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In multicellular organisms, epithelial cells are key elements of tissue organization. In
developing tissues, cellular proliferation and differentiation are under the tight regulation
of morphogenetic programs, that ensure the correct organ formation and functioning. In
these processes, mitotic rates and division orientation are crucial in regulating the velocity
and the timing of the forming tissue. Division orientation, specified by mitotic spindle
placement with respect to epithelial apico-basal polarity, controls not only the partitioning
of cellular components but also the positioning of the daughter cells within the tissue, and
hence the contacts that daughter cells retain with the surrounding microenvironment.
Daughter cells positioning is important to determine signal sensing and fate, and therefore
the final function of the developing organ. In this review, we will discuss recent discoveries
regarding the mechanistics of planar divisions in mammalian epithelial cells, summarizing
technologies andmodel systems used to study oriented cell divisions in vitro such as three-
dimensional cysts of immortalized cells and intestinal organoids. We also highlight how
misorientation is corrected in vivo and in vitro, and how it might contribute to the onset of
pathological conditions.
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INTRODUCTION

The mitotic spindle is a bipolar structure formed by microtubules (MTs) that in mitosis captures the
duplicated chromosomes and segregates them equally between daughter cells. In unicellular and
multicellular organisms themitotic spindle can be regarded as a key player for the successful outcome
of cell division (Pietro et al., 2016). In stem cells and progenitors, the mitotic spindle orientation
contributes to define the fate choice of daughter cells and their positioning within the tissue, resulting
in either symmetric or asymmetric division (Morin and Bellaïche, 2011). Oriented divisions have
been extensively studied in invertebrate systems (Gönczy, 2008; Knoblich, 2008; Knoblich, 2010;
Morin and Bellaïche, 2011; Pietro et al., 2016), however mechanistic insights into orientation
mechanisms in vertebrates are still limited. Spindle positioning is known to impact on cell
proliferation, cell fate and tissue development although a comprehensive understanding of the
molecular details underlying these processes is just building (Pietro et al., 2016; Lechler and Mapelli,
2021). Timing and execution of spindle placement rely on intrinsic and extrinsic signals sensed by the
dividing cell (Pietro et al., 2016).

In the epithelial tissues, contacts between the dividing cell and the adjacent ones are important
factors determining the division orientation (Osswald and Morais-de-Sá, 2019). In polarized
epithelial monolayers, cells divide by planar divisions with the mitotic spindle parallel to the
epithelium, and the two daughter cells remain within the same monolayer, leading to tissue growth
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and expansion (Nakajima, 2018). Studies on division orientation
in 3D culture, including organoids derived from various tissues,
are just starting to reveal interesting differences between
orientation mechanisms and misorientation correction
compared to what observed in 2D and in invertebrate systems.
In this review, we summarize what is known about mitotic
spindle dynamics and oriented cell divisions in vertebrate 3D
cysts and organoids. In the first section, we will present an
overview of spindle orientation effectors. Then, we will
describe mechanisms of oriented cell divisions in cysts grown
from mammalian cell lines, while in the end of the review we will
focus on more complex 3D cellular structures such as organoids.
Finally, the potential role of mitotic spindle proteins in disease
associated with defective epithelial morphogenesis and
homeostasis will be discussed, with a few examples from
Drosophila studies.

Mitotic Spindle Machinery: The Importance
of the Gαi/LGN/NuMA Complex
Division orientation depends on mitotic spindle positioning, that
is generally attained in metaphase and sometime corrected in
telophase (Morin and Bellaïche, 2011; Lough et al., 2019). In
many epithelial systems, division orientation follows the
Hertwig’s rule, according to which the spindle aligns along the
long axis of the dividing cell (Hertwig, 1884). To which extent
spindle alignment to the long cell axis is guided by mechano-
sensing pathways responding to compressional cues exerted by
neighbouring cells, or it is contributed by cytoskeletal forces
exerted by MT motors is still debated. Elegant studies in
MDCK (Madin–Darby Canine Kidney) Extra-Cellular-Matrix-
free (ECM-free) monolayers “in suspension” showed that the
division orientation occurs along the longest cell axis and is
instructed by the interphase geometry (Wyatt et al., 2015). In
these cells, components of the force generators complexes
including NuMA and Gαi accumulates at cortical polar sites.
Consistently, studies in Xenopus epithelia indicate that cells
divide according to interphase cellular shape that is defined by
three-cell junction distribution, where LGN and E-cadherin
accumulates (Nestor-Bergmann et al., 2019). Collectively, this
evidence suggests that in mammalian epithelial cells interphase
shape drives force generators distributions to orchestrate
divisions along the longest cell axis. Notably, these findings in
vertebrate cells are consistent with previous observations in
Drosophila tissues (Bosveld et al., 2016), although do not seem
to apply to the development of Drosophila follicular epithelium at
early-stage egg chambers (Finegan et al., 2019).

