement technique to obtain the ad-

mittance characteristics of the device. In Figure 6, we show conductance and susceptance 

of S1 structure measured at the frequency f = 100 kHz. Measurements were carried out in 

a limited gate voltage range to maintain the structure in one of the states, HRS or LRS. 

 

Figure 6. Small-signal admittance components for S1 structure at the frequency f = 100 kHz in different resistance states 

versus the gate bias voltage. (a) conductance; (b) susceptance. 

As expected, the conductance in LRS is higher than in HRS (Figure 6a). The measure-

ment data taken in the parallel equivalent circuit were used to extract RPM values at −0.5 

V and +0.5 V, as marked in Figure 6a. The imaginary part of the measured admittance is 

presented in Figure 6b. In the HRS state, the susceptance is positive for negative gate volt-

ages up to −1.0 V, indicating the capacitive behavior of the structure. While moving to-

wards positive gate voltages, one can observe that susceptance becomes negative in the 

Figure 5. Measured current-voltage characteristics of Al/SiO2/n++ Si RRAM structure S2 with the
gate diameter of 74 µm and various compliance set currents.



Materials 2021, 14, 6042 5 of 12

3.2. Small-Signal Measurements

In our study, we also used the small-signal measurement technique to obtain the
admittance characteristics of the device. In Figure 6, we show conductance and susceptance
of S1 structure measured at the frequency f = 100 kHz. Measurements were carried out in a
limited gate voltage range to maintain the structure in one of the states, HRS or LRS.
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Figure 6. Small-signal admittance components for S1 structure at the frequency f = 100 kHz in different resistance states
versus the gate bias voltage. (a) conductance; (b) susceptance.

As expected, the conductance in LRS is higher than in HRS (Figure 6a). The mea-
surement data taken in the parallel equivalent circuit were used to extract RPM values at
−0.5 V and +0.5 V, as marked in Figure 6a. The imaginary part of the measured admittance
is presented in Figure 6b. In the HRS state, the susceptance is positive for negative gate
voltages up to −1.0 V, indicating the capacitive behavior of the structure. While moving
towards positive gate voltages, one can observe that susceptance becomes negative in the
bias range above 0.65 V. The closer to the set voltage, the lower susceptance is observed,
and the characteristic tends to the curve representing the susceptance in the LRS. In the
LRS, the structure behavior is mainly inductive within the considered gate voltage range.
Only in a limited voltage range close to 0.0 V, the structure exhibits capacitive behavior.
In general, the admittance of a considered device can be described by a simple electrical
equivalent circuit, which is presented in Figure 7.
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It is particularly important that the series parasitic inductance (LP) and resistance (RP)
cannot be omitted when the resistance (RRRAM in Figure 7) in the parallel RC circuit of
RRAM structure becomes low, and the capacitance CRRAM simultaneously becomes high.
Such a situation occurs when a conductive filament inside RRAM dielectric is formed. As
a result, the admittance of the electrical equivalent circuit presented in Figure 7 can be
calculated as follows:

Y =

(
RP + jωLP +

1
1/RRRAM + jωCRRAM

)−1
(1)

The conductance and susceptance of the measurement parallel depiction of the con-
sidered equivalent circuit are described by the following formulae:

G =
RP + RRRAM(1 + A)−1[

RP + RRRAM(1 + A)−1
]2

+ ω2
[
LP − (ω2CRRAM(1 + A−1))

−1
]2 (2)

B = ω

(
ω2CRRAM

(
1 + A−1))−1 − LP[

RP + RRRAM(1 + A)−1
]2

+ ω2
[
LP − (ω2CRRAM(1 + A−1))

−1
]2 (3)

where A is equal to (ωCRRAMRRRAM)2.
The sign of the susceptance is determined by the sign of the numerator. In LRS, the

capacitance of the RRAM device (CRRAM) increases according to the increase in the absolute
value of the applied voltage. It results from a shortening gap between the growing filament
and the top electrode of the device. In such a situation, the parasitic inductance (LP) can
dominate the numerator of Equation (3), imposing the negative value of the measured
susceptance. A similar mechanism can be a reason for the negative susceptance of the
investigated structures in LRS (Figure 6b).

3.3. Complex Impedance Spectroscopy

Some information on the electrical properties of a resistive switching layer (e.g.,
filaments) and a RRAM device can be extracted from the impedance spectroscopy [44–46].
In many cases, a simple parallel RC equivalent circuit is quite enough to approximate
the conducting behavior of the investigated structure/dielectric layer in a wide range of
frequencies. However, in some situations, it is necessary to extend a simple equivalent RC
network by additional parallel RC circuits. For example, it may be dictated by a different
behavior of the RRAM structure in LRS and HRS modes.