Several studies elucidated the molecular mechanisms of
orientation, in which a fundamental role is played by Gαi/
LGN/NuMA proteins, an evolutionarily conserved ternary
complex. Gαi is the subunit of heterotrimeric G-proteins that
localizes at the plasma membrane, LGN acts as a molecular
scaffold, and NuMA is the mitotic dynein-adaptor involved in
MT-pulling force onset. The majority of studies addressing the
mechanistics of orientation were conducted in adherent cells in
isolation, such as HeLa cells (Du et al., 2001; Du and Macara,
2004; Zheng et al., 2010; Kiyomitsu and Cheeseman, 2012; Kotak

et al., 2012; Gallini et al., 2016; Pirovano et al., 2019; Takayanagi
et al., 2019), or in a monolayers of MDCK cells, in which the
spindle axis aligns parallel to the substratum in an integrin-
dependent manner (Reinsch and Karsenti, 1994; Tuncay et al.,
2015; Chishiki et al., 2017; Lázaro-Diéguez and Müsch, 2017).

In metaphase, the Gαi/LGN/NuMA complex localizes at the
plasma membrane above the spindle poles (Du et al., 2001; Du
andMacara, 2004; Kotak et al., 2012; Gallini et al., 2016; Pirovano
et al., 2019; Zheng et al., 2010; Machicoane et al., 2014) and
recruits the MT motor dynein/dynactin (Kotak et al., 2012;
Okumura et al., 2018; Woodard et al., 2010) (Figure 1A).
Exploiting the minus-end directed movement of dynein,
cortically localized dynein motors generate pulling forces on
astral MTs branching from the spindle poles that in
metaphase contribute to spindle placement (Théry et al., 2007;
Kiyomitsu and Cheeseman, 2012; Kotak et al., 2012). Notably,
ectopic recruitment of NuMA to the cell cortex by optogenetic
techniques is necessary and sufficient to orient the spindle, while
cortical targeting of dynein is not sufficient to generate enough
pulling forces to place the spindle (Fielmich et al., 2018; Okumura
et al., 2018), implying that the activity of MT motors requires a
defined spatial cortical organization. In line with these findings,
recent studies revealed that not only the levels of NuMA/dynein/
dynactin motors present at the cortex, but also their spatial
distribution plays a role in the onset of effective MT-pulling
forces (Pirovano et al., 2019; Renna et al., 2020).

In mitosis Gαi proteins are uniformly enriched at the cell
cortex, but only a GDP-loaded pool of Gαi (GαiGDP) accumulates
above the spindle poles and is the one that selectively binds to
LGN (Du et al., 2001; Willard et al., 2004; Mochizuki et al., 1996).
The recruitment of LGN at the cortex by Gαi is controlled by
GAPs (GTPase activating proteins) and GEFs (Guanine
Exchange Factors) that tune the GTP-state of Gαi. An
important Gαi GEF implicated in spindle placement is Ric-8A,
which appears to play a key role in targeting LGN to the cortex
(Chishiki et al., 2017;Woodard et al., 2010). Inmetaphase, LGN is
spatially restricted to the cortical side facing the spindle poles by
direct binding to Gαi (Zheng et al., 2010) (Figure 1A). Lateral
recruitment of LGN and in turn NuMA/dynein motors promotes
planar spindle orientation (Zheng et al., 2010). Notably, the
conformation of LGN depends on its binding partners (Du
and Macara, 2004; Pan et al., 2013): in the unliganded form
LGN is kept in an inhibited conformation by intra-molecular
interactions between the N-terminal TPR domain and the
C-terminal GoLoco region. Cooperative binding of the four
GoLoco motifs to cortical GαiGDP molecules recruits LGN to
the cortex and induces a conformational change releasing the
TPR domain that in turn associates with NuMA. These events
result in the enrichment for NuMA/dynein/dynactin motors to
specific cortical sites and onset of astral MT-pulling forces (Du
andMacara, 2004; Pan et al., 2013) (Figure 1A). Notably, the TPR
domain of LGN interacts not only with NuMA but also with
Afadin and E-cadherin in a mutually exclusive manner, with
functional implications that will be discussed below. NuMA
shares the domain structures with other dynein-activator
proteins (Kiyomitsu and Boerner, 2021), including a hook
domain and a CC1-like box motifs, both at the N-terminus,
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FIGURE 1 | Localization and interaction of the spindle orientation and polarity proteins in different model systems. (A) HeLa cell in metaphase. Chromosomes (in blue)
are aligned at themetaphase plate in the centre of the cell, MTs (in dark green) form themitotic spindle and integrins important for adhesion of themitotic cell to the substratum,
are shown in light blue and green. In the inset, the details of the interaction interfaces between orientation proteins Gαi/LGN/NuMA, dynein/dynactin (in bordeaux) and astral
MTs are shown. The Gαi/NuMA/LGN complex is recruited at the lateral sides above spindle poles. NuMA is in green, LGN in orange and Gαi in petrol blue. Ric8-A (in
purple) is shown in the cytoplasm, close to the plasma membrane-bound Gαi. (B) Evolution from two-cell stage, in which the mitotic spindle orients parallel to the AMIS, to
mature cyst with a single lumen. The diving cell in the mature cyst has the mitotic spindle parallel to the apical side. In the scheme, the apical domain is highlighted in purple

(Continued )
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responsible for the binding to dynein and dynactin. After a
central 1500-residue long coiled-coil, NuMA codes for a
C-terminal region binding to LGN, microtubules, as well as to
the plasma membrane in anaphase (Kotak et al., 2013; Seldin
et al., 2013; Carminati et al., 2016; Seldin et al., 2016; Pirovano
et al., 2019; Renna et al., 2020). All these diverse functionalities of
NuMA C-terminus contribute to spindle placement during
mitotic progression, partly modulated by mitotic kinases’
phosphorylation (Lechler and Mapelli, 2021).

Polarity and Epithelial Junctions in Spindle
Orientation in Polarized Monolayers
and Cysts
In 2D systems such as polarized MDCK cells grown in
monolayer, cells divide with the spindle axis aligned to the
substratum by planar symmetric divisions that generate two
daughter cells remaining in the same monolayer (Reinsch and
Karsenti, 1994; Tuncay et al., 2015; Lázaro-Diéguez and Müsch,
2017). In this setting, spindle alignment is maintained by astral
MTs captured by cortical cues localized at the lateral domains of
the dividing cell, including cell-cell adhesion molecules (Gloerich
et al., 2017; Lázaro-Diéguez and Müsch, 2017). Additional
information has been obtained in more physiologically
relevant 3D models, such as cysts.

The most common cells used to study oriented divisions in
cysts are MDCK and Caco-2 (human colon adenocarcinoma)
cells that, when plated on a substrate that mimics the ECM such
as matrigel, grow as monolayered spheres by planar divisions
occurring with the spindle axis perpendicular to the apico-basal
polarity (Zegers et al., 2003; Jaffe et al., 2008). A cyst is
characterized by a central lumen and a surrounding
monolayer of polarized cells (Zegers et al., 2003) (Figure 1B).
Notably, lumen formation in MDCK- or Caco-2-derived cysts
relies on spindle orientation, as opposed to cysts obtained from
MCF10A cells (human breast immortalized cells) where lumen
forms by anoikis, i. e apoptosis of inner cells after a full sphere is
formed (Debnath et al., 2002). After the first division, MDCK
single cells have been shown to form an apical membrane
initiation site (AMIS) between the two daughter cells, in the
position where the midbody was located (Overeem et al., 2015),
that will later become the lumen of the nascent cyst (Rodriguez-
Boulan and Macara, 2014) (Figure 1B left). Cells composing the
mature cyst have two types of domains: the apical side facing the
central lumen where the PAR (partitioning defective) family
proteins localize, and the baso-lateral domain where adhesion
proteins such as integrins are in contact with the ECM, and where
adjacent cells are in contact with each other by adherens (AJ) and

tight junctions (TJ) (McCaffrey and Macara, 2011) (Figure 1B
right). Importantly, each of these membrane domains is key for
the localization of spindle orientation proteins instructing planar
divisions including Gαi, NuMA and LGN (see below) (Overeem
et al., 2015; Nakajima, 2018). In Table 1 we summarized the
proteins involved in spindle orientation with their function,
localization and defects occurring upon depletion.