Figure 8a,b present the complex impedance (Z′′-Z′) of the investigated structure at a
given bias voltage (+0.5 V and−0.5 V) for HRS and LRS. The figures combine the measured
and simulated data for the electrical equivalent circuits presented in Figures 9 and 10. In
our considerations, we assume that a highly doped substrate of the device behaves like a
metal electrode. Thus, the elements of the proposed models correspond to the switching
layer of the RRAM device and to the parasitic parameters of the measurement setup. A very
good match of the measured and simulated data for both HRS and LRS in the frequency
range of 20 kHz–1 MHz was obtained.

In Figure 9, we present the electrical equivalent circuit for the measured device
in HRS at two bias points. We have three parallel branches representing the electrical
behavior of the insulator layer. The capacitance Cox represents the capacitance related
to the gate insulator of the device (its value directly corresponds to the approximately
5 nm thick SiO2 layer and the gate electrode diameter of 156 um). Leakage resistance
(Rleakage) represents the gate leakage current that results from tunneling or other transport
mechanisms, different than the transport through conducting filaments. The third branch,
comprising series resistance and parallel RC circuits, represents the cumulative electrical
behavior of conductive filaments. Rparasitic describes the spread parasitic resistance brought
in by the measurement setup and the series resistance of the device. Lparasitic represents the
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uncompensated inductance of the wiring and the switching matrix in the measurement
setup (Figure 2).

The shape of the fitted impedance at HRS (Figure 8) is mainly determined by a
combination of complex semi-circles related to the corresponding parallel RC network. The
remaining elements of the proposed equivalent circuit are responsible for the position of
the curve at the Z-plane and have less impact on its shape. The branch containing the series
connection of the parallel RC circuits and the resistance R4 reflects the electrical behavior
of the conducting filament(s).
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Figure 10. Electrical equivalent circuit for the measured device in LRS at two bias points, (a) Vg = 0.5 V; (b) Vg = −0.5 V.

In the case of LRS, the proposed equivalent circuit of the investigated structure is
as presented in Figure 10. The conducting behavior of the switching layer is represented
only by a single RC network. Moreover, the equivalent circuit consists series of parasitic
elements (Rparasitic, Lparasitic). During switching on, the filament increases its volume, so
the resultant value of spread resistance of the device decreases. At the same time, the gap
between the filament and the top electrode decreases substantially. It is represented by
capacitance, the value of which is greater than the value of capacitances corresponding to
filament structure at HRS.

The parallel RC network (Figure 10) is mainly responsible for the shape of the fitted
impedance at LRS. The series connection of L and R is represented by a straight line on
Z-plane (dashed lines in Figure 8b). As in the proposed equivalent circuit, adding parallel
capacitance is necessary to match the simulated data to the measured ones. COX and
Rleakage were omitted in the electrical equivalent circuit in LRS because their values are
negligible compared to C and R in a parallel RC network (Figure 10).

In Figure 11, we propose a sketch of a hypothetical structure of a conducting fila-
ment; the electrical behavior is approximated by proposed equivalent circuits, with the
interpretation of different R and C elements in the structure in HRS and LRS.

A negative value of the susceptance at LRS (Figure 6b) and a negative imaginary
component of Z (Figure 8b) is often regarded as proof of an inductive behavior of the
structure/conducting filaments [25,44,47]. However, such a behavior can be caused by
parasitic uncompensated inductance (LS in Figure 2) of the measurement setup (wiring,
switching matrix, etc.). In our considerations, a suitable agreement between the simulated
and measured data was obtained for the parasitic inductance; its value of 3.5 µH is com-
parable to LS. This gives rise to the claim that the Lparasitic value in our model is closely
related to the measurement setup, rather than the conduction mechanism within the RRAM
structure. Based on the obtained measurement, we believe that the studied structure is an
OxRAM device. However, further studies are needed to confirm this claim.
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The parallel depictions of the proposed equivalent circuits (at HRS and LRS for
f = 100 kHz) consist of elements (GPM, CPM) whose values correspond to the measured
ones marked in Figure 6a,b—real and imaginary parts of admittance, respectively. Static
equivalent resistance (RDC) value extracted from the proposed equivalent circuits agrees
with the differential resistance Rdiff values obtained from the measured static I–V character-
istics for both considered bias voltages at HRS and LRS (Figure 12).
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Figure 12. Rdiff values extracted from the measurements of S1 structure at different resistance states
and considered gate bias voltages.

4. Conclusions

In this work, current–voltage characteristics of the experimental Al/SiO2/n++ Si
RRAM structures are presented and analyzed. An influence of the compliance current is
shown. The small-signal admittance and complex impedance measurements are used to
characterize the structure and propose its electrical equivalent circuit. A suitable agreement
between characteristics of the proposed equivalent circuit and the experimental data based
on different measurement procedures (DC, small-signal admittance, complex impedance
spectroscopy) confirms that the used methodology can be a useful technique for investi-



Materials 2021, 14, 6042 10 of 12

gating electrical properties of RRAM devices, giving new insights into the origins of the
resistive switching phenomenon.
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