One of the first proteins to be implicated in planar divisions in
cysts was the GTPase Cdc42, whose depletion in Caco-2 cells
results in multi-lumen cysts due to spindle misorientation (Jaffe
et al., 2008). In MDCK cells, Cdc42 has been shown to be activated
by the two GEFs Tuba, regulating cell-cell junctions and Cdc42
apical localization (Qin et al., 2010; Otani et al., 2006), and
Intersectin-2, implicated in endocytosis and in the mitotic
Cdc42 targeting at centrosomes (Rodriguez-Fraticelli et al.,
2010; Okamoto et al., 1999; Hussain et al., 2001). Planar spindle
orientation is also mediated by the apically-localized polarity
complex composed by Par3, Par6 and the kinase aPKC
(Figure 1B). Several studies in 3D systems have shown that
depletion of Par3 leads to mislocalization of the kinase aPKC
(Hao et al., 2010; Zheng et al., 2010; Durgan et al., 2011; Vorhagen
and Niessen, 2014), which phosphorylates LGN on Ser401 to
exclude it from the apical side ensuring its localization at the
lateral cortex, possibly by direct association with the baso-lateral
protein Dlg-1 (Saadaoui et al., 2014). An intriguing role has been
described for the Par1b/MARK2 kinase that in MDCK cells
monolayer with high Rho activity promotes LGN/NuMA
recruitment at the lateral site and planar divisions with the
spindle axis aligned to the substratum. Conversely, in
hepatocytes, that in addition to apico-basal polarity also
organize a lateral lumen for the development of bile canalicular
networks and have reduced Rho activity, Par1b prevents NuMA/
LGN lateral recruitment causing tilted spindles and asymmetric
partitioning of the lateral lumen among daughter cells (Lázaro-
Diéguez et al., 2013; Slim et al., 2013).

In addition to their cohesive role, also some junctional
proteins have been shown to be involved in spindle
orientation in cysts, including the Junctional adhesion
molecule-A (JAM-A), Afadin (AF6), E-Cadherin and Dlg-1
(Discs large homolog 1) (Figure 1B). In MDCK cysts, JAM-A
activates Cdc42 and PI(3)K (Phosphatidylinositol 3-kinases),
generating a gradient of PtdIns(3,4,5)P3 enriched at the cortex
area facing the spindle poles, which is required for correct
localization of dynein/dynactin and for spindle orientation
(Toyoshima et al., 2007; Tuncay et al., 2015). Consistently,
JAM-A was shown to activate Cdc42 also in progenitors of the
developing cerebral cortex this way contributing to spindle
orientation (Fededa et al., 2016).

FIGURE 1 |while the basolateral side in green. In the close-up, themitotic spindle proteins displayed in A are shown in relationwith the polarity or junctional protein discussed
in the text. At the level of cell-cell junctions, the tight junction (TJ, orange box) and the adherens junction (AJ, bright green box) are shownwith key components highlighted. At
the TJ, JAM-A (in rainbow orange), the polarity complexwith Par3 (dark purple), Par6 (light red), aPKC (brown), Cdc42 (lilac) and Tuba (cyan) are depicted. Par1b (fuchsia) and
SAPCD2 (yellow) are pictured at the apical side. At the AJ levels, E-cadherin (in green), Afadin (in blue) and Dlg-1 (in gold) are shown. At the basal side of the cell, IQGAP1 (in
pink) and integrins are depicted. Intersectin-2 (in olive green) is present at the centrosomes. F-actin is shown in red, and the interacting proteinsMISP (in purplewine) and ERM
(in aqua green) connecting the mitotic cortex to the plasma membrane are indicated. (C) Left: intestinal organoids showing the crypt-villi structure that recapitulates the
intestine architecture. The apical side of the organoids is shown in purple, the intestinal stem cells (in ocre) and the Paneth cells (in blue) are highlighted. In the inset on the right,
mitotic ISC located apically in the monolayer is shown with the actin cable connecting the dividing cells to the basal membrane. Dlg-1 and Tacc3 (in tomato) are shown.
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The actin-binding protein Afadin, localized at adherent
junctions, mediates planar spindle orientation in Caco-2 cyst

by recruiting LGN to the lateral cortex via direct interactions with
the LGN-TPR domain (Carminati et al., 2016; Gao et al., 2017;

TABLE 1 | Proteins involved in division orientation, and model systems in which they were studied (fly and worm orthologues are reported, when present).

Protein Cellular system Function Mitotic localization Defects upon
ablation

REFs

NuMA dmMud,
ceLIN-5

HeLa, Caco-2/MDCK cyst Dynein adaptor Spindle poles Polar,
cortex Centrosomes

Misorientation
Multilumen

(Du et al., 2001; Du and Macara, 2004;
Woodard et al., 2010; Kotak et al., 2012;
Kotak et al., 2013; Seldin et al., 2013;
Bañón-Rodríguez et al., 2014; Carminati
et al., 2016; Gallini et al., 2016; Seldin et al.,
2016; Kschonsak and Hoffmann, 2018;
Okumura et al., 2018; Pirovano et al., 2019;
Renna et al., 2020)

LGN, dmPins,
ceGPR-1/2

HeLa, MDCK cyst/monolayer Scaffold Polar cortex Misorientation
Multilumen

(Mochizuki et al., 1996; Willard et al., 2004;
Rodriguez-Fraticelli et al., 2010; Woodard
et al., 2010; Zheng et al., 2010; Pan et al.,
2013; Machicoane et al., 2014; Saadaoui
et al., 2014; Carminati et al., 2016; Gloerich
et al., 2017; Hart et al., 2017; Saadaoui et al.,
2017; Wang et al., 2018; Pirovano et al.,
2019; Takayanagi et al., 2019)

Gai, dmGai/Goa,
ceGPR-1/2

HeLa, MDCK cyst GTPase of
G-proteins

Cell cortex Misorientation
Multilumen

(Du and Macara, 2004; Chishiki et al., 2017)

Ric-8a dmRic8,
ceRic8/synembrin

HeLa, MDCK cyst GEF Cell cortex, TJ Misorientation
Multilumen

(Woodard et al., 2010; Chishiki et al., 2017)

Cdc42, dmCdc42,
ceCdc42

Caco-2/MDCK cyst GTPase Cell cortex,
Centrosomes

Misorientation
Multilumen

(Otani et al., 2006; Jaffe et al., 2008; Qin et al.,
2010; Rodriguez-Fraticelli et al., 2010;
Vodicska et al., 2018)

Intersectin-2 MDCK cyst GEF Centrosomes Misorientation
Multilumen

Rodriguez-Fraticelli et al. (2010)

Tuba MDCK cyst GEF Cell cortex Misorientation
Multilumen

(Otani et al., 2006; Qin et al., 2010)

PAR1b, dmPar1b,
cePAR1

MDCK cyst, hepatocyte cells Scaffold and
adaptor

Apical cortex Misorientation (Lázaro-Diéguez et al., 2013; Slim et al., 2013)

PAR3,
dmBazooka,
cePAR3

Caco-2/MDCK cyst Scaffold and
adaptor

Apical cortex Misorientation
Multilumen

(Hao et al., 2010; Vorhagen and Niessen,
2014)

PAR6, dmPAR6,
cePAR6

Caco-2/MDCK cyst Scaffold and
adaptor

Apical cortex Misorientation
Multilumen

(Durgan et al., 2011; Vorhagen and Niessen,
2014)

aPKC, dmaPKC,
cePKC-3

Caco-2/MDCK cyst Apical polarity Apical cortex Misorientation
Multilumen

(Hao et al., 2010; Durgan et al., 2011;
Vorhagen and Niessen, 2014)

SAPCD2 MDCK, Mouse retina
epithelium

Apical polarity Apical cortex Misorientation
Multilumen

Chiu et al. (2016)

Dlg1, SAP97,
dmDlg, ceDLG-1

HeLa, Caco-2/MDCK cyst,
Chick neuroepithelium,
Intestinal organoids
Mice intestine

Polarity protein Basolateral Cell
cortex

Misorientation
Multilumen

(Saadaoui et al., 2014; Porter et al., 2019;
Young et al., 2019)

JAM-A HeLa, MDCK cyst, MDCK
monolayer, Murine brain

Junction
formation

TJ Misorientation
Multilumen, Fate
defects

(Tuncay et al., 2015; Fededa et al., 2016)

Afadin, dmCanoe,
ceAFD-6

HeLa, Caco-2/MDCK cyst
Hepatocyte, Mice intestine

Junction
formation Actin-
binding

Lateral cortex, AJ Misorientation
Multilumen, Intestine
defects

(Carminati et al., 2016; Gao et al., 2017;
Rakotomamonjy et al., 2017; Lough et al.,
2019; Bonucci et al., 2020)

E-Cadherin,
dmsgh, ceHMR-1

HeLa, MDCK cyst AJ formation Lateral cortex, AJ Misorientation
Multilumen

(Gloerich et al., 2017; Hart et al., 2017;
Lázaro-Diéguez and Müsch, 2017; Wang
et al., 2018)

IQGAP1, cepes-7 MDCK cyst Adhesion, Actin-
binding, MT-
binding

Basolateral Cell
cortex

Misorientation
Multilumen

(Bañón-Rodríguez et al., 2014; Vodicska
et al., 2018)

MISP HeLa, Caco-2 cyst Actin and MTs
interactor

Cell cortex Misorientation
Multilumen

(Zhu et al., 2013; Kschonsak and Hoffmann,
2018; Vodicska et al., 2018)

ERM, dmMoesin,
ceERM-1

HeLa, MDCK cyst Linking Actin to
cortex

Cell cortex Misorientation
Multilumen

(Hebert et al., 2012; Machicoane et al., 2014;
Kschonsak and Hoffmann, 2018)

Tacc3, dmTACC,
ceTAC-1

HeLa, Intestinal organoids,
Murine intestine

MTs stabilization Centrosomes,
Spindle poles

Misorientation (LeRoy et al., 2007; Burgess et al., 2015; Yao
et al., 2016)
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Bonucci et al., 2020) (Figure 1B). Consistently, studies conducted
in MDCK cysts (Gao et al., 2017), hepatocyte cells (Bonucci et al.,
2020), and murine neuro glia (Rakotomamonjy et al., 2017) show
that Afadin is crucial for spindle orientation as its depletion leads
to an aberrant spindle placement (Lough et al., 2019; Carminati
et al., 2016; Gao et al., 2017; Bonucci et al., 2020; Rakotomamonjy
et al., 2017). In MDCK cysts, planar cell divisions also rely on the
interaction between the intra-cellular domain of E-cadherin and
LGN-TPR domain (Gloerich et al., 2017; Hart et al., 2017)
(Figure 1B). As with Afadin, NuMA competes also with
E-cadherin for LGN binding (Zhu et al., 2011; Carminati
et al., 2016; Gloerich et al., 2017; Hart et al., 2017). This
suggests that Afadin and E-cadherin might be needed for the
initial LGN targeting at the cortex, when NuMA is still in the
nucleus, and that these interactions dissociate later in mitosis. An
alternative explanation envisions that the cortical GαiGDP-bound
pool of LGN cycles between different mitotic binding partners
associating with its TPR domain, including NuMA, Afadin and
E-cadherin, in order to coordinate mechano-sensing junctional
cues with spindle orientation and mitotic progression. Future
live-imaging studies will clarify whether this is the case.

In addition to this role, E-cadherin was shown to be
important for maintenance of cell polarity and spindle
orientation in prostate epithelia by interacting with LGN,
NuMA and Scrib at the lateral sites of mitotic cells, this way
preserving correct apico-basal polarity, planar cell divisions and
tissue integrity. Consistently, conditional loss of E-cadherin
during murine prostate development leads to disorganized
epithelia observed in early state prostate tumorigensis (Wang
et al., 2018). Spindle orientation functions have been reported
also for the baso-lateral polarity protein Dlg-1, that belongs to
the membrane-associated guanylate kinase (MAGUK) family
and is required for adherens junction formation and
maintenance (Su et al., 2012) (Figure 1B). In HeLa cells, in
MDCK cysts and in the chick neuroepithelium, Dlg-1 promotes
spindle orientation by binding to the phosphorylated LGN
protein (Saadaoui et al., 2014; Saadaoui et al., 2017; Porter
et al., 2019), fully in line with was previously shown in
Drosophila epithelial systems (Morin and Bellaïche, 2011;
Pietro et al., 2016). In turn, the correct localization of Dlg-1
is influenced by other factors including Gαi (Saadaoui et al.,
2014) and the tumor suppressor protein CASK (calcium/
calmodulin-dependent serine protein kinase) (Porter et al.,
2019). The binding of Dlg-1 to CASK and Gαi is key to
direct LGN to restricted cortical regions before metaphase,
and ultimately to target LGN and NuMA-dynein
appropriately (Saadaoui et al., 2014; Saadaoui et al., 2017;
Porter et al., 2019).

Another polarity protein affecting LGN cortical
recruitment is the suppressor APC domain containing 2
(SAPCD2), that has been shown to interact with Gαi/LGN
complexes to orchestrate mitotic spindle orientation in
MDCK cyst and in mouse retina (Chiu et al., 2016).
Specifically, SAPCD2 binding to the close conformation of
LGN restricts LGN/NuMA accumulation at the lateral site
providing a mechanism to balance the proportion of planar
and vertical divisions, and hence the symmetric or

asymmetric outcome of retinal progenitor mitosis (Chiu
et al., 2016).

We already reported the relevance of the Gαi GEF Ric-8A for
spindle orientation in HeLa cells (Woodard et al., 2010). Recent
work highlighted a role for Ric-8A in tight junction formation in
MDCK cysts and in LGN recruitment to the lateral cortex by
generation of a localized Gαi-GDP pool promoting planar cell
divisions (Chishiki et al., 2017) (Figure 1B).

Beside junctional and polarity proteins, the actin cytoskeleton,
as well as actin and microtubule-binding proteins, contribute
actively to spindle orientation (Pietro et al., 2016), as described in
invertebrate systems such as Drosophila neuroblasts (Kunda and
Baum, 2009) and HeLa cells (Pietro et al., 2016; Rizzelli et al.,
2020). However, the role of actin in planar division and
cystogenesis is less clear. In MDCK cysts, the microtubule-
associated protein IQGAP1, localized at the basal site,
participates to MTs dynamics and promotes planar spindle
orientation by interacting with the MT plus-ends and by
targeting NuMA laterally (Bañón-Rodríguez et al., 2014)
(Figure 1B). Notably, in HeLa cells the interaction between
IQGAP1 and Cdc42 has been shown to allow the binding of
Cdc42 to the actin-binding protein MISP (Mitotic Interactor and
Substrate of PLK1) implicated in spindle positioning (Zhu et al.,
2013; Cadart et al., 2014; Vodicska et al., 2018). MISP associates
to members of the ERM (Ezrin, Radixin and Moesin) protein
family, that connects the mitotic acto-myosin cortex to the
plasma membrane, in this way assisting the correct
localization of NuMA at the cortex for correct spindle
positioning (Hebert et al., 2012; Zhu et al., 2013; Machicoane
et al., 2014; Kschonsak and Hoffmann, 2018) (Figure 1B).

Mitotic Spindle Orientation in Intestinal
Organoids
Studies of oriented divisions in cysts provided great insights into
the crosstalk between orientation pathways and epithelial
polarity. However, cysts of immortalized cell lines do not
entirely recapitulate the cell diversity and the signaling
response of epithelial tissues in vivo (Lancaster and Knoblich,
2014; Clevers and Tuveson, 2019).

Tissue organoids, especially murine intestinal organoids, are
becoming a relevant model to study division orientation in a more
physiological setting. Organoids are model systems that
recapitulate not only the morphology of the organ but also the
cellular composition, from stem cells to differentiated lineages
(Clevers, 2013; Sato and Clevers, 2013). Methods to grow,
manipulate genetically and image intestinal organoids have been
first established in the Clevers lab (Sato and Clevers, 2013; Sato
et al., 2009), whose work revealed that the organoids grown from
intestinal epithelial cells form crypt and villi-like domains
mirroring the morphology of the intestinal epithelium, with an
analogous composition and distribution of cell types (Sato and
Clevers, 2013; Sato et al., 2009) (Figure 1C). These studies revealed
that in intestinal organoids the proliferating cells reside at the
bottom of the crypt, close to the stem cell niche compartment
constituted by non-dividing Paneth cells, that generate a Wnt3
gradient decreasing along the crypt axis (Figure 1C). Intestinal
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stem cells (ISCs) divide symmetrically moving toward the apical
side of the monolayer that faces the organoid lumen, with the
metaphase plate perpendicular to the apical side (Figure 1C).
These ISC apical mitosis retain a connection to the basal site,
and hence to the ECM, through an actin cable (Carroll et al., 2017;
McKinley et al., 2018) (Figure 1C) that is essential for daughter
cells to move back to the basal side of the monolayer upon
cytokinesis (Carroll et al., 2017). As a matter of fact, the use of
intestinal organoids to study oriented division is still in its infancy,
contributed mainly by descriptive imaging experiments and a few
mechanistical studies investigating the molecular mechanisms of
mitosis. Little is known on molecules executing oriented divisions
in organoid, but it is plausible that the same set of polarity and
junctional proteins important for correct cystogenesis is implicated
in division orientation also in these systems, with molecular details
that remain to be explored.

Ablation of Dlg-1 from the murine intestinal crypts has been
shown to result in misoriented divisions of the intestinal stem cells
with a consequent delay in cell migration from the crypts bottom to
the villi that promotes tumorigenic events (Young et al., 2019).
Similarly, depletion from the murine crypts of the protein Tacc3,
which is involved in MT crosslinking and stabilization of the
Aurora-A dependent kinetochore-microtubules attachment
(LeRoy et al., 2007; Burgess et al., 2015), blocks proliferation
(Yao et al., 2016). Interestingly, knock-out of Tacc3 from
intestinal organoids derived from APC (Adenomatous polyposis
coli) mutated mice, models for colorectal cancer (Merenda et al.,
2020), increases chromosome misalignment and hypomorphic
mitotic spindles, leading to prolonged mitosis or mitotic arrest
(Yao et al., 2016), to a certain extent mimicking what observed in
vivo. Both findings open the possibility to target specific mitotic
spindle proteins for chemotherapeutic therapy. In conclusion,
although organoids hold the potential to allow more insightful
analyses on the orientation pathways and their relevance for
morphogenesis and disease, more studies are required to
elucidate the molecular mechanisms accounting for oriented
divisions in these systems.

Spindle Misorientation: What Can GoWrong
and What Can be Done to Fix it
As discussed, oriented divisions are important for the regulation of
epithelial morphogenesis and homeostasis. Consistently, their
deregulation has been associated to several pathological
conditions such as cancer, microcephaly, and developmental
defects (Gillies and Cabernard, 2011; Nakajima, 2018; Lechler
and Mapelli, 2021). However, not always the causal relationship
between misorientation and diseases is clear. In vivo studies
revealed that spindle misorientation is oftentimes corrected or is
embryonic lethal (Nakajima, 2018; Lechler and Mapelli, 2021).

In murine hepatic epithelial cells in vivo, spindle
misorientation leads to detachment of epithelial sheets from
nephron epithelial tubules (Gao et al., 2017). Similarly, in stem
cell systems, misorientation alters the balance between symmetric
and asymmetric divisions resulting in defective changes in
architecture and functioning. This has been documented for
neuroepithelial progenitors during murine cortical

development, in which misorientation leads to the expansion
of the radial glial compartment with a delay in neurogenesis
(Fededa et al., 2016).

Tissues have developed different mechanisms to rescue the
damage that a misoriented spindle can cause, that have been first
discovered in Drosophila and still await to be confirmed in
mammalian tissues. The first mechanism impinges on the
ability of epithelial tissue to reintegrate cells that after
misoriented cytokinesis are misplaced above the epithelial
layer (Bergstralh et al., 2015; Lough et al., 2019). As described
for intestinal organoids (Carroll et al., 2017), in Drosophila
imaginal disc the dividing cells have an actin protrusion that
keeps them in connection to the basal side of the monolayer and
assists the appropriate repositioning of daughters after
cytokinesis (Nakajima et al., 2013). Parallel studies showed
that also adhesive molecules, such as Fasciculin-2/3 and
neuroglian, play a role in reintegrating in the epithelial layer
the cells misplaced above the follicular epithelium due to
orientation defects (Bergstralh et al., 2015; Cammarota et al.,
2020). In Drosophila imaginal discs, evidence was provided that
upon misorientation, one of the two daughter cells loses
connection with the basal side and is displaced in the lumen
(Nakajima et al., 2013). In the absence of re-integration, the
misplaced cells can encounter two different fates: it either remains
in the wrong position, where proliferation causes morphological
defects (Dekanty et al., 2012; Nakajima et al., 2013; Poulton et al.,
2014), or it undergoes apoptosis due to lack of survival signals
(Nakajima et al., 2013; Poulton et al., 2014). Whether any of these
mechanisms for misorientation correction is in place in
vertebrate epithelial tissues remains an interesting open question.

CONCLUSION

Much is known about division orientation and how the spindle
orientation components are recruited to the cortex in single cells
in isolation and cysts. However, a clear picture of orientation
mechanisms in more complex systems, such as organoids and
tissues, is still missing. The complexity of cell-cell contacts and
the presence of different cell populations in epithelial tissues
contribute to determine the division orientation in ways that we
do not fully grasp. We also still need to further understand the
mechanisms that mammalian tissues have evolved to respond to
misorientation in order to preserve tissue architecture. Some of
the open questions that the field should address in the future are
how the correction mechanisms work in mammalian systems
and how we can leverage this knowledge to better understand
physio-pathological processes associated with misoriented
spindles in the presence or absence of other genetic lesions.
We anticipate that the use organoids as model systems might be
instrumental in these studies.
